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Introduction: Flow describes a state of optimal experience that can promote a
positive adaptation to increasing stress. The aim of the current study is to identify the
ideal autonomic state for peak cognitive performance by correlating sympathovagal
balance during cognitive stress with (1) perceived flow immersion and (2) executive
task performance.

Materials and Methods: Autonomic states were varied in healthy male participants
(n = 48) using combinations of patterned breathing and skeletal muscle contraction that
are known to induce differing levels of autonomic response. After autonomic variation,
a Stroop test was performed on participants to induce a mild stress response, and
autonomic arousal was assessed using heart rate variability. Subjective experience of
flow was measured by standardized self-report, and executive task performance was
measured by reaction time on the Stroop test.

Results: There were significant associations between autonomic state and flow
engagement with an inverted U-shaped function for parasympathetic stimulation,
sympathetic response, and overall sympathovagal balance. There were also significant
associations between autonomic states and reaction times. Combining sympathetic and
parasympathetic responses to evaluate overall sympathovagal balance, there was a
significant U-shaped relationship with reaction time.

Discussion: Our results support the flow theory of human performance in which the
ideal autonomic state lies at the peak of an inverted-U function, and extremes at either
end lead to both suboptimal flow experience. Similarly, cognitive task performance
was maximized at the bottom of the U-function. Our findings suggest that optimal
performance may be associated with predominant, but not total, sympathetic response.

Keywords: flow, heart rate variability, cognitive performance, parasympathetic and sympathetic reactivity,
sympathovagal balance
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INTRODUCTION

Recent public health focus on occupational burnout and
stress resiliency has prompted further investigation into the
role of the autonomic system in cognitive performance.
Increasing number of recent studies have suggested that
burnout is related to autonomic dysfunction during excessive
stress (Lennartsson et al., 2016; Kanthak et al., 2017; May
et al., 2018; Zhang et al., 2018; Traunmuller et al., 2019).
However, despite these concerning observations, the effects of
autonomic state on cognitive performance have not been fully
defined, and some degree of increased stress may actually
be desired for task performance. Increased autonomic arousal
correlating with improved task performance is supported by
several studies (Luft et al., 2009; Mathewson et al., 2010;
Murray and Russoniello, 2012).

As a possible explanation resolving these seemingly
conflicting findings, flow theory, as proposed by psychologist
Csikszentmihalyi (1975), describes a state of optimal experience
characterized by complete task immersion, effortless intention,
intrinsic reward, and increased perception of control. This
experience can promote a positive adaptation to increasing stress
by a matching growth between challenges and skills through
immediate task feedback.

The ideal physiological conditions to facilitate the
flow experience have not been established. According to
Csikszentmihalyi’s (1975) theory, the flow state lies on the
continuum between boredom and anxiety. Csikszentmihalyi
(1975) proposed that there were physiological changes associated
with the flow experience, but recognized this association between
physiology and psychology were not readily established. Previous
studies have identified a possible association between increased
sympathetic enhancement during the flow experience, but none
have adequately demonstrated an optimal level of autonomic
arousal for both task performance and subjective flow experience
(Keller et al., 2011; Gaggioli et al., 2013; Peifer et al., 2014;
Bian et al., 2016).

Many popular mind–body disciplines such as Yoga, Tai Chi,
and Qigong, have been shown to activate the parasympathetic
nervous system to varying degrees (Goyal et al., 2014; Sullivan
et al., 2018; Walther et al., 2018). As part of a related project,
the authors previously studied healthy male subjects’ responses
to preconditioning using various rhythmic breathing and skeletal
muscle contraction methods to vary their baseline autonomic
states (Chin and Kales, 2019). Our previous study assessed
paced respiration and dynamic tension through rhythmic
skeletal muscle contraction as two core components common
to Yoga, Tai Chi, and Qigong to better understand their
interaction in activating the parasympathetic nervous system.
The activation of the body’s parasympathetic nervous system has
been demonstrated to occur through respiratory entrainment
effects (Jerath et al., 2006; Nijjar et al., 2014) as well as
voluntary rhythmic muscle contraction (Lehrer et al., 2009;
Vaschillo et al., 2011).

