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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive
cognitive regression and memory loss. Dysfunctions of both glucose metabolism and mitochondrial
dynamics have been recognized as the main upstream events of the degenerative processes leading
to AD. It has been recently found that correcting cell metabolism by providing alternative substrates
can prevent neuronal injury by retaining mitochondrial function and reducing AD marker levels.
Here, we induced an AD-like phenotype by using the glycolysis inhibitor glyceraldehyde (GA)
and explored whether L-carnitine (4-N-trimethylamino-3-hydroxybutyric acid, LC) could mitigate
neuronal damage, both in SH-SY5Y neuroblastoma cells and in rat primary cortical neurons. We
have already reported that GA significantly modified AD marker levels; here we demonstrated that
GA dramatically compromised cellular bioenergetic status, as revealed by glycolysis and oxygen
consumption rate (OCR) evaluation. We found that LC ameliorated cell survival, improved OCR
and ATP synthesis, prevented the loss of the mitochondrial membrane potential (∆ψm) and reduced
the formation of reactive oxygen species (ROS). Of note, the beneficial effect of LC did not rely on
the glycolytic pathway rescue. Finally, we noticed that LC significantly reduced the increase in pTau
levels induced by GA. Overall, these findings suggest that the use of LC can promote cell survival in
the setting of the metabolic impairments commonly observed in AD. Our data suggest that LC may
act by maintaining mitochondrial function and by reducing the pTau level.

Keywords: Alzheimer’s disease; L-carnitine; metabolic dysfunctions; mitochondrial membrane
potential; neuronal survival; oxygen consumption rate; oxidative stress; Tau hyperphosphorylation

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progres-
sive cognitive regression and memory loss. AD is defined by the presence of specific
markers in the cerebral cortex, namely, neuritic plaques, which are mostly composed of
fibrillary amyloid-β (Aβ), and abundant neurofibrillary tangles, which are composed of
hyperphosphorylated Tau protein (pTau) [1,2]. The complexity of the pathogenic frame-
work that characterizes AD has limited the development of effective mechanism-based
therapies. Different cofactors may converge on AD pathogenesis and shape its course [1,3].
In particular, the dysfunction of glucose metabolism, and the alteration of mitochondrial
dynamics and oxidative stress have been recognized as the main upstream events of the
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degenerative processes leading to AD [4,5]. The disruption of glucose metabolism has
been shown to affect the production and clearance of Aβ and Tau phosphorylation [6],
events that may occur as a consequence of both the depletion of ATP and the production of
advanced glycation end products (AGEs) [6–8], which in turn may favor ROS formation
and worsen mitochondrial performance. In this framework, a decrease in the mitochon-
drial membrane potential (∆ψm) has also been observed in both AD animal models and in
human cortical neurons ex vivo [9–11]. Interestingly, a link between the hyperphosphoryla-
tion of Tau, oxidative stress and mitochondrial dysfunctions has been proposed [12], as the
hyperphosphorylation of Tau protein may be the earliest event occurring during abnormal
Tau processing in AD and other Tau pathologies [13,14]. In this scenario, it has recently
been found that correcting cell metabolism with alternative substrates, such as glutamate,
has a positive impact on mitochondrial function, mainly with regard to ATP synthesis and
ROS formation, leading to improved neuronal survival, which occurs in parallel with the
reduction of AD markers [15].

L-carnitine (4-N-trimethylamino-3-hydroxybutyric acid, LC) is a naturally occurring
compound whose primary function within the cell is to facilitate the transport of activated
long-chain fatty acids into the mitochondrial matrix (the “carnitine shuttle”) before they
undergo β-oxidation, resulting in ATP formation [16]. In neuronal cells, the translocation
of the acetyl moiety from the mitochondria into the cytosol through the carnitine shut-
tle promotes the synthesis of acetylcholine and acetylcarnitine (ALC) [16,17], which, in
turn, may contribute to the modulation of brain energy metabolism, synaptic morphology
and synaptic transmission [16,18,19]. Interestingly, disturbances in the biosynthesis and
metabolism of LC have been documented in AD patients [20,21], suggesting that the per-
turbed transport of fatty acids into the mitochondria for β-oxidation may contribute to
the impairment of energy metabolism observed in this neuropathological setting. In this
vein, early studies reported that the administration of ALC (which has greater bioavail-
ability than LC) to AD patients [22,23] could improve cognitive functions and delay the
progression of mental decline [24–26]. Although these findings have been corroborated by
more recent studies [22,27], the underlying cellular and molecular mechanisms have not
been fully elucidated. Of note, several studies reported that LC can exert neuroprotective
effects in different neuropathological settings, and the mechanisms involved in these effects
include either the compensation and enhancement of specific mitochondrial metabolic
pathways, or the improvement of antioxidant defenses [28–35].

Considering that glucose metabolism impairment is a crucial event in the pathogenesis
of AD, in the present study, we challenged neuronal cells with glyceraldehyde (GA), a
glycolysis inhibitor able to cause AD-like alterations in diagnostic marker levels [15,36],
and explored whether the administration of LC as an alternative substrate could sustain
neuronal survival [15]. We investigated the mechanisms underlying the possible neuropro-
tective effect of LC, with a particular focus on the modulation of mitochondrial activities
and the possible implications in AD pathology.

2. Materials and Methods
2.1. Cell Culture and Treatments

The human neuroblastoma cell line SH-SY5Y was obtained from American Type
Culture Collection (CRL-2266). SH-SY5Y cells were cultured as a monolayer and grown in
polystyrene dishes (100 mm diameter) in Dulbecco’s Modified Eagle’s Medium (DMEM;
Corning, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS), 100 U/mL
penicillin, and 100 µg/mL streptomycin (Corning) and were maintained in a humidified
incubator at 37 ◦C in a 5% CO2 atmosphere.

Primary rat cortical neurons were prepared from the cortex of Wistar rat pups (P2–P4)
(Charles River, Lecco, Italy) as previously described [15,37]. The experimental procedures
were performed in full compliance with the Committee for Animal Welfare of the Uni-
versity “Politecnica delle Marche” (project 40A31N.G22) and in strict accordance with
the guidelines of the Italian Ministry of Health (D.L. 26/2014). All efforts were made to
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minimize the number of animals used as well as reducing their suffering. Briefly, the cortex
was rapidly removed and placed in ice-cold PBS, and the tissue was trypsinized (0.05%
trypsin/EDTA) for 15 min at 37 ◦C, homogenized and plated on poly-D-lysine-coated
plates. Cultures were maintained at 37 ◦C in a humidified atmosphere of 5% CO2 in Neu-
robasal medium (Gibco-Invitrogen, Paisley, UK) supplemented with B27 (Gibco-Invitrogen)
and 2 mM glutamine in the presence of penicillin/streptomycin. The medium was changed
twice a week, and experiments were performed between 10 and 16 DIV (days in vitro). To
estimate the protective effect of LC against GA-induced toxicity, LC (Sigma-Aldrich, St.
Louis, MO, USA) was added at a final concentration of 3 mM 1 h before the addition of
GA (Santa Cruz Biotechnology, Dallas, TX, USA). LC was kept in contact with the cells
throughout the whole period of GA exposure. After 24 h, the cells were harvested for
further analysis.

2.2. Cell Viability Assay

The 3-(3,4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay mea-
sured cell viability by assessing the ability of mitochondria to metabolize the yellow
tetrazolium salt MTT to purple insoluble crystals of formazan [38,39]. Both SH-SY5Y and
rat primary cortical neurons were plated on 12-well plates, and at the end of the experi-
mental procedure, the cells were incubated with 0.5 mL of MTT solution (0.5 mg/mL in
PBS) in the dark at 37 ◦C and a 5% CO2 atmosphere in a humidified incubator. After 1 h,
the cells were washed with PBS, and the produced formazan crystals were dissolved in
0.5 mL of DMSO [15,40]. A decrease in mitochondrial activity resulted in a reduction in
the amount of formazan produced and therefore in the absorbance value. Absorbance was
read at a wavelength of 540 nm using a Victor Multilabel Counter plate reader (Perkin
Elmer, Waltham, MA, USA). The results were expressed as percentages of the control value.

2.3. ATP Assay

The intracellular ATP content was evaluated by using a commercially available
luciferase-luciferin system (ATPlite, Perkin Elmer) as previously described [15,40]. Briefly,
SH-SY5Y cells were plated on a 96-well “View Plate” (Perkin Elmer), subjected to specific
treatments in culture medium and then analyzed for the ATP content according to the
manufacturer’s protocol. Rat cortical neurons were plated on 12-well plates, and after
the specific treatments, the neurons were appropriately lysed. Thereafter, 100 µL of the
lysates were transferred to a 96-well View Plate to perform the ATP assay. The ATP levels
were analyzed with a luminescence Victor Multilabel Counter plate reader (Perkin Elmer),
normalized to the respective protein content, and expressed as percentages of the control
value.

2.4. Bioenergetic Analysis

Seahorse XF24 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA,
USA) was used to detect oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR), representing oxidative phosphorylation and glycolysis, respectively, as previously
described [41–43]. Oligomycin (3 µg/mL), the uncoupler 2,4-dinitrophenol (DNP) (0.3 mM),
and rotenone/antimycin A (1 µM and 2.5 µM, respectively) were sequentially introduced to
measure basal respiration, maximal respiration, ATP production, spare respiratory capacity,
and proton leak [42]. For ECAR, sequential injections of 1 µM rotenone, 30 mM glucose,
and 100 mM 2-deoxyglucose were used to measure glycolysis, glycolytic capacity and to
allow the estimation of glycolytic reserve [42].

