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Abstract
Primates display varying degrees of behavioral flexibility that allow them to adjust their diet

to temporal changes in food availability. This trait might be critical for the survival of folivor-

ous-frugivorous species inhabiting small forest fragments, where the availability of food

resources tends to be lower than in large fragments and continuous forests. However, the

scarcity of studies addressing this issue hampers our understanding of the adaptive behav-

iors that favor the survival of these primates in low-quality habitats. We conducted a 36-mo

study testing the hypothesis that brown howler monkeys (Alouatta guariba clamitans) are
able to adjust their diet in response to local and seasonal changes in resource availability.

We compared the diet of six free-ranging groups inhabiting three small (<10 ha) and three

large (>90 ha) Atlantic forest fragments in southern Brazil and estimated the temporal avail-

ability of their top food species (i.e., those species that together contribute�80% of total

feeding records). We found that brown howlers exploited similarly rich diets in small (45, 54,

and 57 plant species) and large (48, 51, and 56 species) fragments. However, intermonth

diet similarity was higher for groups in small fragments, where howlers also fed on plant

items from nine alien species. Fruits and leaves were the most consumed plant items in

both small (42% and 49% of feeding records, respectively) and large (51% and 41%,

respectively) fragments. The consumption of young leaves was higher in small than in large

fragments, whereas the consumption of other plant items did not show a pattern related to

fragment size. Regarding the contribution of growth forms as food sources, only the exploi-

tation of palms showed a pattern related to fragment size. Palms contributed more to the

diet of groups inhabiting large fragments. The availability of seasonal food items–ripe fruits

and young leaves–influenced their consumption in both habitat types. Therefore, brown

howlers cope with local and seasonal fluctuations in food availability by opportunistically

exploiting resources. We believe that this feeding flexibility is a key component of the phe-

notypic plasticity that enables howlers to thrive in disturbed habitat patches, where periods

of scarcity of preferred foods shall be more common.
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Introduction
The ability of an organism to survive in a changing and unpredictable environment is strongly
related to its phenotypic plasticity. Phenotypic plasticity is the ability of a single genotype to
manifest a range of phenotypes in response to variations in the environment [1, 2]. This ability
is often considered adaptive because it may increase its bearer’s fitness [1–3]. Plasticity encom-
passes the flexibility in morphological traits, behavior, life history, physiology, and biochemis-
try among virtually all other traits [1, 2]. Behavioral flexibility is a crucial component of
phenotypic plasticity. It allows individuals to change their behavior (both qualitatively and
quantitatively) in space and time in response to environmental pressures [1, 2, 4]. It has been
reported in insects [2], fishes [5], birds [6], bats [7], and primates [4, 8].

Behavioral flexibility is particularly relevant in the context of anthropogenic change due to
its potential implications in conservation biology [2–4]. Human disturbances such as defores-
tation, forest fragmentation, and hunting, may severely reduce the amount and quality (e.g.,
low availability of food resources) of available habitat [9–11]. Under these circumstances, the
short- and long-term survival of animal populations may depend more heavily on the ability of
individuals to employ adaptive behavioral adjustments to the new condition than on their dis-
persal ability or the evolution via genetic changes [3, 12], as has been proposed for explaining
the success of species surviving in fragmented and/or urban habitats [4, 6, 13, 14]. This
research area should be a priority for conservation biologists because of the high contemporary
extinction rates reported for most vertebrate groups [15].

Tropical primates are among the most affected animals by human disturbance of forests
because they often depend on resources provided by large trees [16–19]. Therefore, it is
expected that primates living in human-modified habitats and seasonal forests present a high
behavioral flexibility to deal with shifts in resource availability [4, 20, 21]. The ability to vary
diet composition by tracking seasonal changes in food availability is well known in NewWorld
(e.g., Alouatta palliata, Ateles geoffroyi, and Cebus capucinus [22]; Sapajus apella and Saguinus
spp. [23]) and Old World (e.g., Cercopithecus spp. and Colobus badius [24]) monkeys. Conse-
quently, many primates show high variations in the amount of fruit and leaves eaten along the
year [4, 21, 22, 25].

Primates face additional pressures that favor behavioral flexiblity in human-modified habi-
tats. For instance, within-species comparisons support the contention that individuals belong-
ing to populations inhabiting small or disturbed fragments show more variable feeding
behaviors than those living in large fragments (e.g., Ateles geoffroyi [26], Alouatta spp. [20,
27]). Primates can increase the consumption of fallback foods (i.e., food items from non-pre-
ferred species exploited when items from preferred ones are scarce [28]), low-digestible
resources, such as leaves [27, 29, 30], and plant items from vines, lianas and palms, common
growth forms in disturbed habitats [26, 30, 31]. They can also supplement the diet with items
from alien plant species found in the anthropogenic matrix [32–34].

