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Abstract
The quality of a cluster analysis of unlabeled units depends on the quality of
the between units dissimilarity measures. Data-dependent dissimilarity is more
objective than data independent geometric measures such as Euclidean dis-
tance. As suggested by Breiman, many data driven approaches are based on
decision tree ensembles, such as a random forest (RF), that produce a proxim-
ity matrix that can easily be transformed into a dissimilarity matrix. An RF can
be obtained using labels that distinguish units with real data from units with
synthetic data. The resulting dissimilarity matrix is input to a clustering pro-
gram and units are assigned labels corresponding to cluster membership. We
introduce a general iterative cluster (GIC) algorithm that improves the proxim-
ity matrix and clusters of the base RF. The cluster labels are used to grow a new
RF yielding an updated proximity matrix, which is entered into the clustering
program. The process is repeated until convergence. The same procedure can be
used with many base procedures such as the extremely randomized tree ensem-
ble. We evaluate the performance of the GIC algorithm using benchmark and
simulated data sets. The properties measured by the Silhouette score are sub-
stantially superior to the base clustering algorithm. The GIC package has been
released in R: https://cran.r-project.org/web/packages/GIC/index.html.
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1 INTRODUCTION

Finding distinct homogeneous clusters of a sample of
units, each with many attributes or features, can clar-
ify complicated heterogeneous relationships. For example,
in medicine, an apparent heterogeneous disorder may
actually be a combination of several subtype disorders
with specific clinical and/or biological features. These fea-
tures may indicate specific treatment with better outcomes
and their identification through cluster analysis fulfills
a primary goal of precision medicine. Complex illnesses

such as schizophrenia, alcohol use disorder, and PTSD will
benefit from the modern ability to handle the large num-
ber of biological features that are now collected across
multiple domains with increasing scientific and techno-
logical sophistication.

A cluster is a group of units that are close to each other
and far from units in other clusters, where distance, prox-
imity or dissimilarity is a function of the input attributes or
features. There are two critical elements in a cluster anal-
ysis. The underlying distance between all pairs of units
is a core ingredient. The second is a structured algorithm
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for finding a partition of the units into separate groups
that maximizes an objective function of dissimilarities.
The overarching goal of the methods we introduce here
is to improve cluster analysis, but the vehicle to accom-
plish it is to improve methods for obtaining distance mea-
sures. Historically, these were defined by data independent
geometric measures such as Euclidean distance. How-
ever, experience has taught that defining similarity metrics
based on formulaic assumption on data structures whose
complexities are not well understood can lead to meaning-
less results. Data-dependent dissimilarity (DDD) [22], in
contrast, provides a more principled measure of dissimilar-
ity than does data independent geometric models. Much
work has been done to develop and refine DDD measures.

In this communication, we introduce an approach
that iterates between DDDs obtained from decision tree
based supervised classifiers and the resulting new clusters.
These in turn are used to obtain new estimates of DDD
leading to new clusters until convergence. After provid-
ing background information in the Methods section, we
describe our new approach, the general iterative cluster
(GIC) algorithm. We illustrate the method using Breiman’s
random forest [6] and Geurts, Ernst, and Wehenkel’s
extremely randomized trees (ERT) [17] as base DDDs and
partitioning around medoids (PAM) [21, 31] as the clas-
sification algorithm. The data sets on which the cluster-
ing algorithm are compared include real-world data sets,
which are part of the set of benchmarks commonly used
in cluster analysis research, as well as randomly generated
simulation data.

2 METHODS

2.1 Background

A machine learning/data mining clustering task consists
of identifying clusters from a data set of unlabeled units
and their features. There is no ground truth. It is usually
assumed that the training data set is comprised of ran-
dom and independent samples from a fixed and unknown
probability distribution over the set of all possible fea-
ture vectors. The most common cluster objective func-
tion is the average dissimilarity between each unit in the
cluster and the center of the cluster. The widely used
k-means algorithm utilizes the centroid and the k-medoids
algorithm [21, 31] utilizes the medoid as the center. The
medoid is the member of a cluster whose mean dissimilar-
ity from all other members in the cluster is a minimum.
It is generally believed that it is easier to interpret clusters
determined by the k-medoids centers than those arising
from a k-means analysis. Because it is based on means,
the k-means approach is more vulnerable to outliers than

is k-medoids. The input to the k-medoids algorithm is
an arbitrary dissimilarity matrix, whose elements are not
required to satisfy the geometric distance metric condi-
tions. Commonly used formula-based dissimilarity func-
tions are Euclidean, Manhattan, Angular Distance, Ham-
ming, Cosine Similarity, and the Huffman Code. Milligan
[26] conducted a Monte Carlo study of 30 internal criterion
measures for cluster analysis, and Hubalek [19] used 20 of
the 43 similarity measures he collected for cluster analyses
on mushroom data.