Rat primary cortical neurons (100,000 cells/well) were seeded on poly-D-lysine pre-
coated XF24 cell culture plates (Seahorse Bioscience), and subjected to the experimental
protocol. Then, Neurobasal medium was replaced with 500 µL/well of XF24 running
media. The plates were pre-incubated at 37 ◦C for 1 h in the XF Prep Station incubator
(Seahorse Bioscience) in the absence of CO2, and then run on the XF24 analyzer to obtain
OCR or ECAR.
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OCR and ECAR were recorded during specified programmed time periods as the
average numbers between the injections of inhibitors mentioned above. The final data
calculation was performed after the readings and was normalized for total cells/well.
To this purpose, cells in each well were trypsinized, collected and counted by Tali™
Image-Based Cytometer (Invitrogen, Milan, Italy). Since several factors may contribute to
bioenergetics variation of primary cell cultures (e.g., cell distribution in the wells relative
to where the O2 sensor measures, and cell survival) OCR and ECAR parameters were
presented as a percentage of the respective control [41].

Glycolysis was also evaluated by using the Glycolysis Cell-Based Assay Kit (Cay-
man Chemical, Ann Arbor, MI, USA) [44]. The kit provided a colorimetric method to
detect L-lactate, the end product of the glycolysis, produced and secreted by the cultured
cells. The lactate dehydrogenase enzyme catalyzed the reaction between NAD+ and lac-
tate, yielding pyruvate and NADH. The NADH directly reduced a tetrazolium salt to a
colored formazan, which absorbed between 490 and 520 nm. The quantity of formazan
produced is proportional to the quantity of lactate in the culture medium, thus providing
an indirect measurement of glycolysis [45]. Rat primary cortical neurons were seeded
on poly-D-lysine-coated 12-well plates at a density of 100,000 cells/well and subjected
to the experimental protocol. The samples were analyzed according to the instructions
provided by the manufacturer. Lactate concentrations were calculated according to the
equation [Absorbance—(y-intercept)/Slope] × 1, then the obtained data were expressed as
percentages of the control value.

2.5. Analysis of the Mitochondrial Inner Membrane Potential (∆ψm)

The ∆ψm was monitored by using the fluorescent probe tetramethylrhodamine ethyl
ester (TMRE, Abcam, Cambridge, UK) in nonquenching mode [45–47]. Since dye aggrega-
tion and quenching in mitochondria did not occur, in nonquenching mode, depolarized
(less negative) mitochondria had lower cationic dye concentrations and lower fluorescence
and more polarized mitochondria had higher dye concentrations and fluorescence [45].
Rat primary cortical neurons were grown on poly-D-lysine-coated glass coverslips and
then subjected to specific treatments. Subsequently, the neurons were loaded with 10
nM TMRE in the culture medium at 37 ◦C for 30 min. Then, the neurons were washed
twice with PBS and transferred to a microscopy chamber in PBS in the presence of 10 nM
TMRE. Confocal images were obtained using a 510 LSM microscope (Carl Zeiss, Milan,
Italy) equipped with a META detection system. TMRE was excited at 543 nm, and flu-
orescence was measured from 580 nm to 700 nm. Images were acquired every 5 s, and
the basal levels of the ∆ψm were monitored for approximately 300 s. Carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP, 20 µM) was added at the end of each experiment
as an internal control. Analysis of the fluorescence intensity was performed offline after
image acquisition. The TMRE fluorescence values were reported as percentages of the
control value.

2.6. Evaluation of Mitochondrial ROS Production

Specific evaluation of the mitochondrial ROS levels was performed by using Mito-
Tracker CM-H2XRos (Invitrogen Life Technologies, Carlsbad, CA, USA) as previously
described [15,40]. Briefly, cells were plated on coverslips (coated with poly-D-lysine for rat
primary cortical neurons) and subjected to specific treatments. At the end of the experimen-
tal protocol, the cells were loaded with 300 nM dye for 30 min at 37 ◦C and then washed
3 times with PBS. Confocal images were obtained using a 510 LSM microscope (Carl Zeiss)
equipped with a META detection system. CM-H2XRos was excited at 560 ± 10 nm, and
its emission was measured at 620 ± 20 nm. Images were acquired every 5 s, and the basal
levels of ROS were monitored for approximately 200 s. Analysis of fluorescence intensity
was performed offline after image acquisition. The fluorescence values were reported as
percentages of the control value.
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2.7. Immunofluorescence Experiments

Rat cortical neurons were plated on poly-D-lysine-coated coverslips and subjected
to specific treatments with GA and/or LC. Then, to verify the expression of the hyper-
phosphorylated form of Tau protein, the neurons were loaded with 300 nM MitoTracker
(MitoTracker Red CMXRos M7512, Invitrogen) for 30 min at 37 ◦C and fixed with PBS
and 3.7% formaldehyde for 30 min at RT [15]. After fixation, the cells were permeabilized
with PBS and 0.1% Triton X-100 for 5 min at RT [48] and then incubated with anti-Tau
AT100 (1:100; this antibody recognized phosphorylated Thr 212 and Ser 214; Thermo Fisher
Scientific, Waltham, MA, USA) [49]. Immunoreactions were revealed by incubation with
a conjugated secondary antibody (anti-mouse Alexa Fluor 488 dye-conjugated antibody,
Thermo Fisher Scientific, dilution 1:200) for an additional 20 min. Protein fluorescence was
acquired by using the LSM 510 confocal system (Carl Zeiss). Images were acquired every
5 s, and the basal fluorescence values were monitored for approximately 20 s. Analysis
of fluorescence intensity was performed offline after image acquisition. The fluorescence
values were reported as percentages of the control value.

2.8. Statistical Analysis

Data are expressed as the mean ± S.E.M. Values less than 0.05 were considered to
be significant. Differences among means were assessed by one-way ANOVA followed by
Dunnett’s post hoc test. Statistical comparisons were carried out by using GraphPad Prism
5 software (GraphPad Software Inc., San Diego, CA, USA).

3. Results
3.1. LC Protected SH-SY5Y Cells and Rat Primary Cortical Neurons from GA-Induced
Mitochondrial Toxicity

We first determined the effect of 24 h of exposure to LC at concentrations ranging
from 0.3 to 3 mM on SH-SY5Y neuroblastoma cells. As shown in Figure 1A, we found
that under the control conditions, mitochondrial activity was significantly increased when
SH-SY5Y cells were exposed to LC at a concentration of 3 mM for 24 h. Therefore, we
chose to use 3 mM LC for subsequent studies. The exposure of SH-SY5Y cells to GA
resulted in a significant decrease in cell viability, in line with previous findings [15,36].
A pretreatment for 1 h with 3 mM LC significantly increased the cell viability in cells
challenged with GA for 24 h (without LC removal, see the “Material and Methods” for
further details). This effect was observed in both SH-SY5Y cells and in rat primary cortical
neurons (Figure 1B,C).

3.2. LC Increased the Intracellular ATP Levels and Mitochondrial Oxygen Consumption without
Affecting Glycolysis in GA Challenged Cells

To elucidate the mechanisms underlying LC protection, we investigated the ability of
this compound to affect overall cell metabolism on the background of GA challenged cells.
We first analyzed ATP production. We explored the effect of LC on the intracellular ATP
levels in SH-SY5Y cells and rat primary cortical neurons after 1 h of LC exposure under
the control conditions. In this experimental setting, we found that LC exposure induced a
significant increase in the intracellular ATP content (Figure 2A,B). Interestingly, LC-induced
ATP generation completely relied on the oxidative phosphorylation process, since, in the
presence of the ATP synthase inhibitor oligomycin (3 µg/mL) [15,40,42], ATP production
was completely abolished (Figure 2A,B). When cells were pretreated with LC for 1 h and
then exposed to GA for 24 h (without removing LC), the decrease in the ATP levels induced
by the GA challenge was significantly blunted. This effect was observed in both SH-SY5Y
cells and in rat primary cortical neurons (Figure 2C,D). Oligomycin did not significantly
alter ATP production under the control conditions (data not shown). Considering the
significant impact of GA on cell metabolism and ATP intracellular levels, we sought to
further explore the effect of GA on energy management, by dissecting out its effect on
glycolysis, measured as the extracellular acidification rate (ECAR), the L-lactate level
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secreted by cells, and mitochondrial respiration, assessed as the oxygen consumption rate
(OCR). As reported in Figure 3, we found that in rat primary cortical neurons mitochondrial
respiration (Figure 3A,B) and glycolysis (Figure 3C,D) were both significantly affected
by the GA challenge. We observed that, in cells pretreated with LC and exposed to GA,
LC positively affected mitochondrial respiration both under control conditions and in the
presence of GA (Figure 3A,B). As shown in Figure 3B, on the one hand, LC rescued all
the OCR parameters, including ATP (as previously observed, Figure 2D), on the other
hand, LC did not show any significant effect on glycolysis and glycolysis reserves, but
it significantly increased the glycolysis capacity (Figure 3D). As for glycolysis, the same
result was obtained by measuring the L-lactate level (Figure 3E). Finally, the analysis of
the cell energy phenotype showed that LC shifted the GA quiescent phenotype toward an
aerobic phenotype, thereby increasing metabolic potential (Figure 3F).

