Comparisons of Characteristics Based on Ordinal Scale at Day 30

Table 1.	Comparisons of	Characteristics Based	on Ordinal	Scale at Day 30

Characteristic	Ordinal Scale	Ordinal Scale	Ordinal Scale	P value
	1-4	5-7	8	
	(n = 6)	(n = 9)	(n = 13)	
Age, years (median)	63.5	62	71	0.022
Male, no. (%)	3 (50%)	8 (89%)	9 (69%)	0.273
Race, no. (%)	1011210010121	100.000		0.81
- Black	2 (33%)	6 (66.7%)	7 (54%)	
- White	2 (33%)	1 (11%)	3 (23%)	
- Hispanic	0	0	1 (7.5%)	
- Other	2 (33%)	2 (22%)	2 (15.4)	
BMI, kg/m ² (median)	28.75	31.9	26.4	0.157
Co-morbidities, no. (%)				
 Lung disease 	1 (16.7%)	5 (55.6%)	7 (54%)	0.302
 Immunodeficiency 	1 (16.7%)	1 (11%)	1 (7.7%)	1
 Cardiovascular disease 	0	3 (33%)	3 (23%)	0.346
 Chronic kidney disease 	1 (16.7)	7 (77.8%)	8 (61.5%)	0.087
- COPD	0	1(11.1%)	3 (23%)	0.52
 Hypertension 	3 (50%)	7 (77.8%)	8 (61.5)	0.607
- Asthma	0	2 (22%)	0	0.134
- Cancer	0	0	2 (15.4%)	0.69
- Diabetes	2 (33.3%)	6 (66.7%)	6 (46.2%)	0.501
Number of days after positive	10 (7-13)	28 (8-31)	15 (8-16)	0.369
PCR test to date of receiving CP	and the second second second			
(median, IQR)				
Treatments, no. (%)				
 Hydroxychloroquine 	5 (83%)	7 (78%)	9 (69%)	1
- Azithromycin	0	2 (22%)	1 (7.7%)	0.571
- Doxycycline	1 (16.7%)	6 (67%)	8 (62%)	0.136
 Methylprednisolone 	3 (50%)	7 (77.8%)	10 (77%)	0.484
- Prednisone	4 (66.7%)	5 (55.6%)	7 (54%)	1
- Remdesivir	2 (33%)	1 (11%)	3 (23%)	0.619
mSOFA on admission (median)	2.5	5	6	0.056

CP Convalescent Plasma; IQR interquartile range; BMI Body Mass Index; COPD Chronic Obstructive Pulmonary Disease; mSOFA Modified Sequential Organ Failure Assessment

Comparisons of Outcomes Based on Ordinal Scale at Day 30

Table 2. Comparisons of Outcomes Based on Ordinal Scale at Day 30

Characteristic	Ordinal Scale	Ordinal Scale	Ordinal Scale	P value
	(n = 6)	(n = 9)	(n = 13)	
Clinical status (median)				
- On admission	5	5	6	0.062
 On day 1 of CP 	6	7	7	0.005
- On day 3 of CP	5.5	7	7	<.001
- On day 7 of CP	2.5	7	8	<.001
- On day 30 of CP	1.5	7	8	<.001
CRP, mg/dL (median)				
- On admission	11.7	11.6	13.3	0.505
 On day 1 of CP 	2.75	14.4	8.4	0.039
- On day 3 of CP	3.5	10.1	13.65	0.312
 On day 7 of CP^b 	6	14.4	15.1	0.314
Absolute lymphocyte count, K/uL				
(median)				
- On admission	0.7	0.7	0.6	0.862
 On day 1 of CP 	0.8	0.7	0.5	0.292
 On day 3 of CP 	1.25	1	0.43	0.004
 On day 7 of CP^b 	1.20	0.9	0.7	0.770
D-Dimer, ug/mL (median)				
 On admission 	0.94	1.91	2.3	0.225
 On day 1 of CP 	1.89	6.94	5.36	0.071
 On day 3 of CP 	1.86	9.3	20	0.081
 On day 7 of CP^b 	3.21	3.83	6.96	0.417
Ferritin, ng/mL (median)				
 On admission 	574	499	553	0.712
 On day 1 of CP 	671	770	850	0.492
 On day 3 of CP 	691	600	615	0.986
 On day 7 of CP^b 	-	1233	562	0.157

[°Clinical status using ordinal scale: 8) Death, 7) Hospitalized, on invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO), 6) Hospitalized, on non-invasive ventilation or high flow oxygen devices, 5) Hospitalized, requiring supplemental oxygen, 4) Hospitalized, not requiring supplemental oxygen – requiring ongoing medical care, 3) Hospitalized, not requiring supplemental oxygen – no longer requires ongoing medical care, 2) Not hospitalized, limitation on activities and/or requiring home oxygen, 1) Not hospitalized, no limitation on activities.]

Conclusion: Patients who have a lower ordinal scale score on the date of CP administration are most likely to have meaningful survivorship at day 30. Future studies should evaluate optimal timing and outcomes for CP therapy in COVID-19. *Disclosures:* All Authors: No reported disclosures

552. Could Anticoagulant Use Prior to Infection with COVID-19 Decrease Mortality?

Kayla M. Natali, PharmD, AAHIVP¹; Kok Hoe Chan, MD¹; Liana Atallah, MD, MPH¹; Sindhu Nagarakanti, n/a²; Jihad Slim, MD¹; ¹Saint Michael's Medical Center, Montville, NJ; ²Saint Michael's Medical Center, Basking Ridge, New Jersey

Session: P-21. COVID-19 Treatment

Background: The novel coronavirus (COVID-19) has resulted in substantial morbidity and mortality worldwide. Infection with COVID-19 has been associated with coagulopathy and inflammation. This prothrombotic state has been identified in the literature as an indicator of poor prognosis and those with COVID-19 who receive anticoagulation therapy may have better outcomes. Due to this prothrombotic state, patients who are currently receiving anticoagulation therapy for other indications prior to infection with COVID-19 may have better outcomes.