The aim of the current study is to utilize the autonomic
variability resulting from these different patterns of
preconditioning, when faced with a cognitive stressor, to identify
an autonomic state for maximized cognitive performance. This

study examines the relationship between sympathovagal balance
during cognitive stress with (1) perceived flow immersion, and
(2) task performance. Sympathovagal balance was assessed by
measurement of heart rate variability (HRV), which can be
considered an indicator of autonomic activity (McCraty and
Shaffer, 2015). A recent meta-analysis of 37 studies by Kim et al.
(2018) concluded that HRV is impacted by stress and can be used
as an objective assessment of psychological stress.

MATERIALS AND METHODS

Participants
Forty-eight healthy male participants, ages 18–55 years were
recruited from Harvard T.H. Chan School of Public Health- and
Harvard Medical School-affiliated student programs, fellowships,
and training residencies. Males were enrolled to minimize HRV
due to hormonal variation (Sato and Miyake, 2004; Thayer
et al., 2012; Koenig and Thayer, 2016). Any individuals with
history of restrictive or obstructive lung disease, hypertension,
or taking any medications that could affect heart rate were
excluded. Caffeine consumption was not specifically restricted
since withdrawal effects on HRV may exist for habitual caffeine
users (Zimmermann-Viehoff et al., 2016).

Procedure
The study protocol was reviewed and approved by the IRB
of the Harvard T.H. Chan School of Public Health. Testing
occurred over a single 30-min session between the daytime
hours of 09:00 and 16:00. A Polar H7 heart rate monitor (Polar
Electro Oy, Kempele, Finland) was used as a validated research
device to measure R–R intervals with accuracy comparable to
electrocardiograms (Barbosa et al., 2016; Giles et al., 2016).
A logging application on iPad (Apple Inc., Cupertino, CA,
United States) recorded the R–R interval signals from the chest
strap which were further analyzed.

Participants sat upright quietly for 5 min while reading the
instructions for the study, and then, heart rate, cuff blood
pressure, and respiration rate were measured. To generate
varying baseline autonomic states among participants, subjects
were randomized to one of four preconditioning groups: (1) nasal
respiration at 0.1 Hz (inhale nose 5 s, exhale mouth 5 s) for 5 min,
(2) contracting arm muscles by grasping a tennis ball at 0.1 Hz for
5 min (alternating contractions in left and right arms every 5 s),
(3) performing contraction and nasal respiration in synchrony at
0.1 Hz for 5 min, and (4) reading consecutively four articles rated
as emotionally neutral for 5 min. The contraction tasks have been
demonstrated to vary cardiac reactivity through differing levels
of resonance (Lehrer et al., 2000, 2009; Vaschillo et al., 2011).
A graphical timer application on iPad was used to visually cue
the breathing/contraction. The articles were Scientific American
excerpts that were previously validated as emotionally neutral
(van den Broek et al., 2001).

To assess executive task function, a computerized version
of the Stroop test1 was run for 5 min. The Stroop test has been
demonstrated to produce a mild sympathetic response through

1http://cognitivefun.net
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dissonant executive task function (Salahuddin et al., 2007;
Visnovcova et al., 2014). Participants were asked to indicate the
color of the word (and not its meaning) by keystroke, as quickly
as possible, while minimizing their errors. For congruent trials,
the displayed word and the color described by the word were
the same. For incongruent trials, the displayed word and color
presented were not the same. The reaction time for each word
pair is recorded by the computer program with the premise
of the Stroop test that incongruent pairs have longer reaction
times when compared to congruent pairs (Dyer, 1973). As a
marker for performance, a reaction time gap was calculated for
each participant from the difference between congruent and
incongruent pair reaction times. A shorter reaction time gap was
considered to indicate higher performance.

At the end of this task period, a 5-min questionnaire
Short Flow State Scale-2 (SFSS-2) was then administered to
assess degree of flow engagement (Jackson et al., 2008). Flow
engagement is the degree of perceived task immersion, and
the SFSS-2 has been validated for evaluation of performance
engagement. Respiration rates were monitored during all phases
of testing to ensure they were within the 9–24 cycles/min
range required to correspond accurately to vagal tone
(Laborde et al., 2017).