Recognizing the limitations of formula defined dissim-
ilarity functions such as those listed above, a considerable
number of methods have been proposed to produce DDD
measures. One important way is based on a simple but
elegant idea. Split the data into subsets using a specific
decision rule at each node in a decision tree. Pairs of units
that follow the same pathway down the tree to the termi-
nal nodes or leaves are similar with respect to the decision
rule. The proximity of a pair of units is the fraction of times
a common path, defined in many possible ways, is fol-
lowed. Then the square root of one minus the proximity is
a dissimilarity measure.

2.1.1 Random forest

Many approaches to obtain DDD are variants or deriva-
tives of the random forest (RF) algorithm introduced by
Breiman [6], who built on Amit and Geman’s [2] con-
tributions on geometric feature selection, Ho′s [19] work
on random methods, and Dietterich’s [13] random split
selection approach. An RF is an ensemble of individual
trees [6, 42] grown to obtain a classifier based on boot-
strapped samples of labeled data on a sample of units. In
the process a data driven proximity matrix is produced. A
decision tree is grown from a bootstrap sample of units. At
each node, a random subset of features is selected and an
optimal splitting threshold determined, based on a crite-
rion that maximizes a measure of node purity such as the
degree to which units in the child nodes belong to a single
class. A widely used criterion is the Gini impurity index
[8]. The splitting process continues until an unpruned tree
is grown. Replicate trees are grown following the same
rules on independent bootstrap samples. Breiman [6] pro-
posed that the proximity between units is the fraction of
trees in which both members are in the same terminal
node. Bicego and Escolano [5] performed an empirical
evaluation of four RF learning schemes examining alter-
native forest parametrizations, distances, and clustering
algorithms.

Our approach applies to any classification algorithm
based on an ensemble of decision trees that utilize labels
at nodes and produce a proximity matrix.
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2.1.2 Generalized RF

An ensemble of trees grown to obtain a classifier is a
generalized RF that includes

(A) an initialization label from which the classification
process begins, for example, artificial or random
labels for sample units;

(B) rules at each node for growing a decision tree and
a stopping rule for deciding when to discontinue
splitting;

(C) a rule for defining similarity between units.

The similarity matrix is turned into a dissimilar-
ity matrix and used in a clustering program, such as
k-medoids.

2.1.3 Example initialization approaches
for start-up labels

For decision trees ensembles designed for classification,
unit labels are required to grow a tree. There are several
ways of starting the process. One is to introduce an aux-
iliary sample. Labels identify whether a unit’s data are
from the original or the auxiliary sample. Breiman [6] and
Breiman and Cutler’s [7] approach, which we call RFC, is
to randomly produce synthetic feature data from a refer-
ence distribution obtained by sampling from the product
of empirical marginal distributions of the sample data. The
motive is to reduce the between tree dependency. Shi and
Horvath [33] proposed alternatives. In AddCl1, synthetic
data are generated by randomly sampling from the prod-
uct of empirical marginal distributions of the variables.
In AddCl2, synthetic data are obtained by randomly sam-
pling from the hyper-rectangle that contains the observed
data. Siegel and colleagues [35] proposed “purposeful”
clustering in which the auxiliary data are a sample from a
separate population related to the purpose of the cluster-
ing. In their search for subtypes of PTSD for war fighters,
they used an auxiliary set of data of healthy controls who
were war fighters. In the initial iteration step, an RF was
grown to distinguish these individuals from individuals
with PTSD. Another approach is to assign labels to the
units by any strategy. Dalleau and colleagues [11] proposed
AddCl3, which randomly assigns a label for each unit. Yet
another strategy is to apply a geometric measure such as
Euclidean distance on the part of the feature vector that is
numeric, enter the resulting between unit distances into
a cluster program and use the resulting cluster member-
ship as labels for the initial iteration of the decision tree
ensemble.

2.1.4 Example approaches to forming a
decision tree with labels

A decision tree can include all subjects or a randomly
chosen bootstrap sample. All available features can be
considered for determining a splitting rule at each node
or a random subset can be selected. Among candidate
features at a node, the threshold on which to perform a
split is usually chosen so as to optimize a criterion such as
the Gini impurity index. Another approach is to find the
linear combination of features that optimize the impurity
index at each node. In classical RF, a random set of fea-
tures is selected and the one with a threshold that produces
the best Gini impurity index is used. At each node in an
extremely random tree (ERT) introduced by Geurts et al.
[17], a splitting threshold is randomly selected for each of
a randomly selected subset of features at each node. The
feature used is the one whose split produces the best value
of the Gini impurity index.