Howler monkeys (Alouatta spp.) are Neotropical primates well known for their behavioral
flexibility, particularly their ability to cope with the scarcity of preferred foods in small and dis-
turbed forest patches [20, 29, 35]. However, there is a bias in the howler literature towards the
Mesoamerican A. palliata and A. pigra (e.g., [35–37]) and, to a lower degree, the South Ameri-
can A. caraya [32, 38, 39]. Publications on other South American taxa, such as the brown
howler monkey (A. guariba clamitans), are scarce [40]. Moreover, all published and unpub-
lished studies conducted so far on the later taxon are short-term (�12 months), and only a few
of them addressed how the temporal variation in food availability influences its feeding behav-
ior (reviewed by [20, 40]).
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This taxonomic bias and focus on short-term studies compromise our ability to understand
the responses of Alouatta spp. to spatial and seasonal resource scarcity. In this respect, the
brown howler monkey is a good model to assess dietary adjustments in response to shifts in
food availability in large and small fragments. It inhabits a variety of forest fragments in the
Atlantic forest [41], occurs at the southern limit of primate distribution in the Americas [42],
where climatic seasonality is more pronounced, and exploits a diet composed of a mixture of
items from native and alien plant species [40].

We conducted a 36-mo study on six social groups inhabiting three small and three large for-
est fragments to test the hypothesis that brown howlers can adjust their diet in response to
local and seasonal changes in food availability. All study groups inhabited forests expected to
have similar species composition by belonging to the same original physiognomic type within
the same region to minimize the potential effect of differing plant assemblages on diet compo-
sition, an effect that has rarely been addressed (reviewed by [20, 40]). Specifically, we evaluated
the following aspects of their diet at the group level: overall species richness, contribution of
alien species, top food species, main plant items and growth forms, and the relationship
between seasonal resource availability and consumption. Considering that food availability
correlates with fragment size [35] and that howlers rely on both native and alien plant species
in fragmented and disturbed habitats [29, 32], we expected that brown howlers:

1. exploit similarly-rich diets in both small and large fragments as indicated by a recent com-
prehensive review [40];

2. exploit more alien species in small than in large fragments because the first are more likely
to be found near human settlements and contain planted fruiting species and because the
anthropogenic matrix is important for primate feeding supplementation [43, 44];

3. show a higher intermonth diet similarity in small than in large fragments because the poten-
tially poorer plant assemblages in the former [18, 35] might force animals to exploit food
items from a lower number of species;

4. spend more feeding records to leaves and less records to fruit in small than in large frag-
ments because fruit availability tends to be lower in the former (e.g., Alouatta spp. [20, 35],
Ateles geoffroyi [26]);

5. spend more feeding records to plant items from non-tree growth forms such as palms, lia-
nas, and vines, in small than in large fragments because of the presumably higher availability
of these growth forms in the former (e.g., lianas [31, 45]); and

6. feed on plant items from native top food species, particularly the highly seasonal ones (ripe
fruit, flowers [46], and young leaves [47]), according to their availability (e.g., Alouatta pigra
[48]).

Materials and Methods

Ethics Statement
This study was approved by the Scientific Committee of the Faculty of Biosciences of the Pon-
tifical Catholic University of Rio Grande do Sul (project #3477-SIPESQ). It meets all Brazilian
animal care policies (permits #28578-SISBIO/ICMBio and #372-SEMA) and all ethical and
legal requirements established by the American Society of Primatologists, Animal Care and
Use Committee, and the Ethical Committee of the Zoological Society of London for research
with nonhuman primates.
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Study Sites and Groups
This study was conducted in three small (<10 ha: S1, S2, and S3) and three large (>90 ha: L1,
L2, and L3) Atlantic forest fragments in Rio Grande do Sul State, southern Brazil (Fig 1). The
distance between fragments ranged from 0.4 km (S2 and S3) to 23 km (L1 and L3; Fig 1). The
three large fragments were within legally protected areas: L1 (93 ha) and L2 (106 ha) in the
State Park of Itapuã, and L3 (108 ha) in the São Pedro Wildlife Refuge. On the other hand, only
S1 (1.6 ha) is inside an unofficially protected area (the Econsciência private reserve), whereas

Fig 1. Location of study sites in southern Brazil. Study fragments delimited in yellow. Lansat8 open-access image (available at http://earthexplorer.usgs.
gov/).

doi:10.1371/journal.pone.0145819.g001
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S2 (9.5 ha) and S3 (2.9 ha) are unprotected fragments surrounded by human settlements, pas-
tures, and cultivated lands (Fig 1).