Heart Rate Variability Analyses
Recorded R–R intervals were analyzed offline using Kubios HRV
Premium software (Kubios Oy, Kuopio, Finland) using 2-min
intervals based on recommendations from published standards
(Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology, 1996).
Frequency domain measures analyze the power distribution of
HRV as a function of high frequency (HF) and low frequency
(LF). HF and LF components are reflective of parasympathetic
and sympathetic activation, respectively. LF/HF can be regarded
as the overall sympathovagal balance and degree of autonomic
arousal (Pagani et al., 1986; Shaffer and Ginsberg, 2017).

Heart rate variability recordings during Stroop test were
processed by Kubios HRV Premium. Automated artifact
correction was performed for all recordings prior to analysis.
One-hundred twenty second sampling periods were utilized to
derive LF, HF, and LF/HF using Fast Fourier transformation
spectrum method (Figure 1). LF and HF bands were standardly
defined as 0.04–0.15 and 0.15–0.4 Hz, respectively, and absolute
power for each band was analyzed in normalized units, LF or HF
divided by total power (Malliani et al., 1994).

Statistical Analyses
All statistical analyses were performed using Prism 8 (GraphPad
Software, San Diego, CA, United States). To analyze the overall
effects of varying HRV on reaction time, HRV measures
(LF, HF, LF/HF) for all subjects during the Stroop test were
regressed on measured reaction time using the least squares
regression method, with no weighting. Both linear and quadratic
models were generated for each comparison. For all regressions,
assumption of homoscedasticity was made. To assess the effects of
varying HRV on flow engagement, HRV measures were similarly
regressed on SFSS-2 scores, testing both linear and quadratic
models. R2-values for each relationship were evaluated at p < 0.05

significance level. Outliers were identified for each analysis using
robust regression and outlier removal, which is a validated
method of outlier detection included in Prism 8 (Motulsky and
Brown, 2006). The outlier false discovery rate was set at <1%.
Any reported outliers reported were excluded from the analysis.

RESULTS

All enrolled participants (n = 48) completed the study sessions
without any adverse events. Participants’ average age was
29.9 years (SD ± 5.96). As a result of randomization, 12 subjects
were each assigned to one of the four preconditioning groups.

HRV Measurements Between
Preconditioning Groups
A previous study compared LF, HF, and LF/HF responses between
the preconditioning groups measured during application of the
Stroop test (Chin and Kales, 2019). As a summary of the
findings of this analysis, the alternating contraction group
had 71.7% higher activation of parasympathetic signal over
respiration alone (p < 0.001). Alternating contractions
synchronized with breathing demonstrated 150% higher
parasympathetic activation than control (p < 0.0001).
Between contraction alone and synchronized contraction
groups, the synchronized group demonstrated 45.9% higher
parasympathetic response during the cognitive stressor
(p < 0.001).

HRV and Maximal Flow Engagement
Heart rate variability was regressed onto SFSS-2 scores to analyze
autonomic association with flow engagement. Representative
examples of HRV time varying frequency domain measures and
flow scores are in Figure 1. In all cases, quadratic functions were
statistically significant, whereas linear functions were not. HF
(Figure 2A) indicated an inverted U-shaped relationship between
parasympathetic stimulation and SFSS-2 scores (DF = 44,
R2 = 0.110, p < 0.0001); one outlier was identified and excluded
from this analysis. Similarly, when analyzing the sympathetic
response (Figure 2B), a reciprocal relationship was found with
an inverted U-shaped relationship between increasing and SFSS-
2 scores (DF = 45, R2 = 0.070, p < 0.001). When combining
sympathetic and parasympathetic responses to measure overall
sympathovagal balance, LF/HF (Figure 2C) demonstrated a
significant inverted-U relationship when regressed on SFSS-
2 (DF = 45, R2 = 0.187, p < 0.0001). The interpolated
value of the vertex was LF/HF 6.822 with a maximal SFSS-
2 score of 38.85.

HRV and Cognitive Performance
Reaction time gaps were used as a marker for cognitive
performance. When HRV was regressed onto reaction time
gaps, there were significant second-order relationships for all
measures; linear regression analysis demonstrated a significant
relationship only for LF. HF (Figure 3A) indicated a positive
curvilinear relationship between parasympathetic stimulation
and reaction time (DF = 45, R2 = 0.053, p < 0.05). When
analyzing the sympathetic response (Figure 3B), a reciprocal
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FIGURE 1 | Top portion of the figure is a schematic of each study session. Underneath are representative examples of HRV frequency domain measures during the
session for three different subjects. Increased power in the green frequency band represents parasympathetic HF response. Increased power in the red frequency
band represents sympathetic LF response. During the Stroop test, the top subject exhibited high flow with a balanced LF response. The bottom two subjects, at
extremes of either high or low sympathetic response, reported low flow.

