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Background: A serious concern with surgical procedures around the hip joint is iatrogenic injury of the arterial supply to the
femoral head (FH) and consequent development of FH osteonecrosis. Cam-type morphology can extend to the posterosuperior
area. Understanding the limit of the posterior superior extension of the femoral osteochondroplasty is paramount to avoid
underresection and residual impingement while maintaining FH vascularity.

Purpose/Hypothesis: The aim of this study was to quantify the impact of arthroscopic femoral osteochondroplasty on the FH
vascular supply. It was hypothesized that keeping the superior extension of the resection zone anterior to the 12-o’clock position
would maintain FH vascularity.

Study Design: Case series; Level of evidence, 4.

Methods: Ten adult patients undergoing arthroscopic femoroacetabular impingement (FAI) surgery were included in the study.
Computed tomography (CT) scans were obtained before and after arthroscopic osteochondroplasty to define the extension of
resection margins. To quantify FH vascularity, postoperative dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI)
was obtained at 2 time points: immediately after surgery and at the 3-month follow-up. Custom MRI analysis software was used to
quantify perfusion.

Results: CT scan analysis demonstrated that the superior resection margin was maintained anterior to the 12-o’clock position in
half of the patients. The remining 5 patients had a mean posterior extension of 11.4� ± 7.5�. The immediate postoperative DCE-MRI
revealed diminished venous outflow in the operative side but no difference in overall FH perfusion. At the 3-month follow-up
DCE-MRI, there was no perfusion difference between the operative and nonoperative FHs.

Conclusion: This study provides previously unreported quantitative MRI data on in vivo perfusion of the FH after the commonly
performed arthroscopic femoral osteochondroplasty for the treatment of cam-type FAI. Maintaining resection margins anterior to
the 12-o’clock position, or even 10� posteriorly, was not observed to impair perfusion to the FH.
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An essential element of all hip-preserving surgery is
maintenance of femoral head (FH) vascularity.10,13,35

Surgical techniques to treat femoroacetabular impinge-
ment (FAI) were first described using open surgical hip
dislocation, which allows for full access of the FH while
maintaining the vascularity. This approach provides direct
visualization of the terminal vessels supplying the FH.
These vessels run along the femoral neck, in the peripheral
compartment, within fibrous prolongations of the capsule
wall known as retinacula of Weitbrecht and/or synovial
folds. With the advancements of instrumentation and sur-
gical techniques, arthroscopic femoral osteochondroplasty

can be as accurate and precise as open techniques when
correcting the osseous deformity in FAI.7,34 However, the
effects of arthroscopic femoral osteochondroplasty on FH
vascularity are not fully understood. A large portion of the
region where the arthroscopic work is performed is within
the same intra-articular (peripheral) compartment where
the terminal vessels are situated, increasing the potential
risk of iatrogenic injury to the vascularity of the FH.

Arterial disruption and subsequent development of FH
osteonecrosis after FAI surgery is a devastating complica-
tion with significant consequences.25 Previous studies have
reported a low incidence of FH osteonecrosis after FAI sur-
gery.23,41 However, posterior extension of the femoral osteo-
chondroplasty can compromise the FH perfusion.26 The
risk is real, especially when the cam morphology extends
posterior superior to the 12-o’clock position. The precise
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anatomical course and location of the terminal vessels of
the retinacular system were well-defined in a previous
cadaveric study.25 Figure 1 depicts the precise location of
the retinaculum of Weitbrecht as well as the penetration
sites of the terminal vessels into the FH.

To our knowledge, no previous in vivo studies have quan-
tified the effects of arthroscopic femoral osteochondroplasty
on FH perfusion. We aimed to quantify the effects of
standard arthroscopic femoral osteochondroplasty on FH
vascularity. We hypothesized that keeping the superior
resection margin anterior to the 12-o’clock position would
preserve FH vascularity.