Subtropical semideciduous forest covered all study sites [49]. Tree surveys (see below)
showed that Sebastiania serrata, Guapira opposita,Myrsine umbellata, and Casearia sylvestris
dominate the forests of the study fragments. These four dominant species are common Atlantic
forest trees in Rio Grande do Sul State [50]. The importance value indices (IVI) of all tree spe-
cies, and the sum of IVI and tree density for the top food species in each fragment are shown in
S1 Table. The region is characterized by four clearly distinct seasons. According to our meteo-
rological records, the average monthly temperature during the study period was 22°C. The
highest monthly temperatures were recorded during the Summer (22°C-34°C), whereas the
lowest occurred in the Winter (7°C-26°C). Annual rainfall was 1,187 mm (2012) and 1,071
mm (2013). Although it rains throughout the year, precipitation was higher during the Winter
(especially in July and August).

We studied one social group per fragment. Their sizes ranged from 6 to 10 individuals (S2
Table). The groups inhabiting small fragments were habituated to people prior to the study
because their home ranges were near human settlements. The habituation process of L1 and L3
study groups lasted from March to June 2011, whereas the habituation of L2 lasted from July to
October 2011. Whereas two groups inhabited S2, single groups inhabited S1 and S3. However,
S1 left its 1.6-ha fragment for about 35% of the study days to visit a 2-ha portion of a ca. 10-ha
fragment used by other five groups. We inferred the presence of ca. 12, 13, and 18 social groups
in L1, L2, and L3, respectively, based on estimates of howler density (Morro São Pedro: 0.99
inds/ha [51], State Park of Itapuã: 0.75 inds/ha [52]) and the average group size at the study
sites [i.e., 6 inds/group: 51, 52]. We identified study groups based on their composition and
body characteristics (e.g., body size, hair color, and face scars) of certain group members.

Behavioral Records
We studied the behavior of brown howlers during a 36-mo period (June 2011 to June 2014) in
all fragments, except L2. The L2 group was studied during a 33-mo period (October 2011 to
June 2014). Data were collected from dawn to dusk during four to five consecutive days for
each group on a bimonthly basis using the instantaneous scan sampling method [53] with the
aid of high-resolution binoculars (Swarovski1 SLC 10 x 42). We used scan samples of 5 min
at 15-min intervals. As required by this method, we sought each group member throughout the
5 min of the sampling unit. After that time, the sampling unit was finished regardless of the
number of recorded group members. Then, a new scan sampling unit was conducted 10 min
after the end of the previous one. Observations were concentrated on conspicuous adult, sub-
adult, and juvenile individuals of both sexes because dependent and independent infants were
difficult to observe and rarely fed independently. We recorded the following information dur-
ing feeding: the plant items eaten (i.e., ripe and unripe fruit, mature and young leaves, leaf
buds, flowers, and flower buds), the plant species, and the growth form (i.e., tree, palm, vine,
and liana).

Overall, we collected 35,514 behavior records from groups in small fragments and 30,688
records in large fragments (S3 Table). Feeding accounted for 20% to 26% of group records in
small fragments and for 17% to 20% in large fragments (S3 Table). The contribution of each
plant species, item, and growth form to the diet was estimated as the percentage of feeding rec-
ords devoted to it. We calculated the number of species composing the diet of each group
based on rarified data (1,700 scan records per group) to deal with differences in sampling effort
among groups (S3 Table). The same procedure was used to calculate the intermonth diet simi-
larity described below. Finally, we believe that differences in handling time among food items
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might have a lower influence on the pattern found in our study because brown howlers also
exploited large fruits that require considerable handling (e.g., Syagrus romanzoffiana, Inga
spp., and the alien species Diospyros kaki). Additionally, the potential effect of handling time
on results must be minimized because individuals feed alternatively on different food items.
Therefore, the likelihood of recording any item might be proportional to its actual contribution
to the diet.

Food Availability
To determine whether diet composition responded to resource availability, we first estimated
the local availability (i.e., density, distribution, and abundance) of tree resources. For this, we
performed tree surveys in the home range of study groups. We established fifteen 100 x 5 m lin-
ear transects (= 7,500 m2) in each site, where we identified all trees�5 cm diameter at breast
height (DBH). The identification was based on taxonomic keys of the flora of Rio Grande do
Sul State [50]. Voucher samples of trees that were not identified in the field were collected for
identification with the help of an expert botanist (C.A. Mondin).

We calculated the importance value index (IVI) of each species as a measure of availability
[54]. This index is calculated by the sum of density (number of trees of a given species/7,500
m2), frequency (number of transects in which the species was found/15 transects), and domi-
nance (total basal area of the species in the 7,500 m2).