FIGURE 2 | (A) Inverted U-shaped relationship between parasympathetic stimulation and SFSS-2 scores (DF = 44, R2 = 0.110, p < 0.0001); one outlier was
identified and excluded from this analysis. Dotted line represents the linear model (DF = 46, R2 = 0.026, p > 0.05). Each point represents a single participant’s HF
measured during the cognitive stressor. (B) A reciprocal relationship was found with an inverted U-shaped relationship between increasing sympathetic response (LF)
and SFSS-2 scores (DF = 45, R2 = 0.070, p < 0.001). Dotted line represents the linear model (DF = 46, R2 = 0.00087, p > 0.05). Each point represents a single
participant’s LF measured during the cognitive stressor. (C) When combining sympathetic and parasympathetic responses to measure overall sympathovagal
balance, LF/HF demonstrated a significant inverted-U relationship when regressed on SFSS-2 (DF = 45, R2 = 0.187, p < 0.0001). The interpolated value of the
vertex was LF/HF 6.822 with a maximal SFSS-2 score of 38.85. Dotted line represents the linear model (DF = 46, R2 = 0.031, p > 0.05). Each point represents a
single participant’s LF/HF measured during the cognitive stressor.

relationship was found with increasing LF resulting in decreasing
reaction time gaps (DF = 45, R2 = 0.117, p < 0.05).
After combining sympathetic and parasympathetic responses
to evaluate overall sympathovagal balance, LF/HF (Figure 3C)
demonstrated a significant U-shaped relationship when regressed
on reaction time (DF = 45, R2 = 0.046, p < 0.0001). The
interpolated value of the vertex was LF/HF 11.61 with a minimal
reaction time gap of 143.5 ms.

DISCUSSION

After autonomic markers were regressed on flow scores, we
demonstrated a possible inverted U-relationship between overall
sympathovagal balance and self-reported experience of flow.
With the exception of the LF relationship to reaction time,
none of the linear models were statistically significant. Our
finding supports Csikszentmihalyi’s (1975) theory of human
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FIGURE 3 | (A) When HRV was regressed onto reaction time gaps, HF indicated a positive curvilinear relationship between parasympathetic stimulation and reaction
time (DF = 45, R2 = 0.053, p < 0.05). Dotted line represents the linear model (DF = 46, R2 = 0.046, p > 0.05). Each point represents a single participant’s HF
measured during the cognitive stressor. (B) When analyzing the sympathetic response, a reciprocal relationship was found with increasing LF resulting in decreasing
reaction time gaps (DF = 45, R2 = 0.117, p < 0.05). Dotted line represents the linear model (DF = 46, R2 = 0.10, p < 0.05). Each point represents a single
participant’s LF measured during the cognitive stressor. (C) After combining sympathetic and parasympathetic responses to measure overall sympathovagal
balance, LF/HF demonstrated a significant U-shaped relationship when regressed on reaction time (DF = 45, R2 = 0.046, p < 0.0001). The interpolated value of the
vertex was LF/HF 11.61 with a minimal reaction time gap of 143.5 ms. Dotted line represents the linear model (DF = 46, R2 = 0.0083, p > 0.05). Each point
represents a single participant’s LF/HF measured during the cognitive stressor.

performance in which the optimal autonomic state lies at the
peak of an inverted-U, in which extremes at either end lead to
suboptimal experience.

Studies on leisure activities, such as playing piano (de
Manzano et al., 2010) and video games (Kozhevnikov et al.,
2018), have effectively demonstrated the left side of the inverted-
U curve, in which increasing sympathetic activation leads
to increased flow experience. Paradoxically, other studies on
job stress illustrate that increasing sympathetic arousal can
also lead to declining performance and burnout. A recent
systematic review identified 13 studies which confirmed a
negative association between parasympathetic response and job
stress or burnout (de Looff et al., 2018). When taken together,
these seemingly opposing responses to arousal may actually
just represent different sides of the inverted-U relationship
demonstrated in our results.