METHODS

The protocol for this prospective study was approved by our
institutional review board. Ten adult patients indicated for
arthroscopic treatment of FAI, who provided informed con-
sent for the study, were enrolled between December 2018 and
June 2019. Exclusion criteria included patients with mental
disability, kidney disease (glomerular filtration rate,<30 mL/
min/1.73 m2), previous hip surgery, fracture, or infection; or
signs of osteonecrosis and osteoarthritis. The quantitative out-
come measures included (1) volumetric analysis and precise
location (using clockface positions) of the osteochondroplasty
using 3-dimensional reformatted computed tomography (3D-
CT) scans, and (2) FH perfusion using dynamic contrast–
enhanced magnetic resonance imaging (DCE-MRI).11

Volumetric Analysis of the Osteochondroplasty
Using 3D-CT

Segmentation. Preoperative and postoperative 3D-CT
was obtained on each patient to perform volumetric analy-
sis of the resection and to define the resection margins in
relation to the clockface/360� scale. All images were
acquired on an Aquilion CT Scanner (Toshiba/Canon Med-
ical Systems). Acquisition parameters included 170 mA,
120 kVp, 1-mm slice thickness, 50-cm field of view, 402
slices, and a 512 � 512–pixel matrix yielding a resolution
of 0.84 � 0.84 � 1.00 mm. Helical CT acquisition through
the hips and knees and multiple axial images were gener-
ated, and 3D surface models were obtained using Hip Map
analysis software (Stryker). All 3D models were aligned by
rotating around the FH center such that the anterior pelvic
plane (pubic protuberance) was equivalent to the coronal
plane; the FH centers on the left and right side were on a
horizontal line, such that the line between the FH center

and the center of the posterior condyles was equivalent to
the vertical axis and the posterior condylar axis parallel to
the coronal plane. Alignment of the 3D models was performed
to reduce the effect of inaccuracies caused by differences in
patient positioning during image acquisition. Quantitation of
the alpha angle, femoral torsion, center-edge angle, acetabu-
lar version and coverage, and femoral neck–shaft angle and
torsion was performed. No contrast agent administration was
needed for the CT scan imaging procedure.

Overlay Analysis. A comparative analysis between the
preoperative and postoperative bone surface was per-
formed to assess the boundaries of the cam resection. The
3D model of the postoperative scan was aligned with the
preoperative 3D model using rigid registration. Overlay
images were created by showing both pre- and postopera-
tive 3D models, but with transparency for the preoperative
bone surface (Figure 2). All overlay analyses were per-
formed in 3-matic (Materialise).

Additionally, a distance map between the pre- and postop-
erative bone surface was created, and colors were assigned to
the surfaces that were different by >1 mm. This threshold
was chosen because the scan resolution was also on the order
of 1 mm (ie, after registration, bone surfaces may differ by up
to 1 mm without there actually being a difference). The
anterior-posterior extent of the cam resection was assessed
by calculating the angle between the plane made up by the
neck axis and the posterior-most (or anterior-most) location of
the resection outline and the 12-o’clock position, where the
(femoral) 12-o’clock plane was defined by the femoral neck
axis and the vertical axis. The proximal extent of the cam
resection was assessed by calculating the maximum alpha
angle, where the alpha angle was calculated as the angle
between the femoral neck axis and a line from the center of
the FH to the proximal-most location of the resection outline.
The maximum resection depth was calculated as the maxi-
mum distance between the pre- and postoperative bone sur-
face (minus 1 mm of noise). All overlay analyses were
performed using 3-matic software.

FH Perfusion Using DCE-MRI

MRI Acquisition Method. DCE-MRI was acquired on a
1.5-T General Electric MRI scanner (GE Healthcare) using
an 8-channel cardiac receive coil. A 3D spoiled gradient
echo sequence (LAVA) was used with a 3.93 ms/1.67 ms
repetition time/echo time and a 12� flip angle. Fat suppres-
sion was utilized to eliminate signal from fatty marrow in
the bone that would inhibit detection of gadolinium uptake.
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A 40 � 40–cm coronal field of view was acquired with a
256 � 128–pixel matrix and 26 slices yielding a recon-
structed resolution of 1.6 � 1.6 � 4.0 mm. Each time point
was acquired in 8 seconds, for a total of 45 time points with
a 6-minute scan time. The sequence was started and
3 baseline points acquired precontrast before injection of

0.1 mmol/kg Gadavist (Bayer Healthcare) at a rate of
2 mL/s, followed by a saline flush using a MEDRAD MR
power injector (Bayer Healthcare).

