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Abstract: Metformin, the popular anti-diabetic drug was shown to exert multiple biological effects.
The most recent metformin gained attention as an agent that mobilizes endogenous progenitor cells
and enhances regenerative potential of organisms, for example by promoting neurogenesis. In the
present study, we examined the role of metformin on mouse olfactory ensheathing cells (mOECs)
derived from animals receiving metformin for eight weeks at a concentration equal to 2.8 mg/day.
The mOECs expanded ex vivo were characterized in terms of their cellular phenotype, morphology,
proliferative activity, viability and accumulation of oxidative stress factors. Moreover, we determined
the mRNA and protein levels of brain-derived neurotrophic factor (BDNF), distinguishing the
secretion of BDNF by mOECs in cultures and circulating serum levels of BDNF. The mOECs
used in the experiment were glial fibrillary acidic protein (GFAP) and p75 neurotrophin receptor
(p75NTR) positive and exhibited both astrocyte-like and non-myelin Schwann cell-like morphologies.
Our results revealed that the proliferation of OECs derived from mice treated with metformin was
lowered, when compared to control group. Simultaneously, we noted increased cell viability, reduced
expression of markers associated with cellular senescence and a decreased amount of reactive oxygen
species. We observed increased mRNA expression of BDNF and its down-stream genes. Obtained
results indicate that metformin may exert antioxidant, anti-apoptotic and senolytic action on OECs
expanded ex vivo.

Keywords: metformin; olfactory ensheathing cells; brain-derived neurotrophic factor; senolytic;
anti-oxidative

1. Introduction

Currently, metformin (MET) is considered a first-line pharmacological treatment for type 2
diabetes (T2D). Metformin is prescribed to 150 million people each year, thus it is the most commonly
used anti-diabetic orally administered drug [1]. Metformin has been also found to act as a pleiotropic
agent exerting various beneficial effects besides its therapeutic action associated with lowering glucose
level and improving insulin sensitivity [2,3]. Molecular pathways responsible for the metformin effect
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are still poorly understood; however, in vitro and in vivo studies clearly highlighted the fact that
many metformin effects are mediated by a central regulator of energy homeostasis, i.e., AMP-activated
protein kinase (AMPK) [4,5]. Recently, metformin gained attention as an effective next-generation
drug, which can find application in regenerative medicine for the treatment of age-related diseases [6].
Instinctively, the anti-aging effect of metformin was correlated with increased antioxidant protection
and reduction of DNA damage, all of which contribute to improving the regenerative potential of the
body. The observation that metformin can promote adult neurogenesis and enhance spatial memory
formation in mice has raised considerable interest related to the use of this drug in enhancing the
potential of endogenous neural stem cells (NSCs) [7,8]. Moreover, studies of Labuzek et al. [9,10]
showed that orally administered metformin rapidly crossed the blood-brain barrier and was distributed
to various brain regions. It should be noted that metformin is one of only two orally administered
anti-diabetic drugs that have been listed in the 16th World Health Organization Model List of
Essential Medicines. Furthermore, therapeutic strategies include metformin administration for the
treatment of Alzheimer’s disease [3,11,12]. Neuroprotective effects of metformin have been also
confirmed by a recent study of Chen et al. [13] who investigated the effects of anti-diabetic drugs on
hippocampal synaptic plasticity using mice models. These authors showed that metformin could exert
anti-apoptotic effects by decreasing the ratio of caspase-3 fragment/procaspase-3 and increasing the
ratio of Bcl-2/Bax in the hippocampus. A metformin pro-survival effect also involves its influence
on mitochondrial biogenesis; for example, it was shown that metformin inhibited mitochondrial
damage via an AMP-activated protein kinase-dependent pathway in neuronal cells [14,15]. Due to
the fact that the functional and structural mitochondrial defects contribute to the pathogenesis of
neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, it seems that metformin
could ameliorate the plasticity of neuronal cells by modulating mitochondrial biogenesis and affecting
the clearance of mitochondrial reactive oxygen species (ROS) [16,17]. Cellular ROS production
is a common hallmark of apoptosis and senescence processes [18]. The most recent study of
Chen et al. [19] showed that metformin attenuated cellular apoptosis and senescence induced
in nucleus pulposus cells by tert-butyl hydroperoxide, thus metformin may be considered as a
senolytic drug. The role of senescent cells in neurodegeneration and cognitive dysfunction has
been previously shown [18,20]. Moreover, the increased risk of cognitive impairment in diabetes
is also associated with senescence in the brain, however—not only neurons, but also infiltrating
or glial cells [21]. Glial cells (i.e., astrocytes, oligodendrocytes and microglia) normally provide
structural, metabolic and trophic support to neurons, thereby contributing to brain homeostasis [22].
Mansour et al. showed that cultured astrocytes from the brains of ageing rats were positive for the
senescence-associated beta-galactosidase (SA-Bgal) and had reduced ability to support the survival
of co-cultured neurons [23]. Recently, much attention has been paid to another type of glial cells,
i.e., olfactory ensheathing cells (OECs), as a great candidate for the transplant-mediated repair of
central nervous system lesions, especially in spinal cord injuries [24–26]. The major advantages of OEC
application in regenerative medicine are the benefits of their autologous transplantation, that allow for
avoiding immune rejection and, in turn, the immunosuppression, which could raise further risks and
compromise the effectiveness of the transplanted cells [27]. For example, the studies of Tabakow et al.
make a great contribution in this direction, showing that spinal cord injuries can be treated with
autologous human OECs [28]. Additionally, the potential use of olfactory-derived cells is considered in
the research on neurodegenerative disease treatment, as their biology may reflect pathological changes
in the brain [29]. OECs are characterized as an antigenically and morphologically heterogeneous
cell population that expresses glial fibrillary acidic protein (GFAP) and p75 neurotrophin receptor
(p75NTR); this fact led to the suggestion that they resembled astrocytes and non-myelin forming
Schwann cells [24]. As previously shown, metformin can enhance olfactory neurogenesis, resulting in
a significantly increased number of BrdU-positive and NeuN-positive olfactory neurons in the granule
cell layer [7].
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Recent evidence demonstrated that exogenously applied brain-derived neurotrophic factor
(BDNF) promoted migration of cultured OECs, thus it could also contribute to their survival and
synaptic plasticity [30]. However, more importantly, OECs cultured in vitro can secrete BDNF and
other neurotrophic factors, such as nerve growth factor (NGF) [30–33]. Considering the available
data regarding the negative influence of metformin on neurotropic factors [3] and other conflicting
information about the adverse effects of metformin on the brain [34,35], it would be reasonable to
investigate this dual effect on OEC cellular metabolism. Therefore, the aim of this study was to
investigate the effect of metformin treatment on the cellular activity of mice olfactory ensheathing
glial cells. We determined the effect of metformin administration on phenotype, proliferative
capacity, viability and oxidative status of mouse olfactory ensheathing cells (mOECs). Additionally,
we determined mRNA and protein levels of BDNF, thereby differentiating the secretion of BDNF by
mOECs in cultures and circulating levels of BDNF.

