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ABSTRACT: Experiments and atomistic simulations of
polypeptides have revealed structural intermediates that
promote or inhibit conformational transitions to the native
state during folding. We invoke a concept of “kinetic
frustration” to quantify the prevalence and impact of these
behaviors on folding rates within a large set of atomistic
simulation data for 10 fast-folding proteins, where each
protein’s conformational space is represented as a Markov
state model of conformational transitions. Our graph theoretic
approach addresses what conformational features correlate with
folding inhibition and therefore permits comparison among
features within a single protein network and also more
generally between proteins. Nonnative contacts and nonnative
secondary structure formation can thus be quantitatively
implicated in inhibiting folding for several of the tested peptides.

■ INTRODUCTION

Theoretical and computational modeling has provided many
insights into the remarkable ability of proteins to rapidly fold
from unstructured coils into their native, functional con-
formations.1,2 Especially for small structured proteins, entire
folding processes can be investigated via atomistic, equilibrium
molecular dynamics (MD) simulations, where the ability to
sample multiple folding events (with μs simulations) with a
transferable force field is an important milestone in algorithm
development and hardware parallelization.3−7 When multiple
folding events are observed, the underlying kinetics and
conformational features that promote structural transitions
and the eventual attainment of the native state can be
statistically compared. Such studies reveal important character-
istics of the underlying free energy landscape (FEL), the high-
dimensional surface of hills and valleys that govern the
likelihood of structural transitions and the occupancy
probabilities of energetically coherent states, called conforma-
tional substates.8,9 For structured proteins, the FEL has been
conceptualized as a funnel with a low-energy native ensemble at
its global minimum, where near-native intermediates are kinetic
neighbors, and a nonnative ensemble composed of freely
interconverting conformers at some further reaction dis-
tance.10,11 While the majority of protein functions are
accomplished via the native ensemble, quantifying the structural
and kinetic characteristics of the nonnative ensemble can aid
calibration of coarse-grained polypeptide models12−14 and

improve our understanding of folding initiation pathways,15,16

protein misfolding,17 protein aggregation,18,19 and synergistic
folding (i.e., folding in tandem with a binding partner).20

Although nonnative ensembles recapitulate several properties
of idealized random-coil models,21,22 they have also been
shown to deviate from polymeric predictions in important
ways. Substantial secondary structure can accrue in the
nonnative ensemble,6,23,24 and these nucleation locations have
been implicated as consistent waypoints in folding path-
ways.25,26 Lindorff−Larsen et al.5 likewise showed that for
transition pathways specifically, secondary structure accumu-
lates before native contacts are formed, a temporal bias that is
inconsistent with an idealized nonnative ensemble. From the
kinetic perspective, another surprise is that the nonnative
ensemble can be modeled as a hub-like transition map,27 where
interchange between unfolded peptide geometries is mediated
preferentially via the native (hub) ensemble instead of by direct
routes28 (see ref 29 for a contrasting interpretation). The
minimally frustrated model of protein folding harmonizes some
of these observations by recognizing that folding is energetically
downhill and will thus avoid the enthalpic frustration of
nonnative structure formation.30−33 Analogously, we can ask
whether the nonnative ensemble is minimally frustrated in a
kinetic sense. Does folding proceed sequentially34 from
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unfolded to folded substates or are there off-pathway kinetic
inhibitors populating the FEL?
Computational studies have invoked Cartesian, angular,

topological, subspace-projection, or other structural descriptors
to identify nonnative conformational states,25,35−37 but
assessing their impact on folding rates requires additional
analysis. To quantify the kinetic contribution to folding of
specific conformational substates, we present here a method-
ology that (1) permits comparisons of kinetic inhibition across
multiple folding events and between multiple proteins and (2)
can query any proposed structural parameters that may impact
folding kinetics. Instead of only specifying the existence of
kinetic traps, hubs, or preferential pathways in MD trajectories,
we quantify the overall kinetic burden, or kinetic f rustration, that
structural deformations (secondary structure, tertiary structure,
standard RMSD-to-native, or others) effect in protein
simulations. In the rest of this introduction we give an
overview of our model’s assumptions, justification for a
topological definition of kinetic frustration, and primary results.
We invoke a kinetic modeling of MD simulation data where a