MRI Analysis Method. Pharmacokinetic analysis of the
DCE-MRI data was performed using software written
in-house using IDL software (Version 8.1; Exelis Visual)

Figure 1. Diagram depicting the intra-articular course and penetrating points of the terminal branches of the medial femoral
circumflex artery (MFCA) supplying the femoral head (FH). The majority of the terminal branches of the MFCA supplying the FH
are located along the posterior region of the FH. The outer circle represents the femoral capsular attachment, and the inner circle
illustrates the articular rim of the FH. The green areas delineate the intra-articular location of the retinaculum of Weitbrecht (anterior,
superior, and inferior). The yellow areas illustrate the fatty tissue covering the terminal branches’ entry point located around the
head-neck junction. Entry point for the terminal branches arising from the MFCA: ascending MFCA (A), deep MFCA (D), transverse
MFCA (T). FHNJ, femoral head–neck junction. Image from Lazaro et al,25 reproduced with permission.
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by one of the authors (J.P.D.). A region of interest defining
the entire FH on multiple slices was prescribed on both the
operative and the contralateral sides.11

The mean time course for the FH was created as the
average of all voxels in the region of interest and fit with
the modified Brix model yielding a biexponential
equation37:

S

S0
� 1 ¼ AKep

Kel � Kep
ðe�kept � e�keltÞ;

The parameters above may be defined as follows: S(t) is the
MRI signal intensity as a function of time, S0 is the baseline
signal intensity before the administration of contrast, ampli-
tude (A) is related to the size of the extravascular extracellular
space (EES), Kep (1/min) is the ratio of Ktrans /EES and is the
exchange rate between the extracellular and plasma compart-
ments, and Kel (1/min) is the washout or elimination rate of
contrast from the region. A positive Kel indicates a delayed
washout and venous clearance. Additional measures of initial
uptake slope and area under the curve (AUC) at 1 minute
following injection were also calculated.

Data Analysis

The entire volume of the FH was measured in each patient,
and a single time-intensity curve was made from the average
of all voxels. All time-intensity curves were normalized to the
preinjection baseline to allow comparison between patients.
Each patient acted as his or her own control, and we calcu-
lated the change between 2 time points in the same patient:
immediately after surgery (0 months) and at the 3-month
follow-up.

Paired 2-tailed t tests (Excel, Microsoft Corp) were used
to compare the operated and control sides within the same
patient. Unpaired 2-tailed t tests assuming unequal vari-
ance were used to compare differences between 0 and
3 months postoperatively. In both cases, P < .05 was con-
sidered significant.

RESULTS

The study cohort consisted of 6 women and 4 men, with an
average age of 29.8 years (range, 18-38 years). The average
traction time was 28.8 minutes (range, 22-43 minutes), and
the average time spent between the operating room and
the first MRI postoperatively was 89 minutes (range,
43-160 minutes) (Table 1).

The CT analysis revealed that 5 of the resections
extended posterior to the 12-o’clock position, with a mean
extension of 11.4� ± 7.5�. DCE-MRI analysis revealed a sig-
nificant difference (P ¼ .005) in the clearance or washout
rate (Kel) between operative (Kel ¼ 0.031/min) and nonop-
erative contralateral (Kel ¼ 0.073/min) FHs at the initial
MRI time point, the same day of surgery (Figure 3). This
implies that a more delayed washout/venous outflow
occurred on the operative side at this time point. No perfu-
sion differences were found at the 3-month postoperative
time point.