Figure 1. Protective effect of LC from GA-induced mitochondrial toxicity in SH-SY5Y neuroblastoma
cells and in rat primary cortical neurons. (A) Effect of increasing concentrations (from 0.3 to 3 mM)
of LC in SH-SY5Y neuroblastoma cells. Cell viability was assessed after 24 h of exposure by means
of MTT assay. (B) Effect of LC on cell viability in SH-SY5Y neuroblastoma cells and in rat primary
cortical neurons (C) challenged with GA. Cells were pretreated with LC (3 mM) for 1 h and then
exposed to GA (1 mM) for 24 h (without removing LC). Cell viability was assessed by means
of MTT assay. In each experiment, MTT reduction was expressed as a percentage of the control.
Statistical differences were assessed by one-way ANOVA followed by Dunnett’s post hoc test.
(A) F (4, 19) = 3.703. Each column represents the mean ± S.E.M. of n = 4–6 experiments performed in
triplicate. * Significant versus CTL (p < 0.05). (B) F (2, 18) = 70.91. Each column represents the mean
of n = 7 experiments performed in triplicate. * Significant versus all groups (p < 0.0001 versus CTL
and p < 0.01 versus LC + GA); ** significant versus all groups (p < 0.0001 versus CTL and p < 0.01
versus GA). (C) F (2, 24) = 27.20. Each column represents the mean ± S.E.M. of n = 9 experiments
performed in triplicate. * Significant versus all groups (p < 0.0001 versus CTL and p < 0.01 versus
LC + GA); ** significant versus GA and CTL (p < 0.01). CTL = Control; GA = Glyceraldehyde 1 mM;
LC = L-carnitine 3 mM.
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Figure 2. Effect of LC on intracellular ATP levels in SH-SY5Y neuroblastoma cells and in rat primary
cortical neurons. Effect on intracellular ATP levels of 1 h exposure to LC under control conditions in
SH-SY5Y neuroblastoma cells (A), and in rat primary cortical neurons (B) in the presence or in the
absence of oligomycin (3 µg/mL). Effect of LC on intracellular ATP levels in SH-SY5Y neuroblastoma
cells (C) and in rat primary cortical neurons (D) both challenged with GA. Cells were pretreated
with LC (3 mM) for 1 h, and then exposed to GA (1 mM) for 24 h (without removing LC). In each
experiment, ATP levels were expressed as a percentage of the control. Statistical differences were
assessed by one-way ANOVA followed by Dunnett’s post hoc test. (A) F (3, 20) = 5.232. Each
column represents the mean ± S.E.M. of n = 6 experiments performed in triplicate. * Significant
versus all groups (p < 0.05). (B) F (3, 36) = 14.28. Each column represents the mean ± S.E.M. of
n = 10 experiments performed in duplicate. * Significant versus all groups (p < 0.01 versus CTL,
p < 0.0001 versus LC+oligo). (C) F (2, 15) = 20.44. Each column represents the mean ± S.E.M. of n = 6
experiments performed in triplicate. * Significant versus all groups (p < 0.0001 versus CTL, p < 0.01
versus LC + GA); ** significant versus GA (p < 0.01). (D) F (2, 18) = 10.36. Each column represents
the mean ± S.E.M. of n = 7 experiments performed in triplicate. * Significant versus all groups
(p < 0.01 versus CTL, p < 0.05 versus LC + GA); ** significant versus GA and CTL (p < 0.05).
Oligo = Oligomycin 3 µg/mL.
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Figure 3. Energy metabolism characterization in rat cortical neurons challenged with GA and exposed to LC. Oxidative
phosphorylation rate (A,B), glycolysis rate (C,D) and cell energy phenotype (F) were determined by Seahorse XF24 Extra-
cellular Flux Analyzer. Glycolysis was also determined by using the Cayman Glycolysis Cell-Based Assay Kit (E). (B,D)
Each column represents the mean ± S.E.M. of 3 replications. Statistical differences were assessed by one-way ANOVA
followed by Dunnett’s post hoc test. (E) Each column represents the mean ± S.E.M. of n = 5 experiments performed in
triplicate. Statistical differences were assessed by one-way ANOVA followed by Dunnett’s post hoc test. (A,C) Represen-
tative traces of both OCR and ECAR experiments. (B) Basal respiratory capacity: F (3, 8) = 144.7. * Significant versus all
groups (p < 0.01 versus CTL, p < 0.0001 versus GA and LC + GA); ** significant versus all groups (p < 0.0001 vs. CTL
and CTL + LC, p < 0.05 versus LC + GA); # significant versus all groups (p < 0.0001 vs. CTL and CTL + LC, p < 0.05
versus GA); maximal respiratory capacity: F (3, 8) = 357.5. * Significant versus all groups (p < 0.01 versus CTL, p < 0.0001
versus GA and LC + GA); ** significant versus all groups (p < 0.0001), # significant versus all groups (p < 0.0001); ATP:
F (3, 8) = 63.24 * Significant versus all groups (p < 0.01 versus CTL, p < 0.0001 versus GA and LC + GA), ** significant
versus all groups (p < 0.001 versus CTL, p < 0.0001 versus CTL + LC, p < 0.05 versus GA + LC), # significant versus all
groups (p < 0.01 versus CTL, p < 0.0001 versus CTL + LC, p < 0.05 versus GA); spare respiratory capacity: F (3, 8) = 652.5.
* Significant versus all groups (p < 0.01 versus CTL, p < 0.0001 versus GA and LC + GA), ** significant versus all groups
(p < 0.0001), #significant versus all groups (p < 0.0001); proton leak: F (3, 8) = 10.50. * Significant versus all groups
(p < 0.01 versus CTL and CTL + LC, p < 0.05 versus GA); ** significant versus GA (p < 0.05). (D) Glycolysis:
F (3, 8) = 55.84. * Significant versus CTL and CTL + LC (p < 0.0001); glycolytic capacity: F (3, 8) = 101.2. * Signifi-
cant versus all groups (p < 0.0001 versus CTL and CTL + LC, p < 0.05 versus GA + LC), ** significant versus all groups
(p < 0.0001 versus CTL and CTL + LC, p < 0.05 versus GA). (E) F (3, 16) = 16.23. * Significant versus CTLs (p < 0.001).
2,4-DNP = 2,4-Dinitrophenol; Rot/AA = Rotenone/Antimycin A; 2-DG = 2-Deoxyglucose.

3.3. LC Restored the ∆ψm

Mitochondrial respiration impairment and ATP depletion may be strictly correlated
with the loss of the ∆ψm, and, in this regard, a decreased ∆ψm was observed in AD animal
models and in human cortical neurons ex vivo [9–11]. For this reason, we sought to
investigate the effect of chronic GA treatment on the ∆ψm and evaluate any possible effect
induced by LC. As shown in Figure 4, in rat primary cortical neurons, the GA challenge
induced a significant decrease in the ∆ψm. Notably, LC did not modify the ∆ψm under
resting conditions, but it significantly inhibited the mitochondrial depolarization induced
by GA exposure.
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Figure 4. Analysis of mitochondrial membrane potential in rat primary cortical neurons challenged with GA and exposed
to LC. Experiments were performed using a nonquenching concentration (10 nM) of the inner mitochondrial membrane
potential indicator TMRE. In each experiment, FCCP (20 µM) was added at the end of the recording session as an internal
control. (A) Representative records of mitochondrial membrane potential measurements in rat primary cortical neurons
under control conditions (blue line), LC exposure (grey line), 24 h GA challenge (red line) and 24 h GA challenge in
the presence of LC (yellow line). (B) Quantitative analysis of the mitochondrial membrane potential under the different
experimental conditions. Each column represents the mean ± S.E.M. of 50–100 cells recorded in 4 different sessions (n = 4).
In each experiment, TMRE fluorescence was expressed as percentage of the control. Statistical differences were assessed by
one-way ANOVA followed by Dunnett’s post hoc test. (C) Representative images of mitochondrial membrane potential
measurements. Scale bar 50 µm. (B) F (3, 12) = 9.53. * Significant versus all groups (p < 0.05 versus controls, p < 0.001 versus
GA); ** significant versus GA (p < 0.001).

3.4. LC Scavenged Mitochondrial ROS in SH-SY5Y Cells and in Rat Primary Cortical Neurons
Challenged with GA

Alteration of the cell energy production and impairment of the ∆ψm can enhance
the production of ROS by favoring improper electron transportation in the mitochondrial
respiratory chain [10,50]. We have previously shown that GA can perturb the overall
oxidative status of the cell [15], and several reports have described the ability of LC
to act as a radical scavenger [30,33–35]. Therefore, we sought to explore whether LC
could also manifest neuroprotective effects by preserving redox balance. In line with our
specific interest, we tested the antioxidant properties of LC against the formation of ROS in
mitochondria. When cells were pretreated with LC for 1 h and then exposed to GA for 24 h
(without removing LC), mitochondrial ROS production significantly decreased (Figure 5).
Interestingly, this effect was observed in both SH-SY5Y cells and in rat primary cortical
neurons. LC did not significantly modify the mitochondrial ROS levels under the control
conditions (Figure 5).

