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Abstract

Background: South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination
therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010,
ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-
TB is not currently known.

Methods: We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases
collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance
patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations.

Results: Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in
three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold
from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug
resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape,
affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring
resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and
capreomycin.

Conclusions: XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the
standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate
adaptation of standard treatment regimens for M/XDR-TB in South Africa.
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Introduction

The emergence of multidrug-resistant (MDR) and extensively

drug-resistant (XDR) tuberculosis (TB) threatens disease control

efforts throughout the world [1–3]. Drug-resistant TB may be

acquired if bacteria harbouring spontaneously emerging drug

resistance mutations (Table 1) are positively selected due to e.g.

inadequate treatment regimens, poor drug quality or patient non-

compliance [2,4–6]. Alternatively, drug-resistant TB may also

occur through the transmission of already resistant strains; termed

primary resistance. High rates of primary resistance reflect, poor

transmission control essentially due to delays in drug susceptibility

testing and initiation of appropriate treatment [2,5].

Globally, in 2011, there were an estimated 310,000 incident

cases of MDR-TB among cases reported to have tuberculosis of

which 9% were XDR-TB [3,4]. Increasing incidence rates for
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MDR-TB were recorded in several settings with South Africa

being among the most severely affected countries [1,7,8]. In South

Africa, 10% of all TB cases are believed to be MDR-TB of which

again one-tenth are XDR-TB [1,7,8]. Highest rates of MDR and

XDR-TB were notified for the Western Cape, Eastern Cape and

KwaZulu-Natal provinces [9] with treatment success rates below

50% for MDR-TB and considerably poorer outcomes for XDR-

TB [10,11]. There is convincing evidence that MDR-TB in South

Africa is caused mostly by the transmission of MDR strains, as

suggested by well-documented clonal outbreaks and elevated rates

of primary resistance (in some places as high as 80%) among

MDR-TB cases [12–17]. Similarly, transmission of MDR strains is

likely to be a main driver of MDR-TB in many other high-burden

countries [2,5,18].

New TB patients in South Africa are treated according to WHO

guidelines with isoniazid (H), rifampicin (R), ethambutol (E) and

pyrazinamide (Z) [19]. Since 2002, MDR-TB treatment is also

standardized and until 2010 included a fluoroquinolone (FQ;

mostly ofloxacine [Ofx]), kanamycin (Km), ethionamide (Eto), E

and Z [20]. This regimen neglected high proportions of E and Z

resistance among MDR-TB cases and cross-resistance to Eto if

infecting strains previously acquired an inhA promoter mutation

(Table 1) [21,22]. An only marginally improved MDR-TB

regimen was implemented in 2010, which replaced E with

cycloserine or terizidone (Cs/Trd) [20]. Standardized chemother-

apy for MDR-TB is necessary in resource-limited settings where

drug susceptibility testing (DST) cannot be performed regularly

[19]. The design of standardized regimens however, requires the

prior determination of the spectrum of resistances present in the

community [19]. Culture-based resistance surveys not incorporat-

ing strain genotyping data do not enable examining whether

detected resistances are transmitted jointly (by the same strain) or

independently (by different strains). The absence of this knowledge

has important implications for the design of standardized

treatment regimens.

Previous studies in South Africa observed an association of

specific genotypes of M. tuberculosis with XDR-TB [23]. Specifi-

cally, the R220 genotype, a subgroup of the typical Beijing family

of strains, the R86 genotype, a subgroup of ‘‘atypical’’ Beijing

strains and the F15/LAM4/KZN genotype, a subgroup of the

LAM4 family, were identified as commonly transmitted drug-

resistant strains in the Western Cape, Eastern Cape and KwaZulu-

Natal, respectively [15,16,23–26]. In order to elucidate whether

and how standardized treatment impacted the strain population

structure of drug-sensitive and drug-resistant M. tuberculosis in

South Africa, we characterized in detail an extensive collection of

clinical TB isolates from these provinces and analyzed resistance

patterns of XDR-TB associated strains.

Materials and Methods

Ethics statement
This study was approved by the Ethics Committees of

Stellenbosch University and the University of KwaZulu-Natal.