2.1.5 Example decision trees without a
label based splitting criteria

In the extreme, forests can be grown that do not require
labels at any stage. For example, Breiman [6] and Cutler
and Zhao [10] introduced extreme random splitting, calling
the resulting ensemble a purely random forest; both the fea-
ture and the location of the cut-point at every node in every
tree in the ensemble is randomly chosen. Fernando and
Webb [15] proposed the Centered Forest, which is an unsu-
pervised stochastic forest. At each node in a tree, units are
divided into two equal subsets by splitting at the median
value of a randomly chosen feature. Recursive splits do not
depend on labels. These kinds of forests cannot be used in
the GIT we describe in Section 2.2 except for the initial run.

2.1.6 Example definitions of similarity

Many contributions in the literature have been devoted
to obtaining better distance measures for input to clus-
ter programs. Breiman [6] used the fraction of trees two
units are in the same terminal node. Aryal and colleagues
[3] carried out a comparative study of data-dependent
approaches without learning in measuring similarities of
data objects. One alternative measure is called Zhu2, [43],
which defines similarity as proportional to the average
length of the path two units share in their travel down
the tree to the terminal node. Another is “Zhu3” [43],
which utilizes node weights, defined as the inverse of the
number of units that reach the node at every node along
the shared path. Ting and colleagues [38] define similar-
ity between a pair of units as the ratio of units in the
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training set reaching the lowest common ancestor of the
pair. These authors used isolation forests (iForest) [25] to
obtain pairwise similarity, defined as the probability mass
of the smallest region in feature space covering the pair in a
hierarchical partitioning of the space into non-overlapping
and non-empty regions. The dissimilarity between two
units across an iForest is the average probability mass in
the deepest shared node in a collection of trees.

2.1.7 Some examples of generalized RF
distance ensembles for clustering

Kulkarni and Sinha [23] presented a taxonomy of various
versions of random forest. Similar in spirit to a probabil-
ity mixture distribution approach to clustering, Bicego [4]
proposed a method based on a set of RFs, each one devoted
to modeling one cluster. The RFs are iteratively updated
using a k-means-like clustering algorithm. Yan et al. [41]
proposed a method that randomly probes the vector space
of features to detect locally “good” clusters that are subse-
quently aggregated by spectral clustering [39] to produce
what they call cluster forests.

Several recent applications of ERTs have appeared in
the domain of brain tumor segmentation [18, 29, 36].
Other applications include content-based image classifica-
tion [27], image categorization and segmentation [34], and
video segmentation [28].

2.1.8 Cluster ensembles

Strehl and Ghosh [37] considered the problem of com-
bining multiple partitions of a set of units into a single
consolidated cluster set without reference to their source.
For example, using Breiman’s approach to obtaining
synthetic data, multiple RF runs, called the “ensemble
constructor” over the same data set, or a single run over
different data sets, are used to produce sets of clusters.
Each one is called an “ensemble member” and collectively
they are referred to as the “base clusters.” A “consensus
function” combines the base clusters to produce an over-
all consolidated cluster. Alhusain and Hafe [1] used this
method to determine underlying population structure
based on genetic data. They call their method the ran-
dom forest cluster ensemble (RFcluE). Clusters are found
using k-means operating on the dissimilarity output of the
RF based on Breiman’s algorithm after multidimensional
scaling [14] is used for transformation to Euclidean space.
The overall definition of similarity between any two units
is the proportion of times in the ensemble that the pair are
assigned to the same cluster. The so-called co-association
matrix is input to an agglomerative hierarchical clustering
algorithm to obtain the final cluster.

2.2 The general iterative cluster
algorithm

The GIC algorithm is very general and can be applied to
DDD-based clustering approaches described above except
in the purely random case. The simple idea is that new
proximity matrices and clusters are obtained iteratively.
The GIC algorithm begins by running the underlying or
base classification method using an initialization proce-
dure as required to obtain a proximity matrix, followed by
running the selected cluster algorithm. Thereafter, each
iteration uses the same base classifier followed by the
same clustering algorithm. At each step, units are labeled
according to the cluster to which they were assigned in
the cluster algorithm in the previous iteration. The process
continues until convergence. Convergence occurs when
the assignment of units to clusters does not change, which
corresponds to a proximity matrix that does not change.
Techniques such as AddCl1 or AddCl2 can be used to gen-
erate synthetic data when called for by the base algorithm,
but only for the first iteration. Because the results are
potentially dependent on the random assignment or the
random seed, the procedure is repeated many times to
obtain a balanced data set. The approach can be con-
ceptualized as providing improved estimates of the dis-
similarity measures, which in turn produces improved
clusters.