2. Results and Discussion

2.1. Cultures of mOECs Derived Ex Vivo from Metformin-Treated and Untreated Animals Show Distinct
Morphological and Phenotypical Features

The evaluation of mOEC morphology revealed that the obtained cultures were morphologically
very heterogeneous and displayed both astrocyte-like and Schwann cell-like morphologies (Figure 1).
Such a dualistic character of OEC cultures in vitro has been observed previously [24,36]. Our analysis
showed that the formation of lamellipodia was more visible in cultures of mOECs derived from MET
animals. A study of Windus et al. [37] showed that the heterogeneity of OECs may be regulated by
motile lamellipodial waves, which are crucial for OECs to recognize and interact with each other.
In addition, time-lapse microscopy analysis revealed that these lamellipodial waves were highly mobile
and determined the OECs migration [38]. The morphology of mOEC cultures evaluated using SEM
showed that the cells isolated from MET mice had well developed cellular connections. The potential
initiation of cell–cell contact by MET could contribute to the improved contact-mediated migration of
OECs, which is crucial for their in vivo function within the olfactory system and migration far into the
injury site [37,39]. The morphological diversity of OECs in cultures in vitro correlated with different
antigen characteristics. GFAP is an intermediate filament associated with glial cells, a typical marker
of OECs of flat astrocyte-like cell bodies. These cells express also an embryonic form of the neural cell
adhesion molecule (E-NCAM), but the expression of p75NTR is very low. In turn, OECs characterized
by a spindle-shape morphotype express high levels of p75NTR, simultaneously demonstrating diffuse
GFAP localization [36]. Our results suggest that metformin may also modulate antigen plasticity of
mOECs, as evidenced by increased expression of p75NTR and decreased expression of GFAP (Figure 2).
The p75NTR marker is highly expressed in glia during development and is induced after many types of
injury. It may also promote cell survival and differentiation by interacting with Trk receptors. On the
other hand, p75NTR may also mediate cell death by interacting with sortilin as a co-receptor in response
to proneurotrophins [40]. Thus, it seems that p75NTR is a hallmark between the end of proliferation
and the beginning of differentiation in a variety of neuronal subpopulations [41]. This also highlights
a crucial aspect of cellular or environmental context of metformin action on mOECs.
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Figure 1. Morphological comparison of mouse olfactory ensheathing cells (mOECs) derived from 
animals of the control group (CTRL, non-treated with metformin) and receiving metformin (MET). 
The cultures were visualized using a phase contrast microscope (PCM; a,b, scale bar = 250 μm). 
Observations of nucleus location and cytoskeleton development were performed using an 
epifluorescent microscope (EpiFM; c–f). Cytoskeleton was stained using phalloidin and nuclei using 
DAPI i.e., 4′,6-diamidine-2′-phenylindole dihydrochloride (merged images, scale bar = 200 μm). SEM 
microphotographs were captured at a magnification of 1000-fold (g,h—scale bar = 20 μm) and 
2000-fold (i,j—scale bar = 10 μm). Morphological features were indicated with respective 
abbreviations: fp: filopodia and lp: lamellipodia. Cells resembling astrocytes were marked with 
white asterisks, while cells with a spindle shape morphotype, resembling non-myelin Schwann cells, 
were marked with red asterisks. 