3.5. LC Significantly Attenuated the Increase in Intracellular pTau Levels Induced by GA
Challenge

The formation of intracellular neurofibrillary tangles composed of pTau was one of the
pathological hallmarks of AD [2,12]. A link between oxidative stress, mitochondrial dys-
function and the hyperphosphorylation of Tau has been described as a possible upstream
event in AD and other Tau pathologies [12]. In view of this observation and in accordance
with our experimental findings, we investigated the effect of LC on intracellular pTau levels,
which are known to increase due to 24 h exposure to GA [15]. In the present experimental
setting, we confirmed that the pTau levels increased after the GA challenge and found that
LC was able to reduce this increase, as shown by the results of the immunofluorescence
experiments reported in Figure 6. LC did not significantly modify intracellular pTau levels
under the control conditions (Figure 6).
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Figure 5. Effect of LC on mitochondrial ROS formation in SH-SY5Y neuroblastoma cells and in
rat primary cortical neurons challenged with GA. (A,C) Quantitative analysis of MitoTracker Red
CM-H2XRos fluorescence in SH-SY5Y neuroblastoma cells and in rat primary cortical neurons both
exposed to 1 mM GA. Cells were pretreated with LC (3 mM) for 1 h and then exposed to GA
(1 mM) for 24 h (without removing LC). (B,D) Representative images of mitochondrial ROS by
MitoTracker Red CM-H2XRos staining. Images were representative of at least n = 6 independent
experiments (50–100 cells for each experimental group were analyzed). Scale bar 50 µm. MitoTracker
Red CM-H2XRos fluorescence intensity correlates with the levels of mitochondrial ROS. In each
experiment, MitoTracker Red CM-H2XRos fluorescence was expressed as a percentage of the control.
Statistical differences were assessed by one-way ANOVA followed by Dunnett’s post hoc test.
(A) F (3, 20) = 19.01. * Significant versus all groups (p < 0.0001 versus controls and p < 0.01 versus
LC + GA); ** significant versus GA and CTL (p < 0.01). (C) F (3, 21) = 10.01. * Significant versus all
groups (p < 0.001 versus CTL, p < 0.01 versus CTL + LC, p < 0.05 versus LC + GA); ** significant
versus GA (p < 0.05).

Figure 6. Analysis of pTau expression in rat primary cortical neurons challenged with GA and
exposed to LC. (A) Quantitative analysis and (B) representative images of pTau expression in rat
primary cortical neurons. The protein pTau was detected by immunofluorescence staining. Scale bar
50 µM. Each column represents the mean ± S.E.M. of n = 6 independent experiments (50–100 cells
for each experimental group were analyzed). Differences among means were assessed by one-way
ANOVA followed by Dunnett’s post hoc test. (A) F (3, 19) = 16.60. * Significant versus all groups
(p < 0.0001 versus CTL, p < 0.001 versus CTL + LC, p < 0.05 versus LC + GA); ** significant versus GA
(p < 0.05) and versus CTL (p < 0.01).
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4. Discussion

In the present study, we demonstrated that, in SH-SY5Y neuroblastoma cells and in
rat primary cortical neurons exposed to GA to compromise cell metabolism [15,36,51], LC
significantly improved cell viability by enhancing their overall mitochondrial function.
Specifically, LC sustained the ATP synthesis by stimulating mitochondrial respiration,
counteracted the ∆ψm loss and reduced the free radical burden. Of note, LC caused a
marked decrease in intracellular pTau levels, an effect that we hypothesize could contribute
to promoting neuronal survival.

We recently reported that in different neuropathological settings, including AD, mi-
tochondrial functions could be retained by supplying alternative substrates (e.g., gluta-
mate) [15,40]. Glutamate could be used by neuronal cells to compensate for energy deficits
and, at the same time, to scavenge for ROS, thus improving mitochondrial performance by
acting at different sites [15,40]. In particular, in our in vitro model based on the alteration
of cell metabolism [15], glutamate could prevent neuronal injury by increasing the intra-
cellular ATP content, reducing both ROS formation and AD marker levels [15]. To further
support our hypothesis, in the present study, we focused our attention on LC supplementa-
tion. LC is a naturally occurring compound found in the majority of mammalian tissues,
including the brain [52]. Within cells, LC plays important functions in energy production
since it facilitates the transport of activated long-chain fatty acids across the mitochondrial
inner membrane so that they can be broken down through β-oxidation to acetate to pro-
duce energy via the Krebs cycle [16,52]. In addition, LC and its ester ALC may serve as
sources of L-glutamate, further contributing to energy-producing reactions [35]. Consistent
with this metabolic role, the therapeutic efficacy of LC was reported in infants affected by
metabolic birth defects [53–56] and in patients with dilated cardiomyopathy [57], where LC,
by stimulating the β-oxidation of fatty acids in cardiomyocytes, may improve myocardial
function [58,59].

Several studies have provided evidence of the defects in the biosynthesis and
metabolism of LC in AD patients [21,60–62], and low concentrations of LC and its deriva-
tives were found in both plasma and tissues of AD patients [20,21,60]. In particular, a
progressive decrease in LC derivatives was observed in the serum of subjects affected
by increasingly severe cognitive decline up to AD, in comparison with those in healthy
subjects [20]. Subsequently, several studies have reported that the administration of LC
derivatives can improve cognitive performance and slow mental decline, especially in
patients displaying mild cognitive impairment (a transition state between normal brain
aging and AD [63]) and in early-stage or mildly affected AD patients [22,24,26].

A clear picture of the mechanisms underlying the beneficial effects of LC cannot
be drawn yet, but available data suggest that multiple factors may be involved [64,65].
In our experimental setting, we found that in both SH-SY5Y neuroblastoma cells and
in rat primary cortical neurons, pre-exposure to LC significantly improved cell viability,
which was compromised by the GA challenge at different sites. We demonstrated that
GA produced a profound alteration of cell metabolism, by affecting both glycolysis and
mitochondrial respiration, leading to a dramatic decrease in intracellular ATP content. The
alteration of neuronal metabolism has been recognized as a possible upstream event of
the degenerative processes leading to AD [4,5] and a link with the increase in AD marker
levels has been hypothesized for the GA challenge [6,36]. There is evidence that GA-
induced alteration in AD marker levels may also rely on its ability to favor ROS formation
through the production of AGEs [7,66–68]. Similarly, we have previously found that GA
exposure can increase the levels of Aβ1–42, pTau and mitochondrial ROS in retinoic acid-
differentiated SH-SY5Y and rat primary cortical neurons [15], supporting the hypothesis
that hypometabolism-correlated alterations may converge on a common path leading
to AD.

Here, we found that in cells pretreated with LC for 1 h and then exposed to GA for 24 h,
LC significantly rescued the overall intracellular ATP levels. Of note, LC pretreatment sig-
nificantly stimulated the production of ATP, suggesting that the improvement of cell energy
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status may drive the overall cell viability rescue in such a metabolic stress situation [63,69].
It is worth noting that LC promoted the generation of ATP via oxidative phosphorylation,
since, in the presence of the F1F0 ATP synthase inhibitor, oligomycin, LC did not stimu-
late any increase in intracellular ATP levels. Accordingly, we found that mitochondrial
respiration, dramatically compromised by the GA challenge, was significantly stimulated
in the presence of LC, which showed the ability to elicit an increase in the mitochondrial
oxidative phosphorylation rate, per se. Interestingly, while GA significantly inhibited
glycolysis, LC was ineffective in restoring this metabolic pathway. LC may support brain
energy homeostasis and ATP synthesis by supplying acyl groups to mitochondria [60] or,
alternatively, it is tempting to speculate the involvement of mitochondrial biogenesis [70].
Regardless of the mechanism, LC can be seen as an alternative source of energy under the
condition of a glycolytic flow reduction, which is often observed in early-stage AD [71,72].
In summary, neurons pretreated with LC seem to be better equipped to face a condition
of increased energy need, as confirmed by the increase in the spare respiratory capacity,
which reflects the ability to produce more ATP and to maintain adequate levels of energetic
molecules to overcome stressful situations. Our bioenergetic analysis performed in cortical
neurons also revealed significant changes in proton leak, which could be explained by
considering the alteration of the ∆ψm. Under control conditions, the OCR, as a function of
∆ψm, increased exponentially [73], and this condition tended to generate a mitochondrial
potential which favored the entry of H+ into the matrix [73]. In this view, proton leak
may contribute to the maintenance of the cellular metabolic rate and the steady proton
gradient, thereby regulating ∆ψm and mitochondrial integrity [74]. Thus, ∆ψm, OCR (and
consequently ATP) and proton leak are closely related: sustained changes in one of these
factors may be detrimental for mitochondrial stability [74]. In our setting, as OCR (and
ATP) decreased, we observed a reduction of the proton leak, reflecting a depolarization
of the mitochondrial membrane, which probably impaired the H+ influx into the matrix,
thereby destabilizing mitochondrial functions. We can speculate that by sustaining aerobic
energy metabolism, LC contributed to restoring this delicate balance. In addition, based on
the existing literature, we can also hypothesize that the stabilization of the mitochondrial
membrane potential may also rely on the increase in the synthesis of phospholipids, which
are required to ensure proper membrane formation and integrity [75,76].