simulation trajectory and its conformers are represented as (1)
sets of clusters, or conformational substates, whose kinetically
indistinguishable members share conformational features, and
(2) transitions, which capture the observed jumps between
substates. Such a network of substates (nodes) and edges, when
constructed with an appropriate lag-time between sampled
trajectory snapshots and clustering criteria, satisfies the
properties of a Markov State Model (MSM).38,39 These models
are guided by the motivation to equate conformational
transitions with probability flow, enabling multistep transition
pathways to be associated with a probability and expected
duration even if the path itself was never observed within
contiguous trajectory frames. By representing a protein’s FEL
as an evolving finite markov chain, MSMs permit computation
of the stationary distribution, the unique set of substate
probabilities that is stable over time. It is then possible to
calculate the expected time for any substate to transition to the
assigned native ensemble, that is, the mean first passage time
(MFPT) or transit time.40 MFPT values express temporal
expectations for random walks along the weighted edges of the
conformational network.41,42 They are robust43,44 and can be
compared to diffusional models of folding45,46 and nanosecond
laser T-jump experiments.47 Whereas MFPTs necessarily are a
function of two specified end points, our concern is only with
those transition paths that terminate at the native ensemble, a
convention implicit throughout this study and indicated by the
subscript of MFPT values, τnat. Can these values tell us which
substates are responsible for accelerating or hindering folding?
Not directly, but that exact information is revealed when
substates are theoretically removed from the transition network
and the change in τnat values among the rest of the nonnative
ensemble compared. Kinetic frustration, quantified in frus-
tration scores, fn̅at, captures these changes and quantifies the
degree to which a particular conformational substate state
inhibits or facilitates transitions to the native state. The terms
inhibit and facilitate summarize a substate’s topological
neighborhood with respect to the native ensemble: a substate
that facilitates folding is highly connected to native or native-
like substates, whereas a folding inhibitor promotes transitions
to non-native regions of the FEL.
MFPTs and frustration scores, fn̅at, are therefore related but,

importantly, distill different information. τnat values reflect
expected transit times given a network structure and designated

native ensemble, whereas frustration scores quantify the impact
on the network given the substate of interest. Nodes that have
equal transit times need not share frustration scores, for
example (see Figures 1 and 2B). Moreover, because a
demarcated native state is inherent to their definition,
frustration scores go beyond a quantification of local topology,
such as average neighbor connectivity,27 which treats equally
links leading toward or away from the native state (for a given
nonnative conformational substate). That is, frustration scores

Figure 1. Computing frustration scores, fn̅at, for a model transition
network. (A) Each conformational substate in the nonnative ensemble
(1...knn) is colored according to frustration scores, fn̅at; substate
diameters indicate the stationary probability. The native ensemble is
represented as a single green substate. Transition probabilities are
shown along observed transitions where values above the transition
path always denote left → right transitions and values beneath the
arrow refer to moving right → left. (B) Computed MFPTs, τnat values,
for each nonnative substate to reach the native ensemble. (C)
Procedure for computing fn̅at. Each nonnative substate is removed from
the transition matrix (states i = 1...4, top to bottom) and transit times
for all remaining knn − 1 substates are compared with unperturbed
values (left panels: black bars, unperturbed; red, gray, or blue bars,
perturbed). Relative changes in transit times (wedges, right panels) are
averaged over remaining substates to yield fn̅at (dashed lines). These
frustration scores are then depicted by the color scale on the original
intact network (A). Substates 1 and 2 have identical MFPTs, whereas
fn̅at values indicate substate 2 is a facilitator and increases folding rates
from all other substates by an average of 25%, while substate 1 is
kinetically neutral. Substate 4 is a kinetic trap, slowing all transit times
by 30% on average in the unperturbed network.
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are sensitive to the native state location, whereas local
connectivities are not (cf. Supporting Information (SI) Figure
S6), an advantage that warrants the more computationally
demanding node by node perturbation approach presented
here. Frustration scores are thus individually computed for all
nodes in the nonnative ensemble by observing changes in τnat
values when each is removed from the network model (Figure
1),48 a process akin to the eigenvalue estimation problem in
matrix perturbation theory.49 Observations obtained by altering
the transition network in this way provide a quantitative
framework for understanding its unperturbed behavior.
Specifically, each frustration score fn̅at

i can be understood as

the mean percentage change in all transit times from all
possible paths as a result of node i, a kinetic interpretation
lacking from many local topology metrics. Substates with fn̅at >
0 are labeled facilitators since folding rates would decrease (i.e.,
τnat increase) in their absence; states with fn̅at < 0 are inhibitors,
or kinetic traps, in that folding rates would increase (τnat
decrease) if they were to be removed from the conformational
landscape. We thus invoke the concept of kinetic frustration
because MFPT values alone cannot elucidate these causal
relationships.
Within our simulation data set of 10 fast-folding proteins,

substantial kinetic traps were observed for four proteins (TRP,

Figure 2. Network representations of substates and transitions. (A) Nodes indicate conformational substates determined with RMSD clustering;64