We estimated the temporal changes in resource availability of each site by randomly assign-
ing 4 to 10 adult trees of the 20 highest-ranking native top food species for howler monkeys in
southern Brazil (reviewed by [40]) for phenological monitoring. We estimated the amount of
fruit (ripe and unripe), flowers (open and buds), and leaves (mature, young, and buds) one day
before the beginning of each group’s bimonthly follow. We assigned a value ranging from 0 to
4 depending on the intensity or percentage of tree crown covered by a particular phenophase
according to the Fournier semi-quantitative method [55]. We also conducted the phenological
sampling with the help of high-resolution binoculars. Following Agostini et al. [56], we aver-
aged the phenological scores of individual trees of each top food species to obtain a Phenologi-
cal Index for the Species (PIS) for each month and phenophase. Therefore, we obtained a
monthly Food Availability Index (FAI) for each top food species by multiplying its PIS by its
IVI [56]. Finally, we calculated a monthly total FAI for each phenophase in each study site by
summing up the FAI indices of all top food species.

Statistical Analyses
We pooled the data from all sampling months to estimate the overall plant species richness
of the diet of each study group. We estimated the expected number of plant species in the
diet using four nonparametric estimators (ICE, ACE, Chao2, and Jack1) with EstimateS
v.9.1.0 [57] to assess the completeness of the list of food resources exploited by groups. We
used the mean of these estimators to calculate the proportion of species recorded in the sam-
ples (i.e., observed richness/mean of estimators). We assumed that our sampling effort was
sufficient to record the bulk of the diet because the mean ± SD sample coverage per site was
77% ± 7% (S4 Table). We computed individually-based rarefaction curves to compare diet
richness among study groups using 95% confidence intervals of the moment-based estimator
(Sobs Mao Tau) [58]. Non-overlapping confidence intervals indicated statistically significant
differences in richness [58].

To assess whether intermonth diet similarity differed between groups, we first calculated
intermonth Morisita-Horn similarity indices for each group using EstimateS v.9.1.0 [57].
Then, we used rarified data for running generalized linear models (GLM) with quasibinomial
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error distribution and logit link-function as suggested for proportion data [59]. Differences
between study groups were identified using post-hoc contrasts over the function ‘glht’ of the
R package multcomp [60]. We used Chi-square tests of goodness-of-fit to compare the rari-
fied number of feeding records devoted to each plant item (i.e., mature leaves, young leaves,
ripe fruits, and unripe fruits) or growth form by each group. We used Bonferroni correction
over the function ‘p.adjust’ because of multiple comparisons of the same data sets. Finally, we
used linear regressions of log-transformed data to assess whether the availability of ripe fruit,
young leaves, and flowers in each fragment was a good predictor of their consumption by
study groups. Data were tested for normality and homocedasticity using the Shapiro-Wilk
and the Levene tests provided by the package outliers prior to running these analyses. All sta-
tistical analyses were run in R v.3.2.1 [60]. Two-tailed P-values are reported for all tests
because significant results in the opposite direction of our expectations are also ecologically
relevant.

Results

Diet Richness and Top Food Species
Based on the rarified data, the diet of brown howlers inhabiting small fragments was composed
of 45, 54, and 55 plant species (mean ± SD = 51 ± 5, total = 91 species) belonging to 72 genera
and 43 families. Groups inhabiting large fragments exploited 48, 51, and 56 plant species
(mean ± SD = 52 ± 4, total = 87 species) belonging to 67 genera and 39 families (S4 Table).
However, the non-parametric estimators suggest that expected richness ranged from 64 (S1) to
88 species (L2, S4 Table; the recorded diet richness of each group increases when all data are
taken into account, see S5 Table). Diet richness was similar in small (Fig 2A) and large (Fig 2B)
fragments. These findings support our first prediction.

The number of top food species was 9, 16, and 16 (mean ± SD = 14 ± 4, total = 25 species)
in small fragments and 10, 11, and 15 (mean ± SD = 12 ± 3, total = 22 species) in large frag-
ments (Table 1). Groups inhabiting fragments of similar size shared about a quarter of top
food species (small: 6/25 = 24%; large: 6/22 = 27%; Table 1). All groups shared four top food
species (Ficus cestrifolia, Coussapoa microcarpa, Cuspidaria convoluta, and Guapira opposita,
Table 1). Most top food species were large trees that bear fleshy fruit, such as F. cestrifolia, F.
luschnathiana, C.microcarpa, G. opposita, and Diospyros inconstans. However, some of them
produce dry fruit, such asMachaerium stipitatum and Luehea divaricata (Table 1). A high pro-
portion of feeding records in both small (18%, 20%, and 45%) and large (20%, 24%, and 25%)
fragments was devoted to plants of the family Moraceae, particularly because of the contribu-
tion of F. cestrifolia (Table 1).

Alien Species in Diet
Whereas four to six alien species were exploited as food sources in small fragments (total = 9
spp.), contributing 2.7% (S3) to 7.3% (S2) of total feeding records (Table 2), none was exploited
in large fragments. The three most consumed alien species were guava (Psidium guajava), the
Japanese persimmon (Diospyros kaki), and the loquat (Eriobotrya japonica). The first two were
also top food species for groups S1 and S2 (Table 1). These results lend support to our second
prediction.