However, comparison between 0 and 3 months postoper-
atively showed significant changes in perfusion on both
operative and control sides. On the operative side, Kep

(P ¼ .002), AKep (P ¼ .005), and AUC (P ¼ .001) were
decreased at 3 months after surgery. Likewise, on the
contralateral side, the slope (P ¼ .016), Kep (P ¼ .003), AKep

(P ¼ .008), and AUC (P ¼ .007) were also decreased. This
implies that initial perfusion in the arterial phase was
mildly (<10%) decreased at 3 months after surgery. How-
ever, the time-intensity curves did not show a difference
at the end of the scan in clearance or in enhancement
percentage (Figure 3).

DISCUSSION

The retinacular system, which courses through the intra-
articular peripheral compartment supplying the FH, is at
increased risk of injury during arthroscopic femoral osteo-
chondroplasty. Based on quantitative DCE-MRI

Figure 2. (A) An example of the 3-dimensional model of the postoperative scan aligned with the preoperative 3-dimensional model
with transparency for the preoperative bone surface. Additionally, a distance map between the pre- and postoperative bone
surface was created, and colors were assigned to the surfaces that were different by >1 mm. (B) Anterior view of the highlighted
cam morphology. (C) The superior posterior extent of the osteochondroplasty passed the 12-o’clock position by 11�, and (D) the
anterior inferior extent of the resection. Max, maximum.
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techniques used in this study, maintaining the superior
resection margin anterior to 12 o’clock, or even 11� of
posterior extension, preserved full FH perfusion.

Immediately postoperatively, the blood flow through the
FH demonstrated some minor delays in venous outflow,
but the overall total perfusion was maintained. The

TABLE 1
Cohort Informationa

Patient No. Sex Age, y

Alpha Angle, �

Traction Time, min
Time From OR

to First MRI, min12 o’clock 1 o’clock 2 o’clock 3 o’clock

1 F 36 38 56 49 36 25 138
2 M 22 67 73 64 51 27 97
3 M 18 66 65 58 48 26 60
4 F 37 40 52 47 45 22 82
5 F 22 38 42 41 37 21 43
6 F 38 44 46 39 42 34 160
7 M 33 65 65 55 48 37 75
8 F 30 36 44 44 33 26 86
9 F 30 42 44 39 36 27 89
10 M 32 49 56 45 34 43 60

aF, female; M, male; MRI, magnetic resonance imaging; OR, operating room.

Figure 3. (A) Average dynamic contrast–enhanced magnetic resonance imaging time-intensity curves are shown for both operated
and contralateral femoral heads just after surgery and at the 3-month follow-up time point. (B) Comparison is also shown for both
time points on operative and contralateral sides comparing the flow of gadolinium through the femoral head.
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3-month follow-up DCE-MRI demonstrated symmetric flow
between the surgical and nonsurgical FH.

The arterial supply to the FH is derived from 3 arterial
systems (retinacular, foveolar, and intraosseous).17,19,20,29,33,39

The superior retinacular arteries (SRAs) and terminal
branches of the deep medial femoral circumflex artery
(MFCA) provide the main arterial supply to the FH.k Once
intracapsular, they course within a fibrous expansion of the
capsular wall, known as the retinacula of Weitbrecht (syno-
vial folds),15,17,21,22,25,39,40 and pierce the FH predominantly
at the posterior superior aspect.14,19,24,25,29 Prior cadaveric
studies demonstrated that the terminal branches of the SRA
can extend anteriorly, but 70% to 80% are located within the
posterior superior FH region.14,24,25 Lavigne et al24 studied
150 dried cadaveric femora and reported that 70% of the
vascular foramina were located posterior superior (at
9-12 o’clock) and posterior inferior (at 6-8 o’clock) along of
the femoral neck.