The Stellenbosch Health Research Ethics Committee approved a

waiver of consent for the retrospective genotypic analysis of

routinely collected M. tuberculosis isolates after patient identifiers

were removed. The University of KwaZulu-Natal Ethic Commit-

tee approved the prospective collection and genotyping of M.

tuberculosis isolates after obtaining written consent.

Study population, routine culture and drug susceptibility
testing

A comprehensive sample of clinical drug-resistant TB isolates

collected during different time periods from the whole area of the

Western Cape, Eastern Cape and KwaZulu-Natal province were

analysed (Figure 1). Only one isolate per patient was included in

the study. Subsets of this sample collection were used previously to

describe the population structure of MDR M. tuberculosis strains in

these provinces [23] and drug resistance mutations of strains of the

Eastern Cape Province [27]. These isolates characterised formerly

were further complemented with a comparable, random sample of

diagnosed drug-sensitive and mono-/poly-resistant isolates in

order to analyse a larger spectrum of resistance patterns and a

Table 1. Drug resistance-associated genetic regions analyzed.

Genetic region Region covered* No. of base-pairs Resistance

katG gene 2154968…2155387 420 H

inhA promoter 1673261…1673506 246 H, Eto

rpoB gene 760822…761258 437 R

embB gene 4247302…4247561 260 E

pncA gene 2288652…2289266 615 Z

rrs gene (around nucleotide position 513) 1472283…1472852 570 S

rrs gene (around nucleotide position 1401) 1473184…1473373 190 Km, Am, Cm

gyrA gene 7355…7698 344 Many FQs, e.g. Ofx

*Genetic region covered by PCR with respect to nucleotide positions in H37Rv.
H: Isoniazid.
Eto: Ethionamide.
R: Rifampicin.
E: Ethambutol.
Z: Pyrazinamid.
S: Streptomycin.
Km: Kanamycin.
Am: Amikacin.
Cm: Capreomycin.
FQ: Fluoroquinolone.
Ofx: Ofloxacin.
doi:10.1371/journal.pone.0070919.t001
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wider geographical area compared to previous studies. Routine

culture and DST was performed at the National Health

Laboratory Service (NHLS) in the respective provinces as

described previously [23]. The location of healthcare facilities

attended by the TB patients was recorded to analyze the

geographical distribution of M. tuberculosis genotypes identified.

Definition of drug resistance groups
M. tuberculosis isolates were classified into different drug

resistance groups based on routine DST [23]. Drug-sensitive

isolates were susceptible to all drugs tested (at least H and R).

Mono-/Poly-resistant isolates were resistant to one or multiple

first-line anti-TB drugs but were not MDR. MDR and XDR

isolates were classified according to WHO definitions [19]. Pre-

XDR-TB isolates were defined as MDR-TB isolates with

additional resistance to either a FQ or a second-line injectable

drug (Km, amikacin [Am] or capreomycin [Cm]) but not both.

The MDR sensu stricto (s.s.) group excluded identified pre-XDR

and XDR isolates from MDR isolates.

Genotypic characterization
Initial genotyping of random samples of M. tuberculosis isolates

was done by spoligotyping according to the protocol described by

Kamerbeek et al [28] and the isolates were grouped into

recognized strain families by comparison to previously reported

spoligotype patterns [29,30]. A randomly selected subset of Beijing

isolates from all drug resistance groups from the Western and

Eastern Cape and a subset of only drug-sensitive Beijing isolates

from KwaZulu-Natal were further differentiated into typical

and ‘‘atypical’’ Beijing isolates by PCR (Figure 1) [14].

Computer-based random sampling was applied to randomly

select isolates. Based on similar IS6110 RFLP patterns and

whole genome sequencing data it was previously established that

‘‘atypical’’ Beijing strains in the Western and Eastern Cape

represent one single genotype herein referred to as R86

[14,25,31]. Typical Beijing isolates from the Western Cape

were distinguished into R220 and non-R220 isolates by PCR

(Figure 1) [32]. LAM4 isolates from KwaZulu-Natal were

differentiated into F15/LAM4/KZN and other LAM4 isolates

by IS6110 RFLP analysis (Figure 1) [16]. A random subsample

of identified MDR R86 isolates from the Eastern Cape was

tested for the presence of drug resistance mutations in the inhA

promoter and the genes katG, rpoB, pncA, embB, rrs and gyrA by

PCR amplification of genetic regions commonly observed to

harbour resistance mutations and subsequent sequencing of

these PCR products (Table 1, Figure 1) [33–37]. Similarly, data

from an extensive collection of drug-resistant isolates from the

Western Cape was reviewed for records on Beijing isolates

tested for the presence of resistance mutations in the same

genetic regions (Table 1, Figure 1). However, no data on

streptomycin resistance mutations in rrs were available (Table 1).