Diet Similarity
Intermonth diet similarity differed among study groups (GLM, F5,810 = 36.2, P<0.0001). It was
higher in L2 than in L1 and L3, and higher in S1 and S2 than in S3 (contrast test, P<0.05 in all
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cases, Fig 3). In most cases, diet similarity was higher in small than in large fragments. Group
L2 was an exception, as its diet similarity did not differ from those of groups S1 and S2 (Fig 3).
These findings support the third prediction.

Fig 2. Individual-based rarefaction curves of the number of plant species used as food sources by
brown howler monkeys in six study sites in the State of Rio Grande do Sul, Brazil.Curves for the small
fragments (A) and the large fragments (B) are shown. Dashed lines indicate 95% confidence intervals.

doi:10.1371/journal.pone.0145819.g002

Feeding Strategies of Brown Howler Monkeys

PLOS ONE | DOI:10.1371/journal.pone.0145819 February 5, 2016 8 / 18



Table 1. Percentage of total feeding records and importance value index (in parentheses) for the top food species in the diet of brown howlers in
each study fragment. Growth form (GF) also shown.

Study group

Family Speciesa GF S1 S2 S3 L1 L2 L3

Moraceae Ficus cestrifolia (FL,UF,RF,YL) Tree 12.3 (8.5) 15.5 (8.4) 41.0
(9.1)

21.2 (3.2)
*

20.4 (5.6)
*

20.7 (4.4)
*

Urticaceae Coussapoa microcarpa (FL,UF,RF,YL,ML) Tree 1.7 (1.0) 10.8 (6.8) 11.0
(4.8)

13.1 (7.7)
*

5.8 (5.4) 8.2 (7.3)

Bignoniaceae Cuspidaria convoluta (FL,YL,ML) Vine 5.3 10.6 11.3 9.6 14.5 5.0

Nyctaginaceae Guapira opposita (FL,UF,RF,YL,ML) Tree 4.2 (23.7) 4.4 (6.9) 2.9
(11.4)

7.1 (20.2) 11.7
(24.3)

6.4 (47.5)

Rutaceae Zanthoxylum rhoifolium (RF,YL,ML) Tree 17.3 (1.4)
*

5.1 (3.2) 2.8 (2.1) __ __ 2.4 (1.7)

Ebenaceae Diospyros inconstans (FL,UF,RF,YL,ML) Tree 4.3 (6.5) __ __ 11.5 (8.4) 2.0 (11.8) 5.2 (11.0)

Arecaceae Syagrus romanzoffiana (FL,UF,RF) Palm 4.2 (3.1) __ __ 6.3 (3.5)* 8.1 (1.9)* 5.1 (1.2)

Moraceae Sorocea bonplandii (UF,RF,YL) Tree 2.8 (2.4) 2.3 (1.2) 1.6 (4.2) 3.4 (9.8) __ __

Anacardiaceae Lithraea brasiliensis (UF,RF,YL,ML) Tree 1.8 (28.8) __ 3.6
(10.3)

__ 3.8 (18.0) 2.0 (2.8)

Fabaceae Machaerium stipitatum (YL,ML) Tree 8.4 (6.0) 2.6 (0.8) __ __ __ 10.4 (7.1)

Moraceae Ficus luschnathiana (FL,UF,RF,YL,ML) Tree 4.7 (1.7) __ 2.8 (0.1)
*

__ __ 3.4 (0.1)*

Malvaceae Luehea divaricata (FL,UF,YL,ML) Tree __ 3.1 (9.5) __ 2.8 (5.0) __ 1.7 (12.8)

Myrtaceae Psidium guajava (UF,RF)b Tree 5.1 (0.1)* 1.7 (0.1)* __ __ __ __

Fabaceae Enterolobium contortisiliquum (FL,UF,RF,YL,
ML)

Tree 2.5 (9.3) __ __ __ 4.2 (4.9) __

Sapotaceae Chrysophyllum gonocarpum (FL,UF,RF,YL,ML) Tree __ 10.1 (0.1)
*

__ __ __ 2.4 (0.6)

Myrtaceae Campomanesia xanthocarpa (UF,RF) Tree 3.4 (2.0) __ __ __ __ __

Apocynaceae Forsteronia leptocarpa (ML,YL) Vine 1.6 __ __ __ __ __

Euphorbiaceae Mandevilla coccinea (YL,ML) Vine 1.5 __ __ __ __ __

Salicaceae Banara parviflora (FL,RF,YL,ML) Tree __ 4.6 (4.2) __ __ __ __

Fabaceae Dalbergia frutescens (YL,ML) Vine __ 2.9 __ __ __ __

Rosaceae Eriobotrya japonica (UF,RF) Tree __ 2.8 (0.1)* __ __ __ __

Ebenaceae Diospyros kaki (RF)b Tree __ 2.6 (0.1)* __ __ __ __

Convulvulaceae Ipomoea alba (FL,YL,ML) Vine __ 2.1 __ __ __ __

Myrtaceae Myrcia glabra (FL,UF,RF) Tree __ __ 3.6
(14.1)