node diameters are proportional to substate probability. The native ensemble, green, was determined by modularity optimization.65 White diamonds
indicate the substate containing the conformation closest to the experimental structure. Black diamonds indicate the substate containing the native
conformation (see Methods). Frustration scores, fn̅at, are denoted by the color spectrum, centered at fn̅at = 0. Positive scores, blue, indicate substates
that facilitate transition to the native ensemble; negative scores, red, indicate kinetic traps. (B) Comparison of frustration scores, fn̅at, and transit
times, τnat (μs), for nonnative substates in part A. Color values correspond to frustration scores as in part A.
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BBL, PB, and HMDM) whereas kinetic inhibition was chiefly
absent in the nonnative ensembles of WW, PG, and A3D. The
largest frustration scores (i.e., most extreme facilitators) were
observed in the WW and PG simulations, but none of the 10
globular proteins examined (Table 1) presented a single
facilitator, an ultimate gatekeeper substate, to the native
ensemble. As shown in Figure 2, kinetic traps were unequally
distributed throughout the nonnative ensembles. The transition
networks, or transition maps, did display unique topological
features, and we were able to ask to what relative degree
secondary structure, tertiary structure, and nonnativeness
(standard RMSD-to-native) are associated with positive or
negative kinetic frustration. We chose these structural
parameters because of their broad interpretability and popular-
ity for monitoring folding progress50,51 but emphasize that the
approach is compatible with any geometric or energetic feature
that can be computed for all trajectory frames.
Folding is a conformationally heterogeneous process,52 but

the recognized prevalence of preferred folding routes53 and
transition pathways54 highlights the need for tools linking
specific nonnative substates to folding kinetics. Quantifying
these relationships is a legitimate aim in its own right, but our
findings relate to the wider problem of predicting the kinetic
impact of direct perturbations to protein systems. Mutations,
small molecule ligands, or solvent conditions that modulate the
populations of conformational substates can influence folding
rates or folding routes,55−57 and quantifying any such changes
therefore has applications to pathway inhibition, aggregation-
based diseases, and protein engineering.58−61

■ METHODS

MD Simulations. We applied our analysis to 10 proteins
within a large simulation data set generated by D. E. Shaw
Research as reported in Lindorff-Larsen et al.5 and analyzed
further elsewhere.29,33,62,63 Aggregate simulations of the 10
proteins comprise 5.1 ms of total sampling where each protein
undergoes at least 10 folding and unfolding events (Table 1);
details for the simulations and folding event classification are
contained in the original reference. Clustering and all
subsequent analysis was performed on the Cα coordinates.
Snapshots were recorded every 200 ps. In this study, multiple
simulations for the same protein, if present, were concatenated.
Determining Conformational Substates. To identify

conformational substates for each protein, we performed
hierarchical clustering with MSMBuilder2.64 Trajectories were

first subsampled to obtain snapshots every 50 ns based on
implied time scale plots (SI Figure S1), then clustered into
substates using root mean squared distance (RMSD) and
Ward’s algorithm.66 The number of substates, k (see Table 1),
is a heuristic user parameter that was selected to be
approximately equal to (simulation frames)/10.67 This
parameter has been shown to have little dependence on
peptide length, Nres.

68 The k values chosen here correspond
closely to those in ref 29. The transition probability matrix P
was then approximated using the MSMBuilder2 maximum
likelihood estimation (MLE) routine, and substates not
included in the estimated matrix (i.e., those separate from the
primary connected component) were excised from subsequent
analysis. Connected singletons (substates with a single
member) were retained, however, and constituted 0% of total
conformers for BBA, BBL, PB, and TRP and 0.8−10% for A3D,
HMDM, LAMDA, PG, VHP, and WW. Distributions of cluster
sizes (number of member conformers) and widths (defined as
mean pairwise RMSD of any two substate members) are given
in the Supporting Information (Figures S4 and S5).

Defining the Native Ensemble. Our network folding
model requires a demarcated native state to function as a
kinetic end point, that is, a theoretical absorbing state40 where
folding is defined as complete. Selecting the largest conforma-
tional substate,5 the substate closest to the PDB-deposited
coordinates, or a hard RMSD threshold is too restrictive,
excluding many substates with ‘native-like’ properties and
artificially increasing theoretical τnat values.

69 Instead, we chose
to designate a native ensemble, or a set of conformational
substates that interconvert more frequently with each other
than with outside substates. Such a graph property is captured
by an algorithm called modularity optimization,65 and is
particularly suited for this classification task in that it reflects
and adapts to the actual network topology, unlike an RMSD
threshold. Modularity optimization proceeds by initially
designating each substate as its own ensemble and then
iteratively combining them until only highly intraconnected
ensembles remain, at which point modularity is maximized. For
a transition network, modularity is defined as

∑ δ= −
⎡
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⎤
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i j

ij
i j
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,

where cij is the number of transitions between substates i and j,
ki is the total number of transitions to substate i, kj is the