Several reports also describe that LC and its acyl derivative ALC exert neuroprotective
effects by means of their antioxidant properties [28,30,33–35]. Therefore, we explored this
possible effect in our experimental setting. As mentioned above, GA exposure can signif-
icantly increase the formation of ROS at both cytoplasmic and mitochondrial levels [15].
Considering that our results suggested the ability of LC to ameliorate mitochondrial func-
tion, we specifically verified its effects on mitochondrial ROS production. As expected,
in both SH-SY5Y neuroblastoma cells and in rat primary cortical neurons, GA exposure
significantly increased the formation of ROS in mitochondria. Supplementation with LC
1 h before the addition of GA and maintaining LC during the entire period of GA exposure,
significantly reduced mitochondrial ROS formation, confirming that the neuroprotective
action of LC may also have relied on its antioxidant properties. In the present study, we
did not investigate further the actual mechanisms leading to the antioxidant effects of LC;
however, several mechanisms may play a role. For instance, it has been proposed that LC
can prevent free radical production by inhibiting the activity of enzymes involved in the
generation of free radicals and by inducing antioxidant mechanisms, including the activity
of key enzymes, such as superoxide dismutase (SOD) [35,76]. A relationship between
ROS and the proton leak has also been described and extensively debated. Under resting
physiological conditions, a stable H+ leak has been proposed to be beneficial, by decreasing
ROS generation [77,78]. However, other reports indicate that mitochondrially generated
ROS could increase proton leak [79], but in return, increased proton leak may suppress
ROS production, suggesting the existence of a positive feedback loop that could protect the
biological systems from the deleterious effects of augmented oxidative stress [78,80]. Since
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LC rescued the GA-induced reduction of proton leak, we speculated that it could be the
driving force behind this positive feedback.

The specific mechanisms that provide a link between hypometabolism and AD are still
matter of intense research. Recent findings suggest that oxidative stress may be a crucial
factor in determining whether Tau phosphorylation contributes to a neurodegenerative pro-
cess rather than to sustaining the intracellular structures that grant neuronal functions [12].
In line with this finding, it is possible to hypothesize that interventions which can reduce
oxidative stress can also affect the pTau level, thus contributing to neuronal health. As
we have previously observed, the GA challenge significantly increased the intracellular
level of pTau in rat primary cortical neurons. [15]. In the present experimental setting, a
significant reduction in intracellular pTau levels was observed in neurons pretreated with
LC. Although we did not perform specific experiments, we can speculate that the decrease
in Tau phosphorylation induced by LC could be a downstream effect related either to its
antioxidant effect or to its metabolic role. For instance, in an in vitro model based on M17
neuroblastoma cells, in which the synthesis of glutathione was inhibited, increased levels
of phosphorylated Tau were observed [81]. In null mice lacking SOD, characterized by
mitochondrial dysfunction and oxidative stress, an abnormal phosphorylation of Tau was
also found [82]. In this framework, alterations of glucose metabolism (as those observed
in diabetes) may also have a role. Increased levels of phosphorylated Tau were observed
in different settings, including db/db mice, streptozotocin-treated wild type mice, and,
importantly, in human diabetic brains [83–87]. Notably, the antidiabetic drug metformin
was shown to reduce the levels of phosphorylated Tau both in vitro and in vivo [87], sup-
porting the hypothesis that glucose-energy metabolism and Tau modulation may be closely
related. Considering the interplay between oxidative stress and dysfunctional glucose
metabolism in AD [4], we cannot rule out that GA may establish a vicious cycle that feeds
Tau abnormal phosphorylation. Further investigations are needed to elucidate this process
as well as the exact role of LC in this context.

Overall, we propose that alterations of the cellular metabolic pathways, as obtained in
our setting via GA exposure, may trigger a bioenergetics crisis that alters mitochondrial
homeostasis and shifts redox balance towards the overproduction of ROS and the loss of
the ∆ψm, whose stability, together with ATP generation, is crucial for the maintenance
of mitochondrial homeostasis. These effects are paralleled by an increase in AD marker
levels. In this scenario, LC acts at different sites: (1) by compensating for the reduction in
energy metabolism induced by GA through the stimulation of ATP synthesis; consequently
(2) by counteracting the mitochondrial membrane depolarization induced by GA; and
(3) by improving neuronal antioxidant defenses. In this context, the improvement of
mitochondrial function and the restoration of metabolic homeostasis appears to contribute
to shifting the balance towards a reduction in Tau phosphorylation, further supporting
neuronal health. Despite these advantages, it should be noted that LC does not guarantee a
full restoration of neuronal vitality. On the one hand, LC is able to reduce the intracellular
levels of pTau; on the other hand, it does not seem to have a significant effect on the level
of the amyloid precursor protein (data not shown) and, consequently, the level of Aβ. This
observation strengthens the concept that multiple molecular mechanisms are involved
in AD and that a multifunctional approach may be required to effectively counteract
neurodegeneration. Considering the central role played by the cellular bioenergetics in
the present experimental setting, we cannot rule out that the partial efficacy of LC may be
related to the absence of the astrocytic component. Since our cellular model is essentially
based on neurons, at present we have no clear information on the possible contribution of
astrocytes, which are known to affect the overall functions of surroundings neurons, both
in heath and disease [88,89]. In this view, further research efforts are required to shed more
light on the role of astrocytes in our experimental conditions.

In conclusion, the present study suggests that LC could be protective against GA-
induced metabolic impairment. Our data support the importance of promoting therapeutic
strategies that could act on early pathological events rather than on their consequences,
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thereby ameliorating neuronal survival in the neurodegenerative context that characterizes
AD.

Author Contributions: Conceptualization, S.M. and S.A.; methodology, S.M., S.P., A.P., M.O., F.G.
and D.C.; validation, S.M., A.P., S.P., M.O., F.G., D.C. and S.A.; formal analysis, S.M., S.P., A.P., F.G.
and D.C.; investigation, S.M. and A.P.; resources, S.A.; data curation, S.M. and A.P.; writing—original
draft preparation, S.M.; writing—review and editing, S.M., A.P., S.P., M.O. and S.A.; visualization,
S.M., A.P., S.P., M.O., F.G., D.C. and S.A.; supervision, S.A.; project administration, S.M. and S.A.;
funding acquisition, S.A. and S.M. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Alfasigma (to S.M.) and “Ministero dell’Istruzione,
dell’Università e della Ricerca” (MIUR) to S.A. (PRIN 2017, grant no. 2017YH3SXK). The fun-
ders played no role in the study design; collection, analysis, interpretation of data; or decision to
submit the study for publication.

Institutional Review Board Statement: The study was conducted in full compliance with the Com-
mittee for Animal Welfare of the University “Politecnica delle Marche” (40A31N.G22). All exper-
iments were conducted in strict accordance with the guidelines of the Italian Ministry of Health
(D.L. 26/2014).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We are grateful to Gerardo Galeazzi for his invaluable technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of

Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 40. [CrossRef]
2. Magi, S.; Castaldo, P.; Macri, M.L.; Maiolino, M.; Matteucci, A.; Bastioli, G.; Gratteri, S.; Amoroso, S.; Lariccia, V. Intracellular

Calcium Dysregulation: Implications for Alzheimer’s Disease. BioMed Res. Int. 2016, 2016, 6701324. [CrossRef] [PubMed]
3. Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease.

Biochim. Biophys. Acta 2014, 1842, 1240–1247. [CrossRef] [PubMed]
4. Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci.

2019, 20, 148–160. [CrossRef] [PubMed]
5. Zilberter, Y.; Zilberter, M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of

metabolic correction. J. Neurosci. Res. 2017, 95, 2217–2235. [CrossRef]
6. Sato, N.; Morishita, R. The roles of lipid and glucose metabolism in modulation of beta-amyloid, tau, and neurodegeneration in

the pathogenesis of Alzheimer disease. Front. Aging Neurosci. 2015, 7, 199. [CrossRef]
7. Butterfield, D.A.; Di Domenico, F.; Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role

for oxidative stress in brain. Biochim. Biophys. Acta 2014, 1842, 1693–1706. [CrossRef]
8. Webster, M.T.; Pearce, B.R.; Bowen, D.M.; Francis, P.T. The effects of perturbed energy metabolism on the processing of amyloid

precursor protein in PC12 cells. J. Neural Transm. 1998, 105, 839–853. [CrossRef]
9. Cabezas-Opazo, F.A.; Vergara-Pulgar, K.; Perez, M.J.; Jara, C.; Osorio-Fuentealba, C.; Quintanilla, R.A. Mitochondrial Dysfunction

Contributes to the Pathogenesis of Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2015, 2015, 509654. [CrossRef]
10. Onyango, I.G.; Dennis, J.; Khan, S.M. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics

Based Therapies. Aging Dis. 2016, 7, 201–214. [CrossRef] [PubMed]
11. Reddy, P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009, 218,

286–292. [CrossRef]
12. Mondragon-Rodriguez, S.; Perry, G.; Zhu, X.; Moreira, P.I.; Acevedo-Aquino, M.C.; Williams, S. Phosphorylation of tau protein as

the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease.
Oxidative Med. Cell. Longev. 2013, 2013, 940603. [CrossRef]

13. Mondragon-Rodriguez, S.; Basurto-Islas, G.; Santa-Maria, I.; Mena, R.; Binder, L.I.; Avila, J.; Smith, M.A.; Perry, G.; Garcia-Sierra,
F. Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. Int. J. Exp. Pathol.
2008, 89, 81–90. [CrossRef]