__ __ __

Menispermaceae Hyperbaena domingensis (UF,RF,YL,ML) Vine __ __ __ __ __ 3.4

Erythroxylaceae Erythroxylum argentinum (FL,UF,RF,YL) Tree __ __ __ __ __ 2.1 (5.1)

Cannabaceae Celtis iguanaea (RF,YL,ML) Liana __ __ __ __ __ 1.9

Annonaceae Annona sylvatica (UF,RF,YL,ML) Tree __ __ __ 3.8 (7.5) __ __

Clusiaceae Garcinia gardneriana (UF,RF) Tree __ __ __ 2.9 (8.9) __ __

Lauraceae Ocotea porosa (UF,RF,YL,ML) Tree __ __ __ __ 5.2 (20.7) __

Asteraceae Mikania glomerata (YL,ML) Vine __ __ __ __ 2.4 __

Sapindaceae Allophylus edulis (FL,UF,RF,YL) Tree __ __ __ __ 2.0 (20.9) __

Σ species 33 16 16 9 10 11 15

* Preferred food species: species exploited in a proportion significantly higher than their availability in the environment.
a Plant items: ripe fruit (RF), unripe fruit (UF), mature leaves (ML), young leaves (YL), and flowers (FL).
b Alien species.

doi:10.1371/journal.pone.0145819.t001
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Diet Composition
Overall, the same number of plant species (44) provided ripe fruit for howlers in small (27, 29,
and 21 spp. in each group, respectively) and large (29, 20, and 30 spp., respectively) fragments,
whereas 61 (43, 40, and 42 spp.) were exploited for young leaves in small fragments and 46 (35,
27, and 33 spp.) in large ones. Ripe fruit (25–41% of total feeding records) was the predominant

Table 2. Percentage of total feeding records on the alien tree species (N = 9) exploited by brown howler monkeys in small fragments.

Study group

Family Species/plant itema S1 S2 S3

Myrtaceae Psidium guajava (RF) 5.0 0.1 0.8

Rosaceae Eriobotrya japonica (UF, RF) 0.3 2.8 0.3

Ebenaceae Diospyros kaki (RF) __ 2.5 0.2

Rhamnaceae Hovenia dulcis (RF) 0.5 1.6 __

Rutaceae Citrus reticulata (RF) 1.0 0.2 __

Myrtaceae Syzygium cummini (RF) __ __ 1.1

Moraceae Morus nigra (YL, ML) __ __ 0.2

Araucariaceae Araucaria angustifolia* (Seeds) __ <0.1 0.1

Meliaceae Melia azedarach (RF) __ <0.1 __

Σ species 4 6 6

% of total feeding records 6.8 7.3 2.7

a Plant items: ripe fruit (RF), unripe fruit (UF), mature leaves (ML), young leaves (YL).

* Conifer native to Brazil, but alien, cultivated in Porto Alegre, Rio Grande do Sul State.

doi:10.1371/journal.pone.0145819.t002

Fig 3. Intermonth diet similarity between study groups inhabiting small and large fragments. The line
within a box represents the median of the Morisita-Horn index, the box represents the 25% and 75%
interquartiles (IQR), and the whiskers represent the IQRmultiplied by 1.5. Dots represent the actual data
points for each group. Different letters indicate significant differences (P<0.05).

doi:10.1371/journal.pone.0145819.g003
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plant item in the diet of all groups, except S1, followed by mature leaves (22–33%), young
leaves (6–21%), unripe fruit (6–20%), flowers (1–10%), leaf buds (1–8%), and flower buds (2–
5%).

The percentage of feeding records (hereafter referred to as consumption) devoted to all
major food items differed among groups (mature leaves: χ2 = 41.2, young leaves: χ2 = 295.1,
ripe fruit: χ2 = 73.7, unripe fruit: χ2 = 200.7, all df = 5, P<0.0001; contrast tests, P<0.05 in all
significant cases; Fig 4). The consumption of mature leaves was lower in group S3 than in S1
and L2, whereas the consumption of young leaves was, in general, higher in groups inhabiting
small than large fragments. While group S3 consumed more ripe and unripe fruit than the
other groups inhabiting small fragments (probably due to the high consumption of figs, see
Table 1), the consumption of these items by the groups living in large fragments was less vari-
able (Fig 4). Therefore, our fourth prediction is only partially supported for young leaves.