Table 1. Simulation Dataa

protein Nres ttotal (μs) k PDB Temp (K) Nf Nu rnc (Å)

trp-cage (TRP) 20 208 417 2JOF 290 12 12 1.5
BBA 28 325 999−1 1FME 325 14 14 2.6
villin headpiece (VHP) 35 125 251 2F4K 360 34 34 1.3
WW-domain (WW) 35 1137 2274 2F21 (4−39) 360 12 11 1.4
BBL 47 429 860 2WXC 298 12 11 4.8
protein B (PB) 47 104 2310 1PRB (7−53) 340 19 19 3.4
homeodomain (HMDM) 52 327 654 2P6J 360 27 28 3.7
protein G (PG) 56 1155 2310−2 1MI0 (10−65) 350 12 13 1.2
alpha 3D (A3D) 73 707 1414 2A3D 370 12 12 2.9
lambda repressor (LAMDA) 80 643 1293−1 1LMB (6−85) 350 10 12 1.9

aA summary of the proteins and simulations studied, adapted from Lindorff-Larsen et al.5 Data columns indicate sequence length (Nres), total
aggregated simulation duration (ttotal), number of conformational substates (and any substates excised during transition matrix MLE) (k), Protein
Data Bank accession code (residue indices), simulation temperature, number of folding events (Nf), number of unfolding events (Nf), and the native-
ensemble RMSD cutoff (rnc). All figures and tables order proteins according to increasing sequence length.
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number of transitions to substate j, 2m is the total transition
count in the network, and δ(si,sj) = 1 when substates i and j
reside in the same ensemble s and 0 otherwise (elsewhere lnn or
ln denote total edges among nodes in the nonnative or native
ensembles, respectively). Other formulations for optimizing
modularity are possible, including normalized cut and
conductance criteria.70 Maximizing W yields multiple ensem-
bles for each of 10 analyzed transition networks, but only one
per network will be defined as the native ensemble. Within each
candidate ensemble, five random conformers were sampled
from every constituent substate, and the aggregate number of
conformers within a cutoff rnc to the PDB-deposited native
structure were counted and compared with similar counts from
the remaining candidate ensembles. The ensemble with the
most conformers under the cutoff was designated to be the
native ensemble, and all its substates, not only those under the
cutoff, were included (all substates not in the native ensemble
were defined to be in the nonnative ensemble). The cutoff
itself, rnc, was determined by identifying the RMSD value such
that 5% of total trajectory frames were within rnc Å from the
PDB-deposited crystal structure (Table 1). For 8 of 10
proteins, 100% of the frames with RMSD < rnc were found in
the native ensemble; the same values were 82% for BBA and
93% for BBL. Substates containing the snapshot nearest the
experimental native structure were always contained in the
assigned native ensemble (Figure 2, white diamonds). The
number of substates assigned to the native and nonnative
ensembles was kn and knn, respectively (Table 1). Although the
nonnative ensembles were partitioned variously during
iterations of modularity optimization, the constituent substates
of the (eventually defined) native ensemble were in fact
identically preserved through all iterations for all proteins. The
algorithm converged in seconds for all networks. Modularity
optimization operates exclusively on transitions counts;
however, we observed that secondary structure also separated
cleanly between the native and nonnative ensembles as a result
of this classification (SI Figure S2). The identified native
ensembles are shown in green in the network representations
(Figure 2). For purposes of computing RMSD, a native
conformation was defined to be the trajectory snapshot nearest
the theoretical mean structure of the entire native ensemble
(Figure 2, black diamonds, and Figure 6, tube representations).
Defining Q and Secondary Structure. The proportion of

native contacts present in any trajectory conformer, Q, is a
useful reaction coordinate for monitoring folding progress71,72

or modeling energy barriers.73 It is a degenerate quantity in that
many distinct conformers could map to an identical Q
value.74,75 We defined native contacts as those residue pairs
whose separation (Cα−Cα) was less than 10 Å for at least 65%
of the conformers within the native ensemble (SI Figure S3).
Native contacts separated by fewer than 7 amino acids in the
primary structure were excluded. We denote the percentage of
native contacts as Qn(t) and the percentage of nonnative
contacts as Qnn(t) for some time t.
We quantified the presence of secondary structure in each

trajectory frame using Protein Secondary Element Assignment
(P-SEA), which labels every residue as in either an unstructured
coil, α helix, β sheet, or ‘other’ configuration76 (SI Figure S2).
An ‘ideal’ sequence of native secondary structure assignment
was defined as the residue-wise assignment most common
within the native ensemble and termed the structure sequence.
The presence of native secondary structure throughout the
simulation was quantified by dividing the number of native-like

P-SEA assignments by the total number of β sheet and α helix
assignments within the structure sequence. This value is
denoted Hn(t). Nonnative secondary structure, which captures
the percentage of α and β secondary structure assignment that
is unlike that found in the structure sequence, is denoted
Hnn(t).