A significant limitation in previous studies remained that the
full spectrum of sympathetic arousal had not been represented
due to insufficiently varied autonomic states. Peifer et al. (2014)
addressed this shortcoming in study design by varying the arousal
stimulus and inducing differing levels of social stress prior to
task testing. Interestingly, using this design to create further
autonomic variability, the authors did successfully demonstrate
a quadratic inverted-U relationship for sympathetic LF HRV.
However, they demonstrated only a linear association between
increasing HF parasympathetic response and flow experience, but
it should be noted that the study power was limited by the small
study sample of only 22 participants.

Similar to Peifer et al. (2014)’s study design, we varied
our baseline autonomic states. However, instead of priming
subjects using varying social stressors, our methodology
used differing combinations of patterned breathing and
skeletal muscle contraction that are known to induce varying
levels of autonomic response. With this preconditioning, we
were able to prime enough baseline autonomic variation to
demontrate the inverted-U relationship between increasing
sympathetic arousal and flow experience. Improving on Peifer
et al. (2014), we did successfully demonstrate an inverted-U

relationship between increasing parasympathetic response
and flow. Furthermore, when analyzing combined sympathic
and parasympathetic balance as LF/HF, we found that the
inverted-U curve remained significant with the interpolated
maximum flow occuring when LF/HF balance was 6.822.
Stated another way, the optimal flow experience occurred when
the autonomic state comprised of 87% sympathetic and 13%
parasympathetic response.

Our results also support the potential existence of an optimal
autonomic state for high cognitive performance. Reaction time
during the Stroop test is often referenced as a marker of executive
function (Egner and Hirsch, 2005). When interpreting the effect
of HRV on reaction times, the overall sympathovagal balance
suggested the minimum reaction time at a sympathetically
dominated balance. With the estimated minimum reaction
time at LF/HF 11.61, this could be interpreted as the fastest
reaction times occurring when the autonomic state is at
predominantly (92%) sympathetic response. It should also
be noted that while our results were generally statistically
significant, autonomic state only explained approximately 10–
20% of the overall variability observed in flow scores. While
not able to fully account for changes in flow, our results
suggest that autonomic state at least partially influences the flow
experience. Other unaccounted factors, such as mindset or task
familiarity, may play important roles in further determining the
flow relationship.

The finding of increased arousal in autonomic states
correlating with improved task performance is supported
by several studies. In a study on executive function using
a similar Stroop color test, increased sympathetic tone
was associated with faster response times in color naming
(Mathewson et al., 2010). Other studies have demonstrated that
invoking a higher stress response can also increase cognitive
performance. In a study on perceived threat of electric shock,
subjects with increased anxiety demonstrated faster reaction
time in executive tasks under the threat of unpredictable
shocks to the hand (Cantelon et al., 2018). In studies on
physical exertion in athletes, higher stress responses from
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exertion were associated with faster reaction times (Luft et al.,
2009; Murray and Russoniello, 2012).

Limitations
There are two main limitations to the external validity of our
pilot study. Since estrogen levels can affect HRV during the
stress response, we chose to limit our participant enrollment
to male participants in order to minimize hormonal variability.
Therefore, we may have limited generalizability to females.
Future studies should validate our findings in a female
population. Secondly, our findings are limited based on a
relatively small pilot study. Replication of these findings should
be attempted in a future on a larger sample size.

Use of LF/HF as a measure of sympathovagal balance has been
highly debated (Eckberg, 1997; Billman, 2013), but despite this
challenge, recent studies on stress response still use LF/HF as a
marker for sympathovagal balance (Lennartsson et al., 2016; Cao
et al., 2019). von Rosenberg et al. (2017) has proposed a new two-
dimensional method of LF/HF analysis to categorize mental and
physical stresses. This new methodology might be promising for
a future analysis in a larger confirmatory study.

CONCLUSION

When reviewing both executive task function and flow
experience, both indices appeared to be maximized at
approximately 90% sympathetic state. To our knowledge, this
is the first study to suggest U-shaped relationships existing
simultaneously for both flow experience and executive task
function, suggesting that optimal performance may be associated
with predominant, but not total, sympathetic response. Our
findings are based on a small pilot so the results should
be approached with caution. However, they do provide a
preliminary foundation to understand the practical applications
of autonomic modulation to potentially enhance performance
during high-stress situations.
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