Isolates with identical drug resistance mutation patterns were

grouped by pncA mutations, which are highly diverse and may

allow identifying genetically related groups of strains [27].

Figure 1. Selection of study population. Grey boxes indicate sample sets used to analyze the strain population structures in the three South
African provinces. Boxes with striped pattern indicate sample sets used to characterize drug resistance mutation patterns among XDR-TB associated
genotypes. a) Computer-based random sampling was applied. b) Review of an extensive collection of data generated within multiple previous studies.
doi:10.1371/journal.pone.0070919.g001
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Results

Molecular characterization of a random sample of 4,667

clinical TB isolates collected from the whole area of the Western

Cape, Eastern Cape and KwaZulu-Natal provinces of South

Africa revealed an increasing predomination of a single

genotype of strains from drug-sensitive to XDR-TB, in each

of the three provinces (Figure 2). In the Eastern Cape and

KwaZulu-Natal, the proportion of isolates belonging to the R86

and the F15/LAM4/KZN genotype, respectively, underwent a

27- and 44-fold increase from drug-susceptible to XDR-TB and

accounted for 95% and 72% of all XDR-TB cases (Figure 2,

Table S1). In the Western Cape, the percentage of R86 isolates

also increased significantly from drug-sensitive to XDR-TB

cases. However, a previous study indicated that R86 isolates

detected in the Western Cape, may to a large extent represent

TB patients from the economically depressed Eastern Cape

seeking treatment in the more affluent Western Cape [23].

Thus, if R86 isolates are disregarded, the R220 genotype most

strongly contributes to drug-resistant TB in the Western Cape,

in line with previous results [15]. Noteworthy, R220 isolates

expand significantly in proportion (24-fold) from drug-sensitive

to mono-/poly-resistant TB (Figure 2, Table S1).

Genotypes predominant in XDR-TB were infrequently detect-

ed among drug-sensitive TB cases (Figure 2). In all three provinces

investigated, R220, R86 and F15/LAM4/KZN strains accounted

for less than 5% of the drug-sensitive TB cases, making them

considerably less abundant than the typical Beijing, LAM3 and T1

genotypes, which each represented between 10% and 41% of all

drug-sensitive isolates (Table S1). Interestingly, while the strain

population structure among MDR-TB isolates was fundamentally

different between the three provinces [23], it appeared to be

similar for drug-sensitive isolates (Figure 2).

Drug resistance patterns of XDR-TB associated genotypes were

analysed by assessing the presence of commonly observed

resistance mutations in the inhA promoter and the genes katG,

Figure 2. Strain population structure of drug-sensitive (DS), mono-/poly-resistant (DR), sensu stricto multidrug-resistant (MDR s.s.;
excluding identified pre-XDR and XDR isolates), pre-extensively drug-resistant (pre-XDR) and extensively drug resistant (XDR)
isolates in three provinces of South Africa. The R220, R86 and F15/LAM4/KZN genotypes, respectively, represent a subgroup of the typical
Beijing, ‘‘atypical’’ Beijing and LAM4 family [14–16,22–24]. Based on similar IS6110 RFLP patterns and whole genome sequencing data it was
previously shown that ‘‘atypical’’ Beijing strains in the Western and Eastern Cape, unlike in other parts of the world, represent one single genotype
herein referred to as R86 [23,25,27]. The specific presence of R220 and F15/LAM4/KZN genotypes was only assessed in the Western Cape and
KwaZulu-Natal, respectively, where these genotypes were known to be frequent among XDR-TB cases [22].
doi:10.1371/journal.pone.0070919.g002
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rpoB, pncA, embB, rrs and gyrA (Table 1). A random sample of 193

MDR isolates of the R86 genotype from the Eastern Cape and 41

conveniently selected MDR isolates from the Western Cape

representing a variety of different Beijing genotypes (R86, R220

and other typical Beijing strains) were selected (Figures 1, 3 and 4).