Methods: This was a retrospective case control study conducted at an inner city hospital. Patients were eligible if they were hospitalized between March 15, 2020 and May 15, 2020 and had confirmed infection due to COVID-19. Patients were matched by age, sex, body mass index (BMI), diabetes mellitus (DM), hypertension (HTN) and estimated glomerular filtration rate (eGFR) by chronic kidney disease (CKD) state. This study evaluated morality in patients who were receiving long term anticoagulation therapy prior to infection with COVID-19 compared to those who were not.

Results: Of the 436 patients hospitalized with confirmed infection due to COVID-19, 400 were eligible for analysis. Twenty-two were on anticoagulation therapy prior to admission. Among those patients, 68% were male and 32% were female. The majority of the patients were greater than 60 years of age (82%). Comorbidities were present in 21 patients and were as follows: HTN (95%), CKD (67%), DM (57%), obesity (36%). Of the 22 patients, five expired due to COVID-19 infection compared to 52 patients from the 149-patient matched cohort [z-score 1.13, p = 0.26; odds ratio (OR) 1.82; 95% confidence interval [CI], 0.69–4.71].

Conclusion: Prior long-term anticoagulation use does not appear to have a protective effect in patients with COVID-19 infection. Studies with larger sample size will be needed to answer this important question.

Disclosures: Jihad Slim, MD, Abbvie (Speaker's Bureau)Gilead (Speaker's Bureau)Jansen (Speaker's Bureau)Merck (Speaker's Bureau)ViiV (Speaker's Bureau)

553. Critically Ill patients Receiving Tocilizumab Compared With Those Not Receiving Tocilizumab for Treatment of COVID-19

Michael Leonard, MD¹; anthony Asher, BA²; Banks Kooken, BS²; Erin Donahue, PhD³; james Symanowski, PhD⁴; Danya Roshdy, PharmD, BCPS, BCIDP¹; jennifer onsrud, PharmD¹; Saad Umani, MD⁵; edward Copelan, MD⁵; zainab shahid, MD⁴; ¹Atrium Health, Charlotte, North Carolina; ²UNC School of Medicine, Charlotte, North Carolina; ³Levine Cancer Center, charlotte, North Carolina; ⁴Levine cancer Institute, charlotte, North Carolina; ⁵Levine Cancer Institute, charlotte, North Carolina

Session: P-21. COVID-19 Treatment

Background: Background::

Immune modulation in patients with clinical features suggestive of a cytokine release syndrome (CRS) has become a pharmacologic target for potential treatment of COVID-19 and prevention of ARDS. Tocilizumab is an IL-6 receptor blocker FDA-approved for chimeric antigen receptor (CAR) T cell-induced severe or life-threatening CRS. The objective of this study was to describe clinical outcomes associated with tocilizumab compared with those not receiving tocilizumab in critically ill patients with severe COVID-19. *Methods:*

Retrospective case series of 49 adult patients admitted to an intensive care unit with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients receiving tocilizumab were compared with those not receiving tocilizumab. The primary outcome was clinical improvement (decrease in supplemental oxygen requirement, discharge from ICU, or live discharge from hospital). Secondary endpoints included mortality and frequency of extubation. All comparative endpoints were assessed at 2 weeks after ICU admission.

Results: Results:

49 patients were identified with SARS-CoV-2 who were admitted to an ICU, 16 received tocilizumab. Baseline characteristics were similar; most were African American males with comorbidities such as obesity, cardiovascular disease, and diabetes. The time from symptom onset to positive test and subsequent intubation were similar (4 and 7 days, respectively). 75% received one dose (all received 8 mg/kg). The median time from symptom onset to tocilizumab administration was 11 days.

In patients receiving tocilizumab compared with those not receiving tocilizumab, there were similar rates of clinical improvement (44% versus 61%, p=0.27), extubation (31% versus 45%, p=0.60), and mortality (18% versus 19%, p >0.99, respectively). 81% of the tocilizumab group had resolution of fever and 75% had improvement in C-reactive protein levels.

Conclusion: Conclusion:

In this study of patients with progressed disease, outcomes were similar regardless of receipt of tocilizumab. Randomized controlled trials are needed to assess the impact of earlier administration and identify clinical characteristics to assist with selection of appropriate patients who may benefit from tocilizumab.

Disclosures: All Authors: No reported disclosures

554. Early Clinical Outcomes with Tocilizumab for Covid-19: A Two-Center Retrospective Study

Steven Smoke, PharmD¹; Karan Raja, PharmD²; Patrick Hilden, MS³; Nicole Daniel, PharmD²; ¹Jersey City Medical Center, Union, NJ; ²Clara Maass Medical Center, Belleville, New Jersey; ³Saint Barnabas Medical Center, Livingston, New Jersey

Session: P-21. COVID-19 Treatment

Background: Severe Covid-19 is associated with elevated inflammatory markers, consistent with cytokine release syndrome (CRS). Tocilizumab is an IL-6 inhibitor,