14. Mondragon-Rodriguez, S.; Mena, R.; Binder, L.I.; Smith, M.A.; Perry, G.; Garcia-Sierra, F. Conformational changes and cleavage
of tau in Pick bodies parallel the early processing of tau found in Alzheimer pathology. Neuropathol. Appl. Neurobiol. 2008, 34,
62–75. [CrossRef]

http://doi.org/10.1186/s13024-020-00391-7
http://doi.org/10.1155/2016/6701324
http://www.ncbi.nlm.nih.gov/pubmed/27340665
http://doi.org/10.1016/j.bbadis.2013.10.015
http://www.ncbi.nlm.nih.gov/pubmed/24189435
http://doi.org/10.1038/s41583-019-0132-6
http://www.ncbi.nlm.nih.gov/pubmed/30737462
http://doi.org/10.1002/jnr.24064
http://doi.org/10.3389/fnagi.2015.00199
http://doi.org/10.1016/j.bbadis.2014.06.010
http://doi.org/10.1007/s007020050098
http://doi.org/10.1155/2015/509654
http://doi.org/10.14336/AD.2015.1007
http://www.ncbi.nlm.nih.gov/pubmed/27114851
http://doi.org/10.1016/j.expneurol.2009.03.042
http://doi.org/10.1155/2013/940603
http://doi.org/10.1111/j.1365-2613.2007.00568.x
http://doi.org/10.1111/j.1365-2990.2007.00853.x


Cells 2021, 10, 2109 15 of 17

15. Magi, S.; Piccirillo, S.; Maiolino, M.; Lariccia, V.; Amoroso, S. NCX1 and EAAC1 transporters are involved in the protective action
of glutamate in an in vitro Alzheimer’s disease-like model. Cell Calcium 2020, 91, 102268. [CrossRef] [PubMed]

16. Owen, L.; Sunram-Lea, S.I. Metabolic agents that enhance ATP can improve cognitive functioning: A review of the evidence for
glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients 2011, 3, 735–755. [CrossRef] [PubMed]

17. Nalecz, K.A.; Nalecz, M.J. Carnitine—A known compound, a novel function in neural cells. Acta Neurobiol. Exp. 1996, 56, 597–609.
18. Imperato, A.; Ramacci, M.T.; Angelucci, L. Acetyl-L-carnitine enhances acetylcholine release in the striatum and hippocampus of

awake freely moving rats. Neurosci. Lett. 1989, 107, 251–255. [CrossRef]
19. Traina, G. The neurobiology of acetyl-L-carnitine. Front. Biosci. 2016, 21, 1314–1329. [CrossRef]
20. Cristofano, A.; Sapere, N.; La Marca, G.; Angiolillo, A.; Vitale, M.; Corbi, G.; Scapagnini, G.; Intrieri, M.; Russo, C.; Corso, G.; et al.

Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer’s Dementia. PLoS ONE 2016, 11, e0155694.
[CrossRef]

21. Lodeiro, M.; Ibanez, C.; Cifuentes, A.; Simo, C.; Cedazo-Minguez, A. Decreased cerebrospinal fluid levels of L-carnitine in
non-apolipoprotein E4 carriers at early stages of Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2014, 41, 223–232. [CrossRef]
[PubMed]

22. Montgomery, S.A.; Thal, L.J.; Amrein, R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine
versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int. Clin. Psychopharmacol. 2003, 18,
61–71. [CrossRef] [PubMed]

23. Parnetti, L.; Gaiti, A.; Mecocci, P.; Cadini, D.; Senin, U. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose
regimen in patients with senile dementia of Alzheimer type. Eur. J. Clin. Pharmacol. 1992, 42, 89–93. [CrossRef] [PubMed]

24. Passeri, M.; Cucinotta, D.; Bonati, P.A.; Iannuccelli, M.; Parnetti, L.; Senin, U. Acetyl-L-carnitine in the treatment of mildly
demented elderly patients. Int. J. Clin. Pharmacol. Res. 1990, 10, 75–79. [PubMed]

25. Pettegrew, J.W.; Klunk, W.E.; Panchalingam, K.; Kanfer, J.N.; McClure, R.J. Clinical and neurochemical effects of acetyl-L-carnitine
in Alzheimer’s disease. Neurobiol. Aging 1995, 16, 1–4. [CrossRef]

26. Spagnoli, A.; Lucca, U.; Menasce, G.; Bandera, L.; Cizza, G.; Forloni, G.; Tettamanti, M.; Frattura, L.; Tiraboschi, P.; Comelli, M.;
et al. Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 1991, 41, 1726–1732. [CrossRef]

27. Gavrilova, S.I.; Kalyn Ia, B.; Kolykhalov, I.V.; Roshchina, I.F.; Selezneva, N.D. [Acetyl-L-carnitine (carnicetine) in the treatment of
early stages of Alzheimer’s disease and vascular dementia]. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2011, 111, 16–22.

28. Bavari, M.; Tabandeh, M.R.; Najafzadeh Varzi, H.; Bahramzadeh, S. Neuroprotective, antiapoptotic and antioxidant effects of
l-carnitine against caffeine-induced neurotoxicity in SH-SY5Y neuroblastoma cell line. Drug Chem. Toxicol. 2016, 39, 157–166.
[CrossRef] [PubMed]

29. Binienda, Z.K. Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann. N. Y. Acad. Sci. 2003, 993,
289–295, discussion 345–289. [CrossRef]

30. Cao, Y.; Li, X.; Shi, P.; Wang, L.X.; Sui, Z.G. Effects of L-carnitine on high glucose-induced oxidative stress in retinal ganglion cells.
Pharmacology 2014, 94, 123–130. [CrossRef]

31. Ferreira, G.C.; McKenna, M.C. L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem.
Res. 2017, 42, 1661–1675. [CrossRef] [PubMed]

32. Geier, D.A.; Geier, M.R. L-carnitine exposure and mitochondrial function in human neuronal cells. Neurochem. Res. 2013, 38,
2336–2341. [CrossRef] [PubMed]

33. Ye, J.; Han, Y.; Chen, X.; Xie, J.; Liu, X.; Qiao, S.; Wang, C. L-carnitine attenuates H2O2-induced neuron apoptosis via inhibition of
endoplasmic reticulum stress. Neurochem. Int. 2014, 78, 86–95. [CrossRef] [PubMed]

34. Yu, J.; Ye, J.; Liu, X.; Han, Y.; Wang, C. Protective effect of L-carnitine against H2O2-induced neurotoxicity in neuroblastoma
(SH-SY5Y) cells. Neurol. Res. 2011, 33, 708–716. [CrossRef]

35. Zhang, R.; Zhang, H.; Zhang, Z.; Wang, T.; Niu, J.; Cui, D.; Xu, S. Neuroprotective effects of pre-treatment with l-carnitine and
acetyl-L-carnitine on ischemic injury In Vivo and In Vitro. Int. J. Mol. Sci. 2012, 13, 2078–2090. [CrossRef] [PubMed]

36. Koriyama, Y.; Furukawa, A.; Muramatsu, M.; Takino, J.; Takeuchi, M. Glyceraldehyde caused Alzheimer’s disease-like alterations
in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci. Rep. 2015, 5, 13313. [CrossRef]

37. Kamynina, A.V.; Esteras, N.; Koroev, D.O.; Bobkova, N.V.; Balasanyants, S.M.; Simonyan, R.A.; Avetisyan, A.V.; Abramov, A.Y.;
Volpina, O.M. Synthetic Fragments of Receptor for Advanced Glycation End Products Bind Beta-Amyloid 1–40 and Protect
Primary Brain Cells From Beta-Amyloid Toxicity. Front. Neurosci. 2018, 12, 681. [CrossRef]

38. Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245.
39. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 237–245.

[CrossRef]
40. Piccirillo, S.; Magi, S.; Preziuso, A.; Castaldo, P.; Amoroso, S.; Lariccia, V. Gateways for Glutamate Neuroprotection in Parkinson’s

Disease (PD): Essential Role of EAAT3 and NCX1 Revealed in an In Vitro Model of PD. Cells 2020, 9, 2037. [CrossRef]
41. Jaber, S.M.; Ge, S.X.; Milstein, J.L.; VanRyzin, J.W.; Waddell, J.; Polster, B.M. Idebenone Has Distinct Effects on Mitochondrial

Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J. Neurosci. Off. J. Soc.
Neurosci. 2020, 40, 4609–4619. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ceca.2020.102268
http://www.ncbi.nlm.nih.gov/pubmed/32827867
http://doi.org/10.3390/nu3080735
http://www.ncbi.nlm.nih.gov/pubmed/22254121
http://doi.org/10.1016/0304-3940(89)90826-4
http://doi.org/10.2741/4459
http://doi.org/10.1371/journal.pone.0155694
http://doi.org/10.3233/JAD-132063
http://www.ncbi.nlm.nih.gov/pubmed/24595197
http://doi.org/10.1097/00004850-200303000-00001
http://www.ncbi.nlm.nih.gov/pubmed/12598816
http://doi.org/10.1007/BF00314926
http://www.ncbi.nlm.nih.gov/pubmed/1541322
http://www.ncbi.nlm.nih.gov/pubmed/2201659
http://doi.org/10.1016/0197-4580(95)80001-8
http://doi.org/10.1212/WNL.41.11.1726
http://doi.org/10.3109/01480545.2015.1063062
http://www.ncbi.nlm.nih.gov/pubmed/26136110
http://doi.org/10.1111/j.1749-6632.2003.tb07536.x
http://doi.org/10.1159/000363062
http://doi.org/10.1007/s11064-017-2288-7
http://www.ncbi.nlm.nih.gov/pubmed/28508995
http://doi.org/10.1007/s11064-013-1144-7
http://www.ncbi.nlm.nih.gov/pubmed/24005823
http://doi.org/10.1016/j.neuint.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25220073
http://doi.org/10.1179/1743132810Y.0000000028
http://doi.org/10.3390/ijms13022078
http://www.ncbi.nlm.nih.gov/pubmed/22408439
http://doi.org/10.1038/srep13313
http://doi.org/10.3389/fnins.2018.00681
http://doi.org/10.1101/pdb.prot095505
http://doi.org/10.3390/cells9092037
http://doi.org/10.1523/JNEUROSCI.1632-17.2020
http://www.ncbi.nlm.nih.gov/pubmed/32350039


Cells 2021, 10, 2109 16 of 17

42. Maiolino, M.; Castaldo, P.; Lariccia, V.; Piccirillo, S.; Amoroso, S.; Magi, S. Essential role of the Na+-Ca2+ exchanger (NCX)
in glutamate-enhanced cell survival in cardiac cells exposed to hypoxia/reoxygenation. Sci. Rep. 2017, 7, 13073. [CrossRef]
[PubMed]

43. Connolly, N.M.C.; Theurey, P.; Adam-Vizi, V.; Bazan, N.G.; Bernardi, P.; Bolanos, J.P.; Culmsee, C.; Dawson, V.L.; Deshmukh,
M.; Duchen, M.R.; et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of
neurodegenerative diseases. Cell Death Differ. 2018, 25, 542–572. [CrossRef] [PubMed]

44. Kumari, S.; Khan, S.; Gupta, S.C.; Kashyap, V.K.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. MUC13 contributes to rewiring of
glucose metabolism in pancreatic cancer. Oncogenesis 2018, 7, 19. [CrossRef] [PubMed]

45. Cayman. Available online: https://www.caymanchem.com/product/600450/glycolysis-cell-based-assay-kit (accessed on 16
July 2021).

46. Perry, S.W.; Norman, J.P.; Barbieri, J.; Brown, E.B.; Gelbard, H.A. Mitochondrial membrane potential probes and the proton
gradient: A practical usage guide. Biotechniques 2011, 50, 98–115. [CrossRef]

47. Magi, S.; Lariccia, V.; Castaldo, P.; Arcangeli, S.; Nasti, A.A.; Giordano, A.; Amoroso, S. Physical and functional interaction of
NCX1 and EAAC1 transporters leading to glutamate-enhanced ATP production in brain mitochondria. PLoS ONE 2012, 7, e34015.

48. Magi, S.; Piccirillo, S.; Amoroso, S. The dual face of glutamate: From a neurotoxin to a potential survival factor-metabolic
implications in health and disease. Cell. Mol. Life Sci. CMLS 2019, 76, 1473–1488. [CrossRef] [PubMed]

49. Magi, S.; Nasti, A.A.; Gratteri, S.; Castaldo, P.; Bompadre, S.; Amoroso, S.; Lariccia, V. Gram-negative endotoxin lipopolysaccharide
induces cardiac hypertrophy: Detrimental role of Na+-Ca2+ exchanger. Eur. J. Pharmacol. 2015, 746, 31–40. [CrossRef]

50. Vale, C.; Alonso, E.; Rubiolo, J.A.; Vieytes, M.R.; LaFerla, F.M.; Gimenez-Llort, L.; Botana, L.M. Profile for amyloid-beta and tau
expression in primary cortical cultures from 3xTg-AD mice. Cell. Mol. Neurobiol. 2010, 30, 577–590. [CrossRef]

51. Choei, H.; Sasaki, N.; Takeuchi, M.; Yoshida, T.; Ukai, W.; Yamagishi, S.; Kikuchi, S.; Saito, T. Glyceraldehyde-derived advanced
glycation end products in Alzheimer’s disease. Acta Neuropathol. 2004, 108, 189–193. [CrossRef]

52. Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [CrossRef]
[PubMed]

53. Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [CrossRef] [PubMed]
54. Ribas, G.S.; Vargas, C.R.; Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic

disorders. Gene 2014, 533, 469–476. [CrossRef] [PubMed]
55. Roe, C.R.; Hoppel, C.L.; Stacey, T.E.; Chalmers, R.A.; Tracey, B.M.; Millington, D.S. Metabolic response to carnitine in methyl-

malonic aciduria. An effective strategy for elimination of propionyl groups. Arch. Dis. Child. 1983, 58, 916–920. [CrossRef]
[PubMed]

56. Vieira Neto, E.; Fonseca, A.A.; Almeida, R.F.; Figueiredo, M.P.; Porto, M.A.; Ribeiro, M.G. Analysis of acylcarnitine profiles in
umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Braz. J. Med.
Biol. Res. Rev. Bras. De Pesqui. Med. E Biol. 2012, 45, 546–556. [CrossRef] [PubMed]

57. Magi, S.; Lariccia, V.; Maiolino, M.; Amoroso, S.; Gratteri, S. Sudden cardiac death: Focus on the genetics of channelopathies and
cardiomyopathies. J. Biomed. Sci. 2017, 24, 56. [CrossRef] [PubMed]

58. Papadopoulou-Legbelou, K.; Gogou, M.; Dokousli, V.; Eboriadou, M.; Evangeliou, A. Dilated Cardiomyopathy as the Only
Clinical Manifestation of Carnitine Transporter Deficiency. Indian J. Pediatr. 2017, 84, 231–233. [CrossRef]

59. Rizos, I. Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am.
Heart J. 2000, 139, S120–S123. [CrossRef]

60. Kepka, A.; Ochocinska, A.; Borzym-Kluczyk, M.; Skorupa, E.; Stasiewicz-Jarocka, B.; Chojnowska, S.; Waszkiewicz, N. Preventive
Role of L-Carnitine and Balanced Diet in Alzheimer’s Disease. Nutrients 2020, 12, 1987. [CrossRef]

61. Pan, X.; Nasaruddin, M.B.; Elliott, C.T.; McGuinness, B.; Passmore, A.P.; Kehoe, P.G.; Holscher, C.; McClean, P.L.; Graham, S.F.;
Green, B.D. Alzheimer’s disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol. Aging 2016,
38, 151–163. [CrossRef]

62. Thomas, S.C.; Alhasawi, A.; Appanna, V.P.; Auger, C.; Appanna, V.D. Brain metabolism and Alzheimer’s disease: The prospect of
a metabolite-based therapy. J. Nutr. Health Aging 2015, 19, 58–63. [CrossRef]

63. Pennisi, M.; Lanza, G.; Cantone, M.; D’Amico, E.; Fisicaro, F.; Puglisi, V.; Vinciguerra, L.; Bella, R.; Vicari, E.; Malaguarnera, G.
Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients 2020, 12, 1389. [CrossRef]

64. Epis, R.; Marcello, E.; Gardoni, F.; Longhi, A.; Calvani, M.; Iannuccelli, M.; Cattabeni, F.; Canonico, P.L.; Di Luca, M. Modulatory
effect of acetyl-L-carnitine on amyloid precursor protein metabolism in hippocampal neurons. Eur. J. Pharmacol. 2008, 597, 51–56.
[CrossRef]

65. Virmani, A.; Binienda, Z. Role of carnitine esters in brain neuropathology. Mol. Asp. Med. 2004, 25, 533–549. [CrossRef]
66. Ko, S.Y.; Lin, Y.P.; Lin, Y.S.; Chang, S.S. Advanced glycation end products enhance amyloid precursor protein expression by

inducing reactive oxygen species. Free Radic. Biol. Med. 2010, 49, 474–480. [CrossRef]
67. Ko, S.Y.; Ko, H.A.; Chu, K.H.; Shieh, T.M.; Chi, T.C.; Chen, H.I.; Chang, W.C.; Chang, S.S. The Possible Mechanism of Advanced