One example that can be used as the base classifier
is the approach of Shi and Horvath [33]. After the first
iteration, the synthetic data are not used again. Another
example is to use ERT as the underlying classifier and
PAM as the clustering method. We denote this by IERT.
In the first and only the first step, either AddCl1, AddCl2,
or AddCl3 is used to assign labels. In one version of ERT,
the square root of the number of features are randomly
selected as candidates at each node and cut-points are
randomly selected for each feature. The cut-point and fea-
ture with the best purity index are chosen for the split.
The proximity matrix resulting from this ERT is con-
verted to a dissimilarity matrix, which is input to PAM
to obtain clusters. Thereafter, at each successive iteration,
the ERT ensemble is grown based on unit labels corre-
sponding to the cluster to which the units were assigned
in the previous iteration. The process is repeated until
convergence.

As a third example, in the RFcluE method for cluster
ensembles [1], after the proximity matrix is first obtained,
clusters are found using the GIC algorithm iteration
process. The resulting proximity matrices are used by
RFcluE as before. Multidimensional scaling is used to
transform each one to Euclidean space, which is then
passed to a k-means clustering algorithm.
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2.3 Real-world data sets for
comparisons of base DDD and ICAs

2.3.1 Evaluation using the iris data

The iris flower data set described by R. A. Fisher in 1936
[16] contains 50 examples of flowers from each of three
iris species, setosa, virginica, and versicolor. It is consid-
ered one of the standard benchmark data sets for cluster
analysis research and perhaps the best-known database
to be found in the pattern recognition literature. Fisher’s
paper has been cited nearly 20,000 times. Four mea-
sures were taken for each flower, sepals length, sepals
width, petals length, and petals width. Detailed informa-
tion about these data can be found at https://archive.ics.
uci.edu/ml/datasets/iris.

2.3.2 Evaluation using a heart disease data
set

The heart disease data set [12] comes from patients
undergoing angiography in a multisite study conducted at
the Cleveland Clinic in Cleveland, the Hungarian Insti-
tute of Cardiology in Budapest, the Veterans Adminis-
tration Medical Center in Long Beach, and University
Hospitals in Zurich and Basel. It too is considered one
of the standard benchmark data sets for cluster anal-
ysis research. It is comprised of 120 individuals who
have heart disease and 150 who do not. Although many
measures were taken on each individual, 13 are con-
sidered the “standard” data set including age, gender,
chest pain type, resting blood pressure, serum choles-
terol, fasting blood sugar, resting electrocardiographic
results, maximum heart rate achieved during exercise,
exercise-induced angina, exercise-induced ST depression,
the slope of the peak exercise ST segment, number of
major vessels, and thal. Detailed information can be
found at https://archive.ics.uci.edu/ml/datasets/Statlog+
(Heart).

2.3.3 Evaluation using standard real-world
data sets

Dalleau et al. [11] studied ERT starting the clustering
algorithm with AddCl3. We used the same real-world data
sets they used for empirical evaluations. The size of the
sample, the number of features, and the number of labels
for each study are given in Table 5. The data are available
on the UCI website https://archive.ics.uci.edu/ml/index.
php.

2.4 Evaluations using simulated data

Data sets were simulated for a variety of cases. We used
9 and 49 continuous features and 2, 5, and 10 clusters. A
multivariate normal distribution was assumed with means
equal to (0.5, −0.5) for two clusters, (0.5, −0.5, 1, −1, 0)
for 5 clusters and (0.5, −0.5, 1, −1, 0, 2, −2, 3, −3,5) for
10 clusters. For two clusters, the sample size was 200, for
5 clusters it was 500, and for 10 clusters it was 1000, with
100 units in each cluster. Random vectors were simultane-
ously generated with the specified marginal means, and
the between-feature correlations were randomly generated
from partial correlation. These are derived from specified
eigenvalues of the covariance matrices with lower bounds
set equal to one. [10, 20, 24]. A second set of data were
produced using the same procedures, but in this simula-
tion, an independent three-level categorical feature was
added to the list of features. The simulations were per-
formed using the r program NORTA [9] (https://rdrr.io/
github/superdesolator/NORTARA/).