Apart from H and R resistance mutations, various additional

resistance-conferring mutations were detected. Moreover, muta-

tion patterns were highly clustered (Figures 3 and 4). Most

strikingly, 69% of the R86 isolates from the Eastern Cape analyzed

(133/193 MDR isolates analyzed) harboured as many as seven

identical resistance mutations in the inhA promoter and the genes

katG, rpoB, pncA, embB and rrs suggesting that this cluster represents

a commonly transmitted pre-XDR strain resistant to at least H, R,

Z, E, S, Eto, Km, amikacin (Am) and capreomycin (Cm) (Table 1,

Figure 3) [23,27]. XDR-TB cases that have emerged from

infection with this strain showed a variety of different gyrA

mutations, suggesting that FQ resistance was acquired subse-

quently and perhaps due to the mismanagement of primary pre-

XDR-TB. Nevertheless, a sub-group of 44 isolates showed for

example an identical gyrA D94G mutation, potentially indicating

community spread of XDR strains (Figure 3).

A second cluster representing 17% of the R86 isolates from the

Eastern Cape (32/193 MDR isolates analyzed), was characterized

by identical mutations in katG, rpoB, pncA, embB and rrs conferring

resistance to H, R, Z, E and S (Table 1; Figure 3) [27].

Presumably, a sub-branch of this strain subsequently acquired

resistance to Eto through an inhA promoter mutation [38], to Km,

Am and Cm through an additional mutation in rrs [39,40] and

finally to FQs due to the acquisition of a gyrA A90V resistance

mutation (Figure 3) [6,41].

Analysis of the drug resistance mutation patterns of a

convenience sample of 41 MDR Beijing isolates from the Western

Cape, revealed that the two major R86 clusters detected in the

Eastern Cape were also present in this province, albeit at a

different relative frequency (Figures 3 and 4). For the remaining

R220 and other typical Beijing isolates analyzed, clustered

mutation patterns for at least pncA and embB were found in 8 out

of 16 cases (Figure 4), indicating a widespread combined presence

of Z and E resistance among these strains, in the Western Cape.

The clusters of strains defined above by genotype and drug

resistance mutation patterns (Figures 3 and 4) were geographically

widespread within the Eastern and Western Cape (Table 2),

indicating historical spread. In the Eastern Cape, the two

predominant clusters among MDR isolates of the R86 genotype

were detected in four and three different municipal districts,

respectively. In the Western Cape, despite the small sample size,

Figure 3. Drug resistance mutation pattern in a random selection of 193 MDR R86 isolates from the Eastern Cape. Different colours
indicate different drug resistance associated genes. The area of the circles is proportional to the number of isolates (indicated in the centre of each
circle) harbouring an identical drug resistance mutation for the respective resistance gene as well as all circles connected to the left. Principal
branches of the tree were defined by resistance mutations in pncA. Other first-line drug resistance mutations were connected by logical deduction to
maximize clustering and were followed by second-line resistance mutations. However, the order of acquisition of resistance mutations may remain
debatable in some cases.
doi:10.1371/journal.pone.0070919.g003
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isolates of four out of five clusters as defined by distinct pncA

mutations were identified in more than one district (Table 2).

Discussion

The present data shows a strong association between distinct

strain genotypes and the emergence of XDR-TB in three

neighbouring provinces of South Africa [23]. XDR-TB associ-

ated genotypes were infrequently found among drug-sensitive

TB cases, of which typical Beijing, LAM3 and T1 were the most

prevalent genotypes in all three provinces (Figure 2). This

observation is counterintuitive, if it was supposed that the

proportion of genotypes causing XDR-TB was a result of

random fluctuations. Under such conditions it would be

plausible to assume that genotypes predominant among drug-

sensitive TB cases would have been more likely to become

overrepresented among XDR-TB cases (Table 2, Figure 2).

Instead, the association of the R220, R86 and F15/LAM4/

KZN genotypes with XDR-TB suggests an increased ability of

these strains to acquire multiple drug-resistance mutations or to

transmit as drug-resistant strains. However, the relatively distant

phylogenetic relationship of these XDR-TB associated strain

genotypes [42,43] argues against the possibility of genetic

background accounting for this observation.