Mean First Passage Times. Having determined the set of
substates defining the native state, we next derived the expected
mean first passage time of each nonnative substate to the native
ensemble as put forward in ref 48 (alternative algorithms for
computing transit times are given in Torchala et al.77). First, we
estimated the symmetric transition probability matrix P from
the clustering results using the MSMBuilder2 MLE method to
guarantee detailed balance.78 This matrix carries jump
probabilities for the embedded discrete Markov chain,40 but
can also be expressed as a rate matrix  that approximates the
continuous time transition rates.39

For each nonnative substate i, we modify  to have zero
transition rates to all substates previously connected to i. We

then compute the formal matrix exponentiation e( 0i
t ) for

geometrically spaced t values (t = 50(1.2r), r ∈ [0,1,...40]. That
is, t ∼ 50 ns...74 μs). The fraction of trajectories, starting at
(nonnative) state i, that will arrive at the native ensemble N
before time t is then given by

∑=
∈

P [e ]iN
j N

t
ij

i0

where j indexes substates in the native ensemble. This fraction
consistently converged for all substates (i.e., mini PiN = 0.9964
at tmax out of all proteins). The mean first passage time (see SI
Figure S7) is then given by

∫τ =
∞ P t

t
t t

d ( )
d

diN
iN

0

Frustration Scores. We then ask how these mean first
passage times to the native ensemble, or transit times, change in
response to network perturbation, that is, the removal of a
substate in the nonnative ensemble. To that end, we remove a
substate i in the nonnative ensemble from the network and
then observe the percentage change between unperturbed (τjN)
and perturbed (τjN* ) transit times, in both cases for all nonnative
substates m ∈ [1...knn ≠ i] (see Figure 1). That is,

∑ τ τ
τ

̅ =
−

* −

≠

f
k

100
1

i

m i

mN mN

mN
nat

nn

where the bar thus indicates the average percentage change in
transit time over all knn−1 substates in the nonnative ensemble,
and the multiplicative factor allows frustration scores to be
interpreted as percentages. Substates in the native ensemble are
never removed throughout the procedure. Any isolates
resulting from removing node i were discarded when
computing fn̅at

i , but this was rare ((isolates)/(knn) < 0.01 for
all proteins except LAMDA, (isolates)/(knn) < 0.021).
Frustration scores fn̅at quantify the kinetic impact, positive or
negative, for each nonnative substate i, expressed as percentages
in Figure 3 and Table 2. States with positive frustration scores
are termed facilitators, those with negative frustration scores are
termed inhibitors or kinetic traps. All analysis subsequent to
clustering was performed in Matlab.79 Due to the matrix
exponentiation, complexity of fn̅at computation is ∼O(N3), and
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runtimes were between 4 min (PB, knn = 167) and 20h (PG, knn
= 2248) on a 12-core cluster.
Network Representations. Substate transition matrices

are usually very sparse, especially in the nonnative ensemble
(Table 2). Most transitions are forbidden due to the involved
steric clashes, backbone geometry restrictions, and repulsive
electrostatics. Graph-based visualizations of conformation space
thus have interpretive value in conveying only the transitions
that do take place as well as the relative sizes of conformational
states.80,81 We used Gephi82 to represent each protein’s
transition network (Figure 2). Network layouts were optimized
using the Force Atlas algorithm, first allowing and then
penalizing node overlap, in both cases with an internode
repulsion strength of 200. Edge weights were scaled according
to the transition matrix, specifically 1000 , but are not
differentiated visually in the figure. The repulsion force acts
between all nodes, whereas node attraction is relative to
connecting edge weight, so unconnected nodes feel zero direct

attraction. Node diameters reflect their relative populations, but
the smallest node is shown no smaller than 1/30 the size of the
largest node for clarity. Network radial orientation was rooted
with the native ensemble facing east.

3. RESULTS AND DISCUSSION
Conformational landscapes of the 10 proteins can be
conveniently depicted as networks of nodes and edges that
illustrate folding properties of each peptide. These representa-
tions are shown in Figure 2A. The native ensembles as defined
in Methods are colored green, though the maps’ layouts
themselves were created without preknowledge of native or
nonnative substate assignments. All nonnative substates are
colored according to their computed fn̅at values.

Properties of Transition Networks. Many general
phenomenological aspects of protein folding are visible in
these abstractions in addition to features that distinguish the
folding behavior of specific polypeptides. The prevalence of
large substates within the highly interconnected native
ensemble (see Table 2), for example, reflects the loss of
entropy a folding peptide experiences upon attaining the
energetically favorable folded conformation (cluster size and
widths given in SI Figures S4 and S5). Second, folding
facilitators (blue substates) are as expected mostly proximal to
the native ensemble due to being conformationally very native-
like.83 The topological isolation of the native ensemble,
especially for TRP, WW, PG, A3D, and LAMDA, suggests
modularity optimization effectively classifies the folded and
unfolded ensembles without invoking any protein-specific
parameters. A particularly evident separation between the two
ensembles characterized the transition maps of WW, PG, and
A3D, all of which had less than one percent of nonnative edges
connecting the nonnative and native ensembles (range for all
proteins: 0.5−20.9%, see lnn→n/lnn in Table 2). Higher values of
this measure indicate less homogeneous folding pathways,84

most evident in HMDM and PB transition maps.
Large kinetic traps, transition bottlenecks, and facilitators,

among other topological motifs, are unequally prominent
among the networks. Several of the maps depict a nonnative
ensemble of freely interconverting structures that form no
apparent energetically coherent substates (min fn̅at values for
WW, PG, and A3D are −0.6,−0.7, and −0.6, respectively),