2.5 Example base DDD ensemble
algorithms

Two base DDD ensemble algorithms and their correspond-
ing GIC algorithms were chosen to illustrate the method.
PAM was used to obtain cluster results for RFC and ERT,
and their GIC counterparts were labeled IRFC and IERT.
It is not our purpose to contrast the base DDD methods
but to investigate the degree of improvement in the prox-
imity matrices and the resulting improvement in clusters
that are obtained using the iteration process. The number
of trees for RFC and IRFC runs was set to 1000, and for
ERT and IERT runs it was set to 10,000. All other tunable
parameters were set to their default values; the number of
features randomly selected at each node for all four meth-
ods is the square root of the total number of features. The
max depth for RFC and IRFC is reached when all leaves
are pure or when all leaves have less than 2 units. The
max depth for ERT and IERT is reached when the number
of units in a node is one-third of the number of units in
the sample. RFC and IRFC used a bootstrap sample. ERT
and IERT used all subjects at each iteration. Since results
produced by clustering algorithms are affected by initial
values and the random seed, each of the four approaches
was run 500 times for the iris and heart disease data. The
results shown for these two data sets in Table 1 are the
average of these runs and their standard deviations. These
taught us how stable are the averages. As a consequence,
for the remaining data sets shown in the table, the number
of runs for ERT and ERTI was reduced from 500 to 10 based
on the extensive computation time required for each run

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/Statlog+
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://rdrr.io/github/superdesolator/NORTARA/
https://rdrr.io/github/superdesolator/NORTARA/
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and the standard deviations of the Silhouette scores and
the Jaccard Indices used to appraise the GIC algorithm. For
the iris and heart disease data, there were little to be gained
by additional replication.

There are many implementations of the PAM cluster-
ing algorithm. We used the one in the “cluster” package
in R [30]. For ERT, we used the Python packages numpy,
pandas, and sklearn, and made modifications so that the
proximity matrix was able to be accessed.

2.6 Indices for appraising
the clustering algorithms

There are many indices in the literature for appraising
how good are the result of applying a clustering algorithm.
In this section, we describe the two indices we used. Let
C = {C1, C2,… , Cm} be the set of clusters obtained by
applying a clustering method where m is the number of
clusters. Denote by ni the number of units in cluster Ci,
i = 1, 2,… , m. Then N =

∑m
i=1ni is the number of units in

the entire sample.

2.6.1 The Silhouette score

The Silhouette score [32] is a measure that indicates how
close unit i is to members of its own cluster compared
with how close it is to units of its nearest neighbor clus-
ter. Suppose there are m clusters. For any data point i in
Ci, let a(i) = 1

∣Ci∣−1

∑
𝑗∈Ci,i≠𝑗

d(i, 𝑗) be the average distance
between i and every other point in the same cluster, where
d(i, j) is the distance between data point i and data point
j. Let b(i) = mink≠i

1
∣Ck ∣

∑
𝑗∈Ck

d(i, 𝑗) be the smallest average
distance between i and all of the data points in each of
the other clusters. b(i) is the average distance between i
and members of the nearest cluster. Then the Silhouette
score for unit i is s(i) = b(i)−a(i)

max(a(i),b(i))
. A Silhouette score takes

values between −1 and 1, and as the value increases, the
nearer the unit is to other units in its own cluster and the
further it is from units in its nearest neighbor cluster.

2.6.2 The Jaccard index

The Jaccard index [40], sometimes called the Jaccard sim-
ilarity coefficient, is a measure of the similarity of two
partitions, P1 and P2 in terms of the proportion of units that
are in both partitions. Its formal definition is the number of
units in the intersection of P1 and P2 divided by the num-
ber of units in the union of P1 and P2. Here we will use it
to compare a partition based on the true labels to a parti-
tion based on a clustering algorithm of the same data set.

The Jaccard index is defined to be ∣P1∩P2∣
∣P1∪P2∣

. A larger value of
the index indicates greater similarity between P1 and P2.

3 RESULTS

3.1 Evaluations using real-world data

Table 1 displays the Silhouette scores and the Jaccard
indices for the RFC, ERT, and their counterpart, IRFC and
IERT iterative clustering method for nine real-world data
sets. For the iris data, the Silhouette score for the IRFC
was the highest by far, improving from 0.17 for RFC to a
remarkable 0.83. Starting at 0.23, the Silhouette score for
ERT also had a very large improvement to 0.44. Figure 1 is
a plot in Cartesian coordinates of petal length versus petal
width, the top two features found in the RFC and IRFC
list of important variables in the RF. It can be seen that
for RFC, many virginica (green) dots were labeled setosa
(red), while for ERT, many versicolor (blue) dots were
labeled virginica (green). The iterations tended to correct
these erroneous labels.

For the heart disease data set, the IRFC improvement
over the RFC (0.41 compared with 0.2) as measured by the
Silhouette score, just as for the iris data, was remarkable.
The same was true but to a lesser extent for ERT (0.01)
compared with IERT (0.19). The Jaccard index of the base
classifier and the corresponding GIC algorithm were quite
similar for both methods. A scatterplot of maximum heart
rate achieved and exercise induced ST depression, two
of the top three features found in the RF of the RFC and
IRFC list of important variables, is displayed in Figure 2.
It can be seen that there was an excess of normal con-
trols with the base RFC, which was corrected by the IRFC
method. The ratio of heart disease subjects to normal con-
trols was close to the ground truth using IRFC. As for ERT
and IERT, the ratio of heart disease subjects to normal
controls is similar to that of IRFC.