A total of 63 tree species, 5 lianas, 1 palm, and 22 vines provided food in small fragments,
whereas these figures were 56, 6, 1, and 24 species in large fragments. Trees were the most
exploited growth form in all fragments (69–82% of total feeding records), followed by lianas
(6–16%), vines (2–8%), and palms (<1–8%). The contribution of these growth forms as food
sources varied noticeably among groups (trees: χ2 = 24.2, P<0.001, palm: χ2 = 144.0,
P<0.0001, lianas: χ2 = 47.1, P<0.0001, vines: χ2 = 80.0, P<0.0001, all df = 5; contrast tests,
P<0.05 in all significant cases, Fig 5). Whereas the contribution of trees was lower in L2 com-
pared with S1, S3 and L1, the consumption of fruits and flowers of the unique palm exploited,
S. romanzoffiana, was often higher in large than in small fragments despite the similarity of its
IVI and relative density at the study sites (S6 Table). Although there were group differences in

Fig 4. Percentage of feeding records devoted to each plant item in the diet of brown howler monkeys in large and small Atlantic forest fragments.
Different letters above bars indicate significant differences (P<0.05).

doi:10.1371/journal.pone.0145819.g004
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the exploitation of lianas and vines, there was no clear trend related to fragment size (Fig 5).
Therefore, our fifth prediction is not supported.

Food Availability and Item Consumption
The availability of ripe fruit and young leaves from native top food species was a good predictor
of their consumption by some study groups. In the case of flowers, the relationship only
approached significance for groups S2 and L3 (Table 3). Most significant relationships (4 of 6)

Fig 5. Percentage of feeding records devoted to each growth form in the diet of brown howler monkeys in large and small Atlantic forest
fragments. Different letters above bars indicate significant differences (P<0.05).

doi:10.1371/journal.pone.0145819.g005

Table 3. Linear regressions between the availability (independent variable) and the consumption (dependent variable) of seasonal plant items of
the top food species by the brown howler monkey study groups.

Plant item Small fragments N R2 P Large fragments Na R2 P

Ripe fruits S1 14 0.04 0.51 L1 15 0.51 <0.01

S2 14 0.17 0.12 L2 15 0.43 <0.01

S3 15 0.48 <0.01 L3 14 0.02 0.61

Young leaves S1 14 0.46 <0.01 L1 15 0.4 0.01

S2 14 0.1 0.26 L2 15 0.15 0.16

S3 15 0.17 0.16 L3 14 0.45 <0.01

Flowers S1 14 0.12 0.22 L1 15 0.01 0.67

S2 14 0.28 0.05 L2 15 0.04 0.45

S3 15 0.03 0.55 L3 14 0.24 0.07

a N = number of study months. Significant correlations highlighted in bold.

doi:10.1371/journal.pone.0145819.t003
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were found in large fragments (Table 3; see also S1–S3 Figs). The influence of availability on
consumption resulted in a high intermonth variability in the contribution of each seasonal
plant item to the diet of study groups (ripe fruit: 0–91%, young leaves: 0–62%, flowers: 0–41%).
Therefore, our last prediction is also partially supported.

Discussion
The dietary flexibility of tropical primates facing recent increases in habitat deterioration [9,
61] has grown as a research topic in the last decades [4, 21, 22, 30]. However, our knowledge
on the feeding strategies adopted by primates in response to seasonal and habitat-related
reductions in food availability is incipient at best [21, 62], even for well-studied genera, such as
Alouatta [20, 35]. In this respect, we found that brown howlers alter their diet in response to
local and seasonal changes in food availability by adopting flexible strategies. These strategies
included the consumption of plant items from alien species and a higher consumption of
young leaves in small fragments. On the other hand, groups inhabiting large fragments showed
a higher consumption of palm fruit and were capable of exploiting seasonal resources (espe-
cially ripe fruit and young leaves) according to their availability.

Overall diet richness was similar in small and large fragments as expected. Studies indicate
that primates inhabiting small and/or low quality forests can compensate the lower density
and/or richness of native tree species used as food sources by exploiting alien plant species that
are common in the surrounding anthropogenic matrix [32, 33, 43, 44, 63]. We found that alien
species, especially those producing edible fruit, such as Psidium guajava, Diospyros kaki, and
Eriobotrya japonica, were important supplements to the diet of brown howlers inhabiting
small fragments. However, the ability to exploit alien species might incur high costs. Howlers
face high risks of electrocution and predation by domestic animals and humans near human
settlements (ÓMC, pers. obs.), where these resources are more common. In fact, most alien
trees exploited by our brown howler groups were in gardens and orchards, places inhabited by
one to five dogs. Long-term monitoring is necessary for evaluating whether this behavioral
plasticity in anthropogenic habitat patches increases or decreases the fitness of brown howlers.

Although brown howlers inhabiting small fragments supplemented their diet with alien spe-
cies and exploited a richer diversity of leaf sources, these strategies were not sufficient to over-
come some consequences of living in a habitat with a less diverse plant assemblage (see S1
Table). Compared with groups inhabiting large fragments, they presented a higher intermonth
diet similarity. Whether this higher similarity imposes significant health costs to individuals is
unknown.