Figure 3. Frustration scores. Nonnative substate fn̅at values are shown
for all 10 proteins. Because the substates of the native ensemble cannot
be associated with fn̅at values, the number of data points corresponds to
the number of substates in the nonnative ensemble, knn (Table 1).
Values less than zero indicate a kinetic trap, those above zero indicate a
substate that facilitates transition to the native ensemble. Central red
marks indicate the median; box edges are the 25th and 75th
percentiles. See SI Figure S7 for a comparison with frustration scores
of phantom networks.

Table 2. Transition Network Summary Statisticsa

min
fn̅at

max
fn̅at

median substrate
size

median substrate
width (Å)

median neighbors per
substate knn(kn)

transition matrix
density (%) W

(lnn→n)/lnn
(%)

TRP −1.8 0.1 7 (11.5) 3.4 (2.6) 14 (12) 387 (30) 3.6 (22.3) 0.30 5.74
BBA −0.7 2.2 5 (12) 4.3 (2.9) 8 (16) 905 (93) 1.0 (16.2) 0.42 3.89
VHP −1.6 0.6 7 (9.5) 5.3 (4.6) 13 (16) 207(44) 6.1 (19.3) 0.23 10.23
WW −0.6 3.5 2 (68) 4.7 (1.7) 4 (86) 2067 (207) 0.2 (39.2) 0.46 0.68
BBL −1.6 1.1 7 (15) 6.2 (4.8) 11 (18) 758 (102) 1.5 (12.7) 0.42 8.36
PB −4.2 1.4 5 (21) 7.0 (4.7) 10 (20) 167 (41) 5.8 (39.7) 0.34 6.61
HMDM −1.7 1.1 5 (18) 5.6 (4.0) 8 (29) 517 (137) 1.8 (17.8) 0.44 20.86
PG −0.7 3.3 4 (78) 5.5 (2.5) 6 (27) 2248 (62) 0.4 (37.5) 0.66 0.50
A3D −0.6 2.2 4 (88.5) 8.2 (3.6) 8 (40) 1346 (68) 0.6 (48.5) 0.45 0.51
LAMDA −1.2 2.0 6 (18.5) 6.0 (4.6) 5 (18) 1181 (112) 0.6 (14.7) 0.68 2.25

aDetails of transition networks in Figure 2. Columns 1−7: parenthetical values denote properties of the native ensemble, all others to the nonnative
ensemble. The range of frustration scores is given in the first two columns. Median substate size refers to the number of trajectory snapshots
clustered into each conformational substate. Substate width refers to average intra-substate pairwise RMSD. The number of substates classified by
modularity optimization as being in the nonnative (native) ensemble is denoted by knn(kn). Maximum modularity value, W, for the modularity
optimization algorithm utilized (see Methods) is also given. The last column shows the ratio between (1) total transition edges connecting nonnative
and native ensembles (lnn→n) and (2) the total number of edges in the nonnative ensemble (lnn), expressed as a percentage.
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whereas substantial kinetic traps characterize the nonnative
ensembles of TRP, BBL, PB, and HMDM (min fn̅at = −1.8,−
1.6,−4.2, and −1.7, Table 2). The distribution of frustration
scores for each peptide is shown in Figure 3. We also compared
τnat and fn̅at values to corresponding quantities computed for
phantom (i.e., synthesized) networks in SI Figure S7. The
comparison reveals that the degree distribution inherent to the
transition network of each peptide is sufficient input for
approximating τnat and fn̅at in generated networks.
However, a more quantitative analysis is necessary to reveal

the specific conformational features, or structural parameters,
that are responsible for the frustration scores unique to each
protein’s unfolded ensemble. We focus primarily on properties
of kinetic traps because facilitators inherently border a native/
nonnative delineation that is convenient but imposed; any
conformational differences between facilitators and native
substates are likely to be subtle with regard to the structural
parameters used here.83 We first address clustering properties
that could be thought to cause negative outlier fn̅at values and
then discuss the structural features that indeed correlate with
kinetic frustration.
Kinetic Frustration Is Not a Clustering Artifact. As

shown in Figure 3, most substates within the nonnative
ensemble are kinetically neutral; their individual presence in the
FEL has little impact on the expected transit times of other
substates. Importantly, these substates need not be small, or
have few constituent conformers. While substates with
substantial positive or negative frustration scores tend to be
above average in size, the converse is not true (SI Figure S4).
That kinetic traps, as identified through fn̅at, must contain a