Looking at all of the data sets as a whole, the Sil-
houette scores appear to be relatively low for both base
approaches. RFC and ERT were relatively close to each
other, with a large difference only once, for the Wisconsin
data. The GIC improved the Silhouette scores for every
data set for both RFC and ERT. The IRFC was larger in
eight of the nine data sets and substantially larger four
times. The overall effect of the GIC on the Jaccard index
was small with one exception: the iris data changed from
0.29 for ERT to 0.52 for IERT.

3.2 Evaluation using simulated data
sets

Table 2 displays the Silhouette scores and the Jaccard
indices for the RFC, ERT, and their counterparts, IRFC
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T A B L E 1 Silhouette score and Jaccard index for RFC, IRFC, ERT and IERT clustering methods for real-world data sets

Silhouette score Jaccard Index

Dataseta RFC IRFC ERT IERT RFC IRFC ERT IERT

Mean value and standard deviation

Iris 0.169 0.834 0.023 0.437 0.648 0.706 0.287 0.517

(150, 4, 3) (0.004) (0.014) (0.003) (0.041) (0.031) (0.025) (0.194) (0.235)

Heart disease 0.022 0.407 0.009 0.192 0.474 0.414 0.177 0.179

(270, 13, 2) (0.002) (0.068) (0.001) (0.053) (0.037) (0.026) (0.057) (0.063)

Mean value

Wisconsin 0.109 0.761 0.505 0.604 0.666 0.796 0.942 0.894

(699, 9, 2)

Lung 0.055 0.301 0.094 0.274 0.268 0.261 0.095 0.182

(32, 56, 3)

Breast tissue 0.224 0.709 0.282 0.409 0.331 0.355 0.427 0.431

(106, 9, 6)

Isolet −0.004 0.187 0.063 0.244 0.156 0.192 0.016 0.039

(1559, 617, 26)

Parkinson 0.254 0.814 0.254 0.447 0.451 0.446 0.168 0.189

(768, 8, 2)

Ionosphere 0.122 0.594 0.298 0.496 0.440 0.404 0.513 0.519

(351, 34, 2)

Segmentation 0.245 0.603 0.295 0.528 0.405 0.386 0.179 0.137

(2310, 19, 7)
a Size of sample, number of features, number of labels.

T A B L E 2 Silhouette score and Jaccard index for RFC, IRFC, ERT and IERT clustering methods in simulated data with 9 and
49 continuous features

Silhouette score Jaccard index

Number of clusters RFC IRFC ERT IERT RFC IRFC ERT IERT

9 continuous features

2 0.016 0.539 0.110 0.182 0.376 0.366 0.493 0.487

5 0.008 0.356 0.073 0.113 0.143 0.134 0.081 0.068

10 −0.007 0.323 0.074 0.105 0.165 0.132 0.033 0.037

49 continuous features

2 0.005 0.337 0.032 0.107 0.372 0.374 0.575 0.688

5 0.003 0.141 0.011 0.048 0.196 0.160 0.111 0.096

10 −0.018 0.105 0.039 0.097 0.325 0.211 0.036 0.028

and IERT iterative clustering methods for simulations with
9 and 49 continuous features. Table 3 shows the same
information for simulations with 9 and 49 continuous
features and 1 independent categorical feature. In every

case, the base method produced clusters with very poor
Silhouette scores. For both methods, the GIC produced
substantial improvements; the largest increment, as for the
real-world data, accrued to RFC. The Jaccard indices, as
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F I G U R E 1 Scatterplots of petal length versus petal width features for the iris data for ground truth and 4 clustering methods. Ground
truth clusters are setosa, versicolor and virginica shown in the upper left plot

for the real-world data, did not have a consistent pattern of
change, which in any case, was small.

3.3 Convergence of the GIC

It is natural to ask about rate of convergence of the GIC
algorithms. Convergence occurs for PAM at an iteration
where the medoids and cluster labels for each unit are the
same as in the previous iteration. Tables 4 and 5 display the
mean value at each iteration and the incremental change
from one iteration to the next of the average between units
distance respectively for the iris and heart disease data.
This is the average of the entries in the proximity matrix.
In the iris data, it can be seen that the absolute value of the
differences is monotonically decreasing and close to zero
by the seventh iteration for the IRFC and almost imme-
diately for the IERT. For the heart disease data, the same
pattern of monotonic decrease in the absolute value of the
difference also converges to zero.