Drug resistance mutation patterns of isolates of XDR-TB

associated genotypes in the Eastern and Western Cape provinces

were highly clustered (Figure 3). Unfortunately, isolates of the

XDR-TB associated F15/LAM4/KZN genotype in KwaZulu-

Natal were not further characterized within this study and

therefore the relationship between genotype and clustering could

not be evaluated. However, in line with our observations for the

Western and Eastern Cape, a previous whole genome sequence

analysis of nine XDR F15/LAM4/KZN isolates from patients of

different settings in KwaZulu-Natal revealed nearly identical

genome sequences including matching drug resistance mutations

[26]. Together, this data suggests that in South Africa, XDR-TB

emerges mainly due to ongoing transmission of specific MDR s.s.

or pre-XDR genotypes that are sub-optimally treated by

programmatic treatment regimens, or partly, directly through

the transmission of XDR strains of these genotypes [11,25,27].

It is likely however, that our analyses convey a relative

overestimate of the proportion of transmission of primary pre-

XDR and XDR strains as the Km/Am/Cm resistance mutation

(rrs 1401 ARG) and the FQ resistance mutations (gyrA D94G and

Figure 4. Drug resistance mutation pattern in a convenience sample of 41 MDR Beijing isolates from the Western Cape. No data was
available for the streptomycin resistance determining region in rrs (Table 1). For more information see figure legend of Figure 3.
doi:10.1371/journal.pone.0070919.g004
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the gyrA A90V) detected among the largest clusters of isolates,

belong to the most frequently observed resistance mutations for

these drugs [6,44]. Indeed, for the Km/Am/Cm resistance

mutations observed in rrs, only a very low diversity was observed

(Figures 3 and 4) [39,40]. Thus, it is likely that these mutations

have been acquired independently multiple times among clustered

isolates and clustering may not (or to a lesser extent) represent the

clonal spread of pre-XDR and XDR strains.

Even if FQ and Km/Am/Cm resistance mutations in gyrA and

rrs are disregarded, 72% (139/193) and 8% (15/193) of the MDR

R86 isolates from the Eastern Cape belonged to one of two major

clusters of isolates harbouring identical resistance mutations to at

least H, R, Z, E, S and Eto (Figure 3). Similarly, altogether 63%

(26/41) of the MDR Beijing isolates from the Western Cape tested

belonged to one of altogether five clusters of isolates with identical

resistance mutations to at least H, R, Z, E, and Eto (Figure 4).

Given this data and the frequency distribution of different

genotypes among MDR-TB cases (Table 2), we can estimate that

at least 48% and 28% of all MDR-TB cases in the Eastern and

Western Cape, respectively, were caused by a strain resistant to at

least H, R, Z, E, S and Eto at the time of infection. Considering

published whole genome sequences of XDR F15/LAM4/KZN

isolates [26] and if FQ and Km/Am/Cm resistance mutations are

disregarded, this genotype also shows primary resistance to at least

H, R, E, Z, S and Eto and accounts for 26% of all MDR-TB cases

in KwaZulu-Natal (Table 2). Importantly, since only specific

XDR-TB associated genotypes were analyzed, the proportion of

MDR-TB cases with resistances to additional anti-TB drugs than

H and R may be even higher.

Given the standard MDR-TB drug regimens in South Africa

(currently consisting of Ofx, Km, Eto, Trd/Cs and Z) and if

excluding rrs and gyrA mutations, TB patients infected with these

strains are exposed to three effective drugs only (Ofx, Km and Cs/

Trd); this is less than the four effective drugs recommended by the

WHO [45]. If many of these transmitting strains in fact also

harboured a primary rrs 1401 ARG mutation, the treatment

regimen would consist of two effective drugs only. Under these

conditions, even the standardized XDR-TB treatment regimen in

South Africa, currently consisting of moxifloxacin, Cm, Eto, para-

aminosalicylic acid and Cs/Trd would be inappropriate to treat

infected patients [20]. Noteworthy, the previous MDR-TB

regimen endorsed until 2010, which used E instead of Cs/Trd,

Table 2. Geographical distribution of selected clusters of isolates.