substantial number of conformers reflects our intuition that
kinetic traps represent local minima with stabilizing intra-
molecular interactions in the nonnative FEL.85 Substate size
(i.e., number of members) as a descriptive trait can be
contrasted with substate width (i.e., the mean pairwise RMSD
of any two of its members), which provides an approximation
of local entropy. If kinetic traps presented increasing substate
width as fn̅at values became more extreme, we could conclude
that fn̅at values are actually artifacts of the clustering step. In this
scenario larger and larger peripheral regions of the configura-
tional state space are unfairly grouped together during
clustering, resulting in artificially exaggerated fn̅at values. We
observed, in contrast, that kinetic traps display decreasing width
values, suggesting they represent genuine local energy minima
(SI Figure S5).

Properties of Kinetic Traps. Frustration scores directly
reflect the transition topology. Having discussed that clusters in
our networks are well-formed, we next investigate conforma-
tional causes of this observed topology. Specifically, are there
general structural features that cause kinetic traps?86 We
selected five structural parameters that share the desirable
properties of normalizability and interpretability, and we
computed them for all substates (all nonnative and native
trajectory frames) in the transition networks. Definitions for
native contacts, Qn, nonnative contacts, Qnn, native secondary
structure Hn, and nonnative secondary structure Hnn are given
in Methods, and our fifth structural parameter was standard
RMSD (against the native conformation). Figure 4 illustrates
the relationship between fn̅at and fractional contacts (Qnn or Qn)
for all nonnative substates within the conformational landscape

Figure 4. Structural features in the nonnative ensemble are related to kinetic frustration. Average intrasubstate Qnn (C) and Qn (D) values for
LAMDA are plotted against frustration scores, fn̅at, showing that nonnative contacts are associated with kinetic frustration. Structural parameter
values, Qn and Qnn included, are normalized against the average corresponding values within the native ensemble. Marker widths are scaled according
to substate populations, and error bars indicate one standard deviation. Dashed lines show normalized average values for the nonnative (gray) and

native (green) ensembles. Cumulative sums, (A) sQnn = ∑
̅
̅

f
f i

min(Qnn − Q̅nn) and (B) sQn = ∑
̅
̅

f
f i

min(Qn − Q̅n), (see main text) show the propensity of

structural features to be more associated with negative or positive fn̅at values. When integrated these curves yield the bias values, β, that allow
quantitative comparison between proteins (Figure 5 and SI Table S1). Color values along the curve correspond to substate color values in Figure 2.
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of LAMDA. The relationship observed confirms our expect-
ation that kinetic traps display more nonnative contacts than
the nonnative ensemble in general. The presence of
interresidue contacts, both native and nonnative, is normalized
against the corresponding quantity observed in the native
ensemble. Mean values for these features are shown with
dashed horizontal lines, gray for the entire nonnative ensemble,
green for the entire native ensemble. For LAMDA, we conclude
that the enrichment of nonnative contacts among kinetically

frustrated substates is one hypothesis for the appearance of

outlying red substates in LAMDA’s transition network (Figure

2, white arrow).
In normalizing Qn and Qnn against their respective values in

the native ensemble, we can evaluate their correlative

relationship to frustration scores and then compare among

protein systems. We thus quantify whether a feature is more

enriched among kinetic traps or facilitators with a bias value

Figure 5. Comparison of β values for five structural parameters. Frustration bias values relate structural features to kinetic frustration. Negative values
indicate the structural feature is strongly associated with kinetic frustration, that is, slowing transition to the native state for that protein. Positive
values indicate the feature is associated with states that facilitate attainment of the native state. The RMSD distance from the native conformation has
the largest negative bias value for BBA, WW, BBL, HMDM, and A3D. Nonnative contacts have the largest negative biases for TRP, PB, and
LAMDA. Nonnative secondary structure, Hnn, is the most biased structural parameter only for PG. Some bias values close to zero are not statistically
significant (SI Table S1), indicating the structural parameter has little kinetic impact on folding for that protein.

Figure 6. Ensemble representation of kinetic traps compared with native structure. (A) Representative structures of kinetic traps, shown in
topological context in SI Figure S8. (B) Comparison of substate widths (intrasubstate pairwise RMSD). Red, substates classified as kinetic traps;
gray, all nonnative substates; green, all native substates.
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∫ ∑β = − − ̅
̅