Glycation End Products (AGEs) for Alzheimer’s Disease. PLoS ONE 2015, 10, e0143345. [CrossRef] [PubMed]
68. Takeuchi, M.; Bucala, R.; Suzuki, T.; Ohkubo, T.; Yamazaki, M.; Koike, T.; Kameda, Y.; Makita, Z. Neurotoxicity of advanced

glycation end-products for cultured cortical neurons. J. Neuropathol. Exp. Neurol. 2000, 59, 1094–1105. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-017-13478-x
http://www.ncbi.nlm.nih.gov/pubmed/29026150
http://doi.org/10.1038/s41418-017-0020-4
http://www.ncbi.nlm.nih.gov/pubmed/29229998
http://doi.org/10.1038/s41389-018-0031-0
http://www.ncbi.nlm.nih.gov/pubmed/29467405
https://www.caymanchem.com/product/600450/glycolysis-cell-based-assay-kit
http://doi.org/10.2144/000113610
http://doi.org/10.1007/s00018-018-3002-x
http://www.ncbi.nlm.nih.gov/pubmed/30599069
http://doi.org/10.1016/j.ejphar.2014.10.054
http://doi.org/10.1007/s10571-009-9482-3
http://doi.org/10.1007/s00401-004-0871-x
http://doi.org/10.1186/1743-7075-7-30
http://www.ncbi.nlm.nih.gov/pubmed/20398344
http://doi.org/10.1016/j.plipres.2009.08.004
http://www.ncbi.nlm.nih.gov/pubmed/19720082
http://doi.org/10.1016/j.gene.2013.10.017
http://www.ncbi.nlm.nih.gov/pubmed/24148561
http://doi.org/10.1136/adc.58.11.916
http://www.ncbi.nlm.nih.gov/pubmed/6651329
http://doi.org/10.1590/S0100-879X2012007500056
http://www.ncbi.nlm.nih.gov/pubmed/22488223
http://doi.org/10.1186/s12929-017-0364-6
http://www.ncbi.nlm.nih.gov/pubmed/28810874
http://doi.org/10.1007/s12098-016-2250-8
http://doi.org/10.1067/mhj.2000.103917
http://doi.org/10.3390/nu12071987
http://doi.org/10.1016/j.neurobiolaging.2015.11.014
http://doi.org/10.1007/s12603-014-0511-7
http://doi.org/10.3390/nu12051389
http://doi.org/10.1016/j.ejphar.2008.09.001
http://doi.org/10.1016/j.mam.2004.06.003
http://doi.org/10.1016/j.freeradbiomed.2010.05.005
http://doi.org/10.1371/journal.pone.0143345
http://www.ncbi.nlm.nih.gov/pubmed/26587989
http://doi.org/10.1093/jnen/59.12.1094
http://www.ncbi.nlm.nih.gov/pubmed/11138929


Cells 2021, 10, 2109 17 of 17

69. Sawmiller, D.R.; Nguyen, H.T.; Markov, O.; Chen, M. High-energy compounds promote physiological processing of Alzheimer’s
amyloid-beta precursor protein and boost cell survival in culture. J. Neurochem. 2012, 123, 525–531. [CrossRef] [PubMed]

70. Valero, T. Mitochondrial biogenesis: Pharmacological approaches. Curr. Pharm. Des. 2014, 20, 5507–5509. [CrossRef] [PubMed]
71. Capecchi, P.L.; Laghi Pasini, F.; Quartarolo, E.; Di Perri, T. Carnitines increase plasma levels of adenosine and ATP in humans.

Vasc. Med. 1997, 2, 77–81. [CrossRef]
72. Nishida, N.; Sugimoto, T.; Takeuchi, T.; Kobayashi, Y. Effect of L-carnitine on glycogen synthesis and ATP production in cultured

hepatocytes of the newborn rat. J. Nutr. 1989, 119, 1705–1708. [CrossRef]
73. Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D. Mitochondrial proton and electron leaks. Essays Biochem.

2010, 47, 53–67.
74. Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva,

A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [CrossRef]
75. He, M.D.; Xu, S.C.; Lu, Y.H.; Li, L.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Li, M.; Yang, J.; Zhang, G.B.; et al. L-carnitine protects

against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol. Appl. Pharmacol. 2011, 253,
38–44. [CrossRef]

76. Derin, N.; Izgut-Uysal, V.N.; Agac, A.; Aliciguzel, Y.; Demir, N. L-carnitine protects gastric mucosa by decreasing ischemia-
reperfusion induced lipid peroxidation. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2004, 55, 595–606.

77. Longo, V.D.; Liou, L.L.; Valentine, J.S.; Gralla, E.B. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch.
Biochem. Biophys. 1999, 365, 131–142. [CrossRef]

78. Brookes, P.S. Mitochondrial H+ leak and ROS generation: An odd couple. Free Radic. Biol. Med. 2005, 38, 12–23. [CrossRef]
79. Starkov, A.A.; Fiskum, G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state.

J. Neurochem. 2003, 86, 1101–1107. [CrossRef] [PubMed]
80. Cheng, J.; Nanayakkara, G.; Shao, Y.; Cueto, R.; Wang, L.; Yang, W.Y.; Tian, Y.; Wang, H.; Yang, X. Mitochondrial Proton Leak

Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Adv. Exp. Med. Biol. 2017, 982, 359–370. [PubMed]
81. Su, B.; Wang, X.; Lee, H.G.; Tabaton, M.; Perry, G.; Smith, M.A.; Zhu, X. Chronic oxidative stress causes increased tau phosphory-

lation in M17 neuroblastoma cells. Neurosci. Lett. 2010, 468, 267–271. [CrossRef] [PubMed]
82. Melov, S.; Adlard, P.A.; Morten, K.; Johnson, F.; Golden, T.R.; Hinerfeld, D.; Schilling, B.; Mavros, C.; Masters, C.L.; Volitakis, I.;

et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE 2007, 2, e536. [CrossRef] [PubMed]
83. Kim, B.; Backus, C.; Oh, S.; Hayes, J.M.; Feldman, E.L. Increased tau phosphorylation and cleavage in mouse models of type 1

and type 2 diabetes. Endocrinology 2009, 150, 5294–5301. [CrossRef]
84. Qu, Z.; Jiao, Z.; Sun, X.; Zhao, Y.; Ren, J.; Xu, G. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain.

Brain Res. 2011, 1383, 300–306. [CrossRef] [PubMed]
85. Jolivalt, C.G.; Lee, C.A.; Beiswenger, K.K.; Smith, J.L.; Orlov, M.; Torrance, M.A.; Masliah, E. Defective insulin signaling pathway

and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and correction
by insulin. J. Neurosci. Res. 2008, 86, 3265–3274. [CrossRef] [PubMed]

86. Clodfelder-Miller, B.J.; Zmijewska, A.A.; Johnson, G.V.; Jope, R.S. Tau is hyperphosphorylated at multiple sites in mouse brain
in vivo after streptozotocin-induced insulin deficiency. Diabetes 2006, 55, 3320–3325. [CrossRef] [PubMed]

87. Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau
in diabetes and Alzheimer’s disease. J. Neurochem. 2009, 111, 242–249. [CrossRef] [PubMed]

88. Sidoryk-Wegrzynowicz, M.; Wegrzynowicz, M.; Lee, E.; Bowman, A.B.; Aschner, M. Role of astrocytes in brain function and
disease. Toxicol. Pathol. 2011, 39, 115–123. [CrossRef] [PubMed]

89. Oksanen, M.; Lehtonen, S.; Jaronen, M.; Goldsteins, G.; Hamalainen, R.H.; Koistinaho, J. Astrocyte alterations in neurodegen-
erative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. CMLS 2019, 76,
2739–2760. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1471-4159.2012.07923.x
http://www.ncbi.nlm.nih.gov/pubmed/22906069
http://doi.org/10.2174/138161282035140911142118
http://www.ncbi.nlm.nih.gov/pubmed/24606795
http://doi.org/10.1177/1358863X9700200201
http://doi.org/10.1093/jn/119.11.1705
http://doi.org/10.1016/j.ab.2017.07.009
http://doi.org/10.1016/j.taap.2011.03.008
http://doi.org/10.1006/abbi.1999.1158
http://doi.org/10.1016/j.freeradbiomed.2004.10.016
http://doi.org/10.1046/j.1471-4159.2003.01908.x
http://www.ncbi.nlm.nih.gov/pubmed/12911618
http://www.ncbi.nlm.nih.gov/pubmed/28551798
http://doi.org/10.1016/j.neulet.2009.11.010
http://www.ncbi.nlm.nih.gov/pubmed/19914335
http://doi.org/10.1371/journal.pone.0000536
http://www.ncbi.nlm.nih.gov/pubmed/17579710
http://doi.org/10.1210/en.2009-0695
http://doi.org/10.1016/j.brainres.2011.01.084
http://www.ncbi.nlm.nih.gov/pubmed/21281610
http://doi.org/10.1002/jnr.21787
http://www.ncbi.nlm.nih.gov/pubmed/18627032
http://doi.org/10.2337/db06-0485
http://www.ncbi.nlm.nih.gov/pubmed/17130475
http://doi.org/10.1111/j.1471-4159.2009.06320.x
http://www.ncbi.nlm.nih.gov/pubmed/19659459
http://doi.org/10.1177/0192623310385254
http://www.ncbi.nlm.nih.gov/pubmed/21075920
http://doi.org/10.1007/s00018-019-03111-7
http://www.ncbi.nlm.nih.gov/pubmed/31016348

	Introduction 
	Materials and Methods 
	Cell Culture and Treatments 
	Cell Viability Assay 
	ATP Assay 
	Bioenergetic Analysis 
	Analysis of the Mitochondrial Inner Membrane Potential (m) 
	Evaluation of Mitochondrial ROS Production 
	Immunofluorescence Experiments 
	Statistical Analysis 

	Results 
	LC Protected SH-SY5Y Cells and Rat Primary Cortical Neurons from GA-Induced Mitochondrial Toxicity 
	LC Increased the Intracellular ATP Levels and Mitochondrial Oxygen Consumption without Affecting Glycolysis in GA Challenged Cells 
	LC Restored the m 
	LC Scavenged Mitochondrial ROS in SH-SY5Y Cells and in Rat Primary Cortical Neurons Challenged with GA 
	LC Significantly Attenuated the Increase in Intracellular pTau Levels Induced by GA Challenge 

	Discussion 
	References