Increasing leaf consumption is another frequent response of primates to food scarcity in
small and/or disturbed habitats [27, 29, 30, 40, 63]. We found support for this trend, at least for
the consumption of young leaves. In addition to this increase in the contribution of young
leaves to the diet, groups inhabiting small fragments also tended to exploit a more diverse array
of sources of this item. Differences in food availability cannot account for this result because
large fragments showed higher tree species richness than small ones. The contribution of lianas
and vines also cannot explain it because the diversity of these non-tree growth forms in the diet
of groups was quite similar in both habitats (contrary to the pattern found for other atelids [26,
27, 45]). Therefore, it is possible that the greater exploitation of sources of young leaves in
small fragments is a strategy for optimizing nutrient acquisition and/or avoiding the overcon-
sumption of the same secondary metabolites [62, 64]. The finding that intermonth diet similar-
ity is higher in these fragments is apparently incompatible with the latter unless the most
commonly exploited species contain less secondary metabolites than those avoided. Therefore,
studies comparing the nutritional and toxic contents of eaten and avoided young leaves and
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fruits are necessary to improve our understanding of the factors that drive howler monkey
food selection in these habitats.

Contrary to our expectation, the percentage of feeding records devoted to the consumption
of fruit was similar between small and large fragments. The aforementioned exploitation of
alien fruit explains this finding together with the high consumption of figs (Ficus spp.), particu-
larly in S3. The importance of Ficus spp. as keystone species for howler monkeys and other ate-
lids has been largely recognized [20, 23, 40, 65] and related to their high nutritional value [66],
asynchronous fruiting [67, 68], and the genus’s wide geographic distribution [67]. In this
respect, we found that F. cestrifolia bears immature and/or mature fruit throughout the year,
whereas fruiting of the other top food species is restricted to a period of 2.5 to 5 months each
year. Therefore, the almost permanent availability of figs potentially minimizes nutritional
stress in small fragments.

Whereas the exploitation of trees, lianas, and vines by our study groups did not show a pat-
tern related to fragment size, groups inhabiting large fragments showed a higher ingestion of S.
romanzoffiana fruit. The IVI and relative density of this palm, an important top food species
for brown howlers [40], was similar in both habitats. This finding contradicts the expectation
that palms (as well as lianas and vines) are more abundant in small fragments and/or disturbed
habitats [26, 31, 45]. In fact, the absolute number of adult palms is remarkably higher in large
fragments because of differences in area (S6 Table) and because the processes of seed dispersal
and seedling recruitment of this large-seeded (2–3 cm in length) species is severely compro-
mised in small and/or defaunated habitats [69]. This higher availability certainly explains the
species’ greater importance to the diet of howlers in large fragments. The lack of data on the
density and richness of climbers in the study sites, on the other hand, hampers us from evaluat-
ing why their contributions to the diet of our groups did not differ.

We also confirmed that the availability of seasonal items from top food species influenced
howler monkey consumption, especially in large fragments. As a consequence, the level of
folivory and frugivory may vary sharply among months, years, and habitat types (e.g., [20, 48,
62]. For instance, we found that brown howlers are strongly frugivorous (>90% of total feeding
records) during fruiting peaks, but can switch to a predominantly lower-energy, leafy diet
(>60%) in periods of fruit scarcity. This concurs with the statement that howlers are as frugivo-
rous as possible and as folivorous as necessary (sensu [70]). At least two non-mutually exclu-
sive hypotheses might explain the weaker relationship between availability and consumption
found for groups in small fragments. Brown howlers inhabiting these fragments may compen-
sate the lower availability of seasonal items of top food species by increasing the percentage of
feeding records devoted to non-preferred or fallback foods as shown for other primates [28, 31,
62, 63, 71]. Otherwise, as mentioned above, alien species may offer alternative high-quality
foods. In fact, the availability of fruit from the six most important alien species (not included in
our phenological monitoring) clearly influenced their consumption in small fragments (ÓMC,
pers. obs.).

In sum, we showed that brown howlers varied their food choices in response to local and
seasonal variations in resource availability, supporting the importance of dietary switching for
primates inhabiting seasonal [21, 25, 62] and/or disturbed habitats [4, 18, 27, 29]. Although
this flexibility allows individual howlers to thrive in quite small and/or disturbed fragments,
the long-term survival of populations living in these environments is uncertain [40]. This is
particularly critical if we take into account present and prospective human modifications of
tropical forests [9, 10]. Therefore, studies comparing the health and the fecundity rate of
brown howlers in small and large Atlantic forest fragments with contrasting levels of distur-
bance are necessary to assess the long-term demographic consequences of this dietary
flexibility.
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