Province Genotype Drug resistance mutation pattern Municipal District NIsolate %

EC R86 katG S315T/rrs 513 ARC/pncA C14R/rpoB S531L/embB M306I Amathole 19 59.4

Nelson Mandela Bay 12 37.5

OR Tambo 1 3.1

EC R86 katG S315T/rrs 513 ARC/pncA C14R/rpoB S531L/embB M306I/inhA
promoter -15 CRT/rrs 1401 ARG/gyrA A90V

Amathole 7 70.0

Nelson Mandela Bay 2 20.0

OR Tambo 1 10.0

EC R86 katG S315T/rrs 513 ARC/pncA 172 G insertion/inhA promoter -17
GRT/embB M306I/rpoB D516V/rrs 1401 ARG

Amathole 30 22.6

Cacadu 12 9.0

Chris Hani 1 0.8

Nelson Mandela Bay 90 67.7

EC R86 katG S315T/rrs 513 ARC/pncA 172 G insertion/inhA promoter -17
GRT/embB M306I/rpoB D516V/rrs 1401 ARG/gyrA D94G

Amathole 9 20.5

Cacadu 3 6.8

Chris Hani 1 2.3

Nelson Mandela Bay 31 70.5

WC R86 pncA C14R/inhA promoter -15 CRT/rpoB S531L/embB M306I/katG
S315T/rrs 1401 ARG

Cape Town 12 92.3

Eden 1 7.7

WC R86 pncA 172 G insertion/inhA promoter -17 GRT/rpoB D516V/embB
M306I/katG S315T/rrs 1401 ARG

Cape Town 3 75.0

Eden 1 25.0

WC R220 inhA promoter -15 CRT/rpoB S531L/pncA Y103Stop Cape Town 2 66.7

Overberg 1 33.3

WC R220 inhA promoter -15 CRT/pncA 153 large deletion/embB M306V Cape Town 2 66.7

Cape Winelands 1 33.3

WC Other typical
Beijing

katG S315T/rpoB S531L/pncA T100I/embB M306I Cape Town 3 100.0

EC: Eastern Cape Province.
WC: Western Cape Province.
Nisolate: Number of isolates of a cluster detected in the municipal district indicated.
%: Proportion of isolates of a cluster detected in the municipal district indicated.
doi:10.1371/journal.pone.0070919.t002
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resulted in an even higher chance of resistance development as it

consisted of only two or one effective drug, respectively. This clearly

demonstrates the inadequacy of current treatment regimens in

South Africa to prevent spread of XDR-TB associated strains and

calls for an immediate adaptation of MDR treatment algorithms.

Moreover, our findings highlight the urgent need for rapid first- and

second-line DST for all TB cases at treatment onset.

A likely scenario for the evolution of XDR-TB associated strains

in South Africa is depicted in Figure 5. It could be speculated that

the use of non-standardized drug regimens before 2002 facilitated

the emergence and transmission of strains with different resistance

patterns. Possibly, the implementation of standardized MDR-TB

treatment subsequently promoted the spread of strains harbouring

resistances against which the regimen was less effective. These

strains could have emerged originally as early as in the 1950’s

when TB treatment was not well controlled and mostly included

H, S and para-aminosalicylic acid only [46]. This is supported by

the very widespread presence of identical H and S resistance

mutations in isolates from the Eastern Cape, indicating that these

mutations were acquired at an initial stage (Figure 3). However,

importantly, improved TB control and standardized MDR-TB

treatment probably curbed the emergence of new resistant strains

and transmission of strains harbouring unfavourable resistance

patterns. Thus, the programmatic use of an only variably effective

MDR-TB treatment regimen could explain the predomination of

only a few strain families among XDR-TB cases. Although an

impact of strain genetic background on the propensity to develop

MDR/XDR-TB has been suggested [47], according to this model,

the acquisition of advantageous resistance patterns would have

occurred by chance and independent of strain genetic background,

explaining the association of different, distantly related genotypes

with XDR-TB in different provinces. Associations of a few specific

genotypes with MDR and XDR-TB were observed in several

countries throughout the world [48–51], suggesting similar

mechanisms for the emergence of XDR-TB.

This work highlights the value of molecular epidemiological

tools to perform drug resistance surveys and to decipher how

individual resistances may be linked and transmitted. Moreover,

this data will help designing more effective and urgently needed

MDR-TB treatment regimens for South Africa. Failure to do so

will rapidly enhance spread and amplification of resistance among

XDR-TB associated strains.
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