̅
F F f( )dF f

f

f

f f

nat
min

nat
max

nat
min

nat

for any feature F with mean value F̅ (within the nonnative
ensemble), where f indexes the ascendingly sorted fn̅at values.
Bias values convey whether feature F is more enriched for
negative or positive fn̅at values (Figure 4A and B), where the
negative sign allows us to compare with standard linear
correlation, which we performed with the addition of weighted
substate size (SI Table S1). Bias values for all five structural
parameters are presented in Figure 5. Values near zero indicate
the structural parameter is not strongly associated with kinetic
frustration. Large positive or negative values indicate a strong
relationship. We performed permutation tests to check the
statistical significance of these bias values (SI Table S1). As we
would expect, native secondary structure and native contacts
frequently have positive bias values (TRP βQn

is the only
statistically significant exception), indicating that facilitator
substates contain many native-like structural features, whereas
kinetic traps do not. Significant nonnative secondary structure
bias values were observed for BBA, PG, A3D, and LAMDA
(βHnn

= −0.13,−0.19,−0.12, and −0.10 respectively), and
significant nonnative contacts bias values were observed for
TRP, BBA, BBL, PG, A3D, LAMDA (βQnn = −0.33,−0.13,−
0.18,−0.15,−0.13, and −0.28, respectively). Because RMSD-to-
native is so commonly invoked as a distance metric for how far
a simulation has progressed, we also computed bias values for
RMSD, which were negative and statistically significant for all
proteins except TRP, VHP, and PB. Especially for BBA, WW,
BBL, HMDM, and A3D, nonspecific structural deformity, the
characteristic summarized by RMSD, appears more associated
with kinetic frustration than the specific structural features
tested. VHP and PB simulations did not present statistically
significant bias values for any structural parameters, perhaps
due to modularity optimization defining the native ensemble
too inclusively for these networks (see SI Figure S2).
Visualizing Kinetic Traps. Conformational ensembles

consisting of snapshots from the most kinetically frustrated
substates are shown in Figure 6, rendered with PyMOL.87 The
5% of frames that were members of substates with the most
negative frustration scores were aligned to their collective mean
structure and represented as ensembles (topological context
shown in SI Figure S8). Then the native conformation (see
Methods) was added, aligned, and shown in a thicker tube
representation. These ensembles illustrate properties of the
nonnative ensemble that were suggested by the transition
networks in Figure 2. The diffuse nonnative ensembles of WW,
PG, and A3D, for example, have few stabilizing nonnative
interactions, so even their most kinetically frustrated states
appear almost completely unstructured (Figure 6A). In
contrast, the nonnative transition maps with more topological
isolation among inhibitor substates, especially BBL and PG,
show much more homogeneity in the respective structural
ensembles. BBL’s bias for Qnn was −0.18, suggesting that the
nonnative tertiary structure apparent in the ensemble is
responsible for the cluster of kinetic traps evident in the
network (Figure 2 black arrow). The kinetic trap ensemble for
TRP shows that the peptide can get conformationally ‘stuck’ in
a nonnative but stabilized geometry. Although the nonnative
configuration in the ensemble and the superimposed native
state have very different backbone geometries, the relative

compactness of the former may explain why TRP presented a
statistically significant negative βQn

, a property not observed for
any other peptide. Peptides with simple contact topologies have
been shown in lattice models to allow more interplay between
native and nonnative contacts,88 consistent with our findings on
TRP. That stabilizing interactions generally may be responsible
for kinetic traps is suggested by Figure 6B, which shows that
kinetic traps commonly have smaller widths (lower average
pairwise RMSD of constituent members) than the nonnative
ensemble.

■ SUMMARY
To compare the folding properties of 10 protein sequences, we
have exploited both quantitative and interpretive aspects of
network models of protein folding. Our definition of kinetic
frustration is grounded in graph theoretic principles while being
consistent with qualitative definitions of kinetic features, such as
kinetic traps. The method thus allows direct comparison
between temporal folding behaviors and conformational
features, the latter summarized by five standard structural
metrics that were normalized against their prevalence in the
native ensemble. While nonnative intramolecular interactions
or nonnative secondary structure formation have been
recognized as contributing factors to misfolding89,90 or folding
rate reductions,91,92 we quantified the influence of these
structural malformations through a normative process that
requires no prior domain knowledge of the protein of interest.
Specifically, folding for TRP, VHP, PB, PG, and LAMDA was
most kinetically frustrated by deformations other than that
characterized by RMSD, suggestive of stabilizing forces that
trap a folding protein in a semistructured but nonnative
conformation. These details were resolvable because we chose
to perturb individual substates rather than substate collections
within the transition networks.29 We additionally observed that
phantom networks constructed by mimicking gross topological
attributes of the observed networks mostly reproduced
emergent kinetic properties (τnat and fn̅at) (SI Figure S7). If
transition networks directly reflect the kinetic barriers, traps,
and pathways caused by conformational fluctuations, as argued,
then further topological properties can hopefully be linked to
more nuanced categories of structural deformation. Certainly,
subjective concepts such as misfolded intermediates, unstruc-
tured intermediates, and kinetic traps, often invoked in the
literature of misfolding pathologies,19,93−95 can especially
benefit from this type of quantification since simulations are
increasingly sampling the distant or rare FEL regions where
these events occur.
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