3.4 Choice of number of clusters

In most applications, the number of clusters is unknown
and a common issue is choosing a value to use in the clus-
tering algorithm. Unfortunately, there is no completely
satisfactory answer, and as a result, a variety of heuris-
tics have evolved. Clearly, it is desirable to minimize dis-
tances between units in a cluster and maximize distances
between units in different clusters. A common strategy
is to create an objective function that balances the com-
pactness and separation goals, and to choose the number
of clusters that provides the maximum over a range of
reasonable candidates. We used the Silhouette score as the
function and found the maximum over a range of clus-
ters from 2 to 11 in the iris data set. Of particular interest
is the relationship between the value of the underlying
DDD-based RF clustering method and its corresponding
GIC. We found the maximum for the RFC occurred at six
clusters with a Silhouette score of 0.178 and the maximum
for the IRFC occurred at 2 clusters with a Silhouette score
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F I G U R E 2 Scatterplots of maximum heart rate achieved versus exercise-induced ST depression for the heart disease data, for ground
truth and 4 clustering methods

T A B L E 3 Silhouette score and Jaccard index for RFC, IRFC, ERT and IERT clustering methods in simulated data with 9 and
49 continuous features and one categorical feature

Silhouette score Jaccard index

Number of clusters RFC IRFC ERT IERT RFC IRFC ERT IERT

9 continuous features +1 categorical feature

2 0.021 0.500 0.143 0.339 0.385 0.360 0.347 0.370

5 0.006 0.314 0.109 0.231 0.135 0.128 0.063 0.045

10 −0.007 0.201 0.177 0.224 0.137 0.103 0.048 0.025

49 continuous features +1 categorical feature

2 0.009 0.291 0.040 0.217 0.543 0.411 0.594 0.384

5 0.002 0.136 0.017 0.135 0.220 0.169 0.065 0.272

10 −0.011 0.100 0.079 0.187 0.168 0.219 0.027 0.042

of 0.966. The Silhouette scores over the range are shown
in Figure 3). Notice that the scale of the ordinates are dif-
ferent in the two plots because of the sizeable difference
in the ranges. The ground truth has three clusters with

a Silhouette score of 0.76. Figure 4 shows scatter plots of
petal width versus petal length using 6 and 2 as input for
the number of clusters for the RFC and IRFC respectively.
The plot for the ground truth with 3 clusters is shown in
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T A B L E 4 Mean pairwise proximity and change in mean pairwise proximity and standard deviation over iterations of
IRFC and IERT for the iris data

IRFC IERT

Iteration
Mean pairwise
distance

Mean iteration change
in pairwise distance

Mean pairwise
distance

Mean iteration change
in pairwise distance

1 0.717 (0.39) - 0.658 (0.004) -

2 0.702 (0.40) −0.015 (0.08) 0.651 (<0.001) −0.007 (0.004)

3 0.694 (0.41) −0.008 (0.05) 0.651 (<0.001) <0.001 (<0.001)

4 0.702 (0.70) 0.007 (0.04) 0.651 (<0.001) <0.001 (<0.001)

5 0.696 (0.41) −0.006 (0.04) 0.651 (<0.001) <0.001 (<0.001)

6 0.698 (0.41) 0.002 (0.04) 0.651 (<0.001) <0.001 (<0.001)

7 0.696 (0.41) −0.002 (0.04) 0.651 (<0.001) <0.001 (<0.001)

8 0.696 (0.41) <0.001 (0.04) 0.651 (<0.001) <0.001 (<0.001)

T A B L E 5 Mean pairwise proximity and change in mean pairwise proximity and standard deviation over iterations of
IRFC and IERT for the heart disease data

IRFC IERT

Iteration
Mean pairwise
distance

Mean iteration change
in pairwise proximity

Mean pairwise
proximity

Mean iteration change
in pairwise proximity

1 0.80 (0.22) - 0.64(0.01) -

2 0.87 (0.17) 0.07(0.11) 0.62 (0.01) −0.02 (0.01)

3 0.86 (0.18) −0.01 (0.09) 0.62 (0.01) 0.004 (0.001)

4 0.84 (0.20) −0.02 (0.08) 0.62 (0.004) 0.003 (0.004)

5 0.82 (0.22) −0.02 (0.08) 0.63 (0.004) 0.001 (0.001)

6 0.78 (0.24) −0.04 (0.08) 0.63 (0.004) 0.001 (0.001)

7 0.77 (0.24) −0.01 (0.08) 0.63 (0.004) <0.001 (0.001)

8 0.77 (0.24) −0.01 (0.07) 0.63 (0.004) <0.001 (0.001)

the upper left corner of Figure 1. From the plots, it appears
that all three of the candidate number of clusters are visu-
ally plausible. If the choice were based entirely on the
properties of the Silhouette score, we should use the prox-
imity measures of the IRFC with 2 clusters. It is the subject
matter expertise of the botanist that is required to declare
that 3 is the true number of clusters.