In 2007, Sussmann et al35 published a cadaveric injection
study evaluating the risk of vascular injury with arthro-
scopic femoral osteochondroplasty. They reported a vascu-
lar safe zone, within measured resection limits (150�

resection arc), 30� (at 1 o’clock; on the right hip) anterior
to the center of the superior neck down to the inferior ret-
inaculum of Weitbrecht (medial synovial fold) at 6 o’clock
(on the right hip). In 2011, McCormick et al28 reported
using static contrast–enhanced MRI in patients diagnosed
with FAI and identified all terminal vessels of the MFCA at
the posterior superior aspect of the femoral neck (from
10:30 to 12 o’clock). They extended the safe zone superiorly
to the 12-o’clock position (180� anterior resection arc). In
2015, Lazaro et al25 published a cadaveric injection study
and identified the intra-articular course of the terminal
branches of the MFCA supplying the FH using the clock-
face as well as a 360� scale (Figure 1). They reported that
80% of the terminal branches penetrated the FH-neck junc-
tion posteriorly, which suggests that an anterior resection
arc is safe for the vascularity of the FH. A follow-up cadav-
eric study in 2017 quantified the effect of femoral osteo-
chondroplasty on FH vascularity.26 The authors reported
an extension of the resection safe zone to 10� posterior to
the 12-o’clock position. When the resection was extended to
40� posterior to the 12-o’clock position, a significant reduc-
tion in FH vascularity resulted. The more posterior the
superior margin of the resection extended, the larger the
decrease in FH vascularity that was found. Our findings
support these previous anatomical studies describing the
safe zone for femoral osteochondroplasty, and demonstrated
maintenance of FH perfusion when the resection arc was kept
anterior to 12 o’clock and when there was a mean posterior
extension of 11�.

Often, during hip arthroscopy, the 12-o’clock position is
assumed to be the area where the superior retinacular vessels
are visualized. However, based on prior anatomical studies,
we know that some of the terminal branches of the SRA sys-
tem penetrate the head-neck junction anterior to the 12-
o’clock position (anteriorly extending to 30�/1 o’clock)25

(Figure 1). Improvement in preoperative imaging coupled
with increased understanding of the pathomechanics of FAI
had helped us to better appreciate the anatomical variations
of the cam-type lesions that extend to the posterior superior
region.1,2,6,27,43 Rupp and Rupp31 reported no incidence of FH
osteonecrosis in 14 patients who underwent arthroscopic
osteochondroplasty that extended to the posterior superior
region. They concluded that osteochondroplasty of the poste-
rior lateral aspect can be performed safely without risk of FH
osteonecrosis, despite damage to the FH vascularity located
in this area. Lazaro et al26 demonstrated that posterior
extension of the osteochondroplasty of 40� can increas-
ingly affect FH perfusion. The disparity may be dependent
on the intraoperative determination of the 12-o’clock posi-
tion. Arthroscopically, some of the terminal branches that
are disrupted, when correcting this posterior extension of
the impingement, may be anterior to 12 o’clock. An exten-
sion of the resection 10� posterior to 12 o’clock may allow
for correction of cam-type impingement that extends pos-
teriorly, while maintaining FH vascularity. However, the
resection in this area should be performed with extreme
caution to prevent excessive (>10�) posterior extension of
the resection that can place the major contributor to the
FH arterial supply at risk. Our findings demonstrated
that posterior extension up to 11� did not seem to affect
overall FH vascularity.

Limitations

This study has some limitations. An indirect measurement
of bone perfusion was used. However, DCE-MRI is a well-
established method for quantification of vascularity of the
soft tissues, brain tissue, and bone.9,12,18,30,32,36 The osteo-
chondroplasty extended posteriorly in some patients in our
cohort. However, the study included a limited number of
patients, thus limiting our ability to perform a subgroup
analysis. Despite this limitation, the study cohort is a good
representation of a single surgical practice in which the
commonly performed femoral osteochondroplasty is located
along the anterior superior quadrant of the FH-neck junc-
tion. Additional studies are needed to assess the effect of
>10� of posterior extension of the femoral osteochondro-
plasty in the in vivo setting.

CONCLUSION

This study provides previously unreported quantitative
MRI analysis of the residual FH blood flow after the com-
monly performed arthroscopic femoral osteochondroplasty
for the treatment of cam-type FAI. Maintenance of resec-
tion margins anterior to the 12-o’clock position along the
clockface, or even a further 10� posteriorly, was not
observed to impair overall perfusion to the FH.
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