3.5 Choice of initialization labels

To start the iteration process, unit labels are required to
grow the forest. We used the iris data assuming three
clusters with three different initialization approaches fol-
lowed by IRFC to iterate to the final clusters. In the
first, synthetic feature data were randomly produced from
a reference distribution obtained by sampling from the
product of empirical marginal distributions of the sample

data [7]. The second method was “purposeful clustering”
[35], which used the ground truth as the initial labels. The
third method was AddCl3 [11], which is just a random
assignment of labels. Table 6 displays the number of flow-
ers in each cluster and the Silhouette scores for each of the
three label initialization approaches and the ground truth.
Figure 5 displays the scatter plots of petal width versus
petal length for these approaches in Cartesian coordinates.
From the plots, it appears that all but AddCl3 are plausible.
This strategy had difficulty distinguishing members of the
sartosa and versicolor clusters. The other two approaches
were in full agreement with the ground truth identifying
the same 50 sartosa irises. Not surprisingly, the purpose-
ful label assignment produced the best Silhouette scores
and the random assignment produced the worst. Although
the difference in the Silhouette scores is small, it is visual
inspection that informs the analyst that AddCl3 produces
an unsatisfactory clustering. These examples suggest that
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F I G U R E 3 Silhouette scores
over the range possible cluster
numbers for the iris data. Note that
the range of the ordinates in the
two plots are not the same. The
maximum for RFC is 6 and for
IRFC is 2

F I G U R E 4 Scatterplots of petal length versus petal width for the iris data for the number of clusters that maximized the Silhouette
scores, 6 for RFC and 2 for IRFC. Ground truth with 3 clusters are shown in the upper left plot in Figure 1

the data analyst should carefully consider the method to
use to initialize to labels. The more known information
about the ultimate clusters that can be used, the better.

4 DISCUSSION

The real-world and the simulation examples demonstrate
that, at least for these data sets, the new GIC algorithm
produces clusters that have superior properties compared
with the base method, as measured by substantially higher
Silhouette scores. The Jaccard index values from the GIC
algorithm were about the same as those from the base
method. Though the pattern was replicated for all of the
examples we considered, we provide no proof that this will
be the case for every data set. Nevertheless, the evidence
suggests that an analyst will likely obtain better results in
a clustering application by using the GIC algorithm. There
are many modifications of RF that have been proposed for

estimating similarities. We believe that except for purely
random forests that make no use of labels, all of them can
be improved by iterating as we have described at the appro-
priate point in the procedure. How large the improvement
will be depends on the base procedure. In the data sets
we examined, the degree of improvement in the Silhou-
ette score for RFC was usually considerably greater than
for ERT.

If the distance between every pair of units converges, it
follows that the PAM results will converge too. In Tables 4
and 5, we see that the absolute value of the mean dif-
ference between successive iterations decreases monoton-
ically. A monotonically decreasing series of positive val-
ues bounded below must converge. We have run the GIC
algorithm on many simulated data sets for RFC and ERT
in addition to those reported here and all have converged
monotonically in absolute value by the eight iteration or
so. But it is possible that the algorithm is trapped in a
local minimum. Notice that the actual change in the mean
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T A B L E 6 Number of units in clusters and the Silhouette score for IRFC for different initial labels for the iris data

Initial label method Setosa Versicolor Virginica Silhouette score

Ground truth 50 50 50 0.759

Breiman and Cutler 50 66 34 0.834

Purposeful clustering 50 54 46 0.861

AddCl3 34 74 42 0.753

F I G U R E 5 Scatterplots of petal length versus petal width for the iris data for different initial labeling strategies all assuming 3 clusters.
Ground truth clusters are shown in the upper left

pairwise dissimilarity is relatively small, 0.021, 0.007, 0.03,
and 0.009, as seen in Tables 4 and 5. This is likely why the
Jaccard index does not change much.

In many applications, it is necessary to have a way to
place a new unit into one of the discovered clusters. A new
unit may be classified by running its feature vector down
the final forest in the iteration. The proximities between
the new unit and the medoids are equal to the fraction of
terminal nodes they reside in together, or whatever way
proximity is measured. The unit is assigned to the class
corresponding to the largest of these proximities.

RF and its many versions are efficient algorithms with
considerable capability for handling high-dimensional
data. The iteration method provides an improvement in
the generation of similarities and the clusters they pro-
duce. There are many properties of the GIC algorithm
still to be learned for different data types. The GIC pack-
age has been released in R: https://cran.r-project.org/web/
packages/GIC/index.html.
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