Figure 1. Morphological comparison of mouse olfactory ensheathing cells (mOECs) derived from
animals of the control group (CTRL, non-treated with metformin) and receiving metformin (MET).
The cultures were visualized using a phase contrast microscope (PCM; a,b, scale bar = 250 µm).
Observations of nucleus location and cytoskeleton development were performed using an
epifluorescent microscope (EpiFM; c–f). Cytoskeleton was stained using phalloidin and nuclei using
DAPI i.e., 4′,6-diamidine-2′-phenylindole dihydrochloride (merged images, scale bar = 200 µm).
SEM microphotographs were captured at a magnification of 1000-fold (g,h—scale bar = 20 µm) and
2000-fold (i,j—scale bar = 10 µm). Morphological features were indicated with respective abbreviations:
fp: filopodia and lp: lamellipodia. Cells resembling astrocytes were marked with white asterisks,
while cells with a spindle shape morphotype, resembling non-myelin Schwann cells, were marked
with red asterisks.
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Figure 2. Immunofluorescence staining of mouse olfactory ensheathing cells (mOECs). The cells 
positive for glial fibrillary acidic protein—GFAP (a,b) and p75NTR (c,d) are stained in green, nuclei are 
counterstained with DAPI. Epifluorescent microscope imaging was performed at a magnification of 
100×, scale bar = 250 μm. The intensity of fluorescence for each marker (e,f) was measured using 
ImageJ software as described in the Materials and Methods section. The results are shown as means ± 
SD. ** p value < 0.01. 

2.2. Metformin Administration in Mice Affects the Proliferative Activity of mOECs Ex Vivo 

We determined metabolic ability, DNA synthesis and clonogenic potential of mOECs to 
investigate whether metformin administration in mice contributes to their ex vivo proliferation 
(Figure 3). The results indicated that mOECs derived from MET animals had impaired proliferative 
activity when compared with OECs from CTRL mice. Decreased proliferation was associated with 
reduced metabolic activity, lowered DNA synthesis, longer population doubling time and disturbed 
clonogenic potential. The analysis of literature shows that various factors can affect the proliferative 
status of OECs, such as the age of donor animal or species from which the tissue is collected [42,43]. 
Generally, the proliferative capacity of OECs in vitro is limited, which is associated with their mitotic 
quiescence upon dissociation [44]. It seems that the identification of factors that could promote their 
activity would be of great interest [24,44]. However, it was noted that prolonged mitogenic 
stimulation of both Schwann cells and OECs may cause spontaneous immortalization of these cells. 
It is assumed that the susceptibility of spontaneous immortalization of rodent OECs is associated 
with enhanced expression of GFAP and lowered expression of p75NTR [45], which is consistent with 
our results. The proliferative activity of OECs may be enhanced by a combination of growth factors, 
for example, neuregulins, fibroblast growth factor 2 (FGF-2) and agents elevating the intracellular 
cAMP level, such as forskolin or dibutyryl-cAMP (dbcAMP) [46]. Anti-diabetic action of metformin 
also involves the reduction of cAMP synthesis [47], thus the observed effect may explain our results 
associated with decreased proliferative activity. Interestingly, it was also showed that 
p75NTR-positive cells from the olfactory mucosa, highly similar to olfactory bulb OECs both 
morphologically and antigenically, could proliferate longer than those from the olfactory bulb when 
cultured in identical conditions, and did not require the addition of exogenous growth factors [48]. 
Furthermore, it was also reported that the slower doubling time reflected a less mature phenotype 
[49]. Following this line, a lower proliferative activity, but a higher proportion of progenitor cells in 
the transplanted population, could be more beneficial for neuroregenerative medicine applications. 

Figure 2. Immunofluorescence staining of mouse olfactory ensheathing cells (mOECs). The cells
positive for glial fibrillary acidic protein—GFAP (a,b) and p75NTR (c,d) are stained in green, nuclei are
counterstained with DAPI. Epifluorescent microscope imaging was performed at a magnification of
100×, scale bar = 250 µm. The intensity of fluorescence for each marker (e,f) was measured using ImageJ
software as described in the Materials and Methods section. The results are shown as means ± SD.
** p value < 0.01.

2.2. Metformin Administration in Mice Affects the Proliferative Activity of mOECs Ex Vivo

We determined metabolic ability, DNA synthesis and clonogenic potential of mOECs to investigate
whether metformin administration in mice contributes to their ex vivo proliferation (Figure 3).
The results indicated that mOECs derived from MET animals had impaired proliferative activity
when compared with OECs from CTRL mice. Decreased proliferation was associated with reduced
metabolic activity, lowered DNA synthesis, longer population doubling time and disturbed clonogenic
potential. The analysis of literature shows that various factors can affect the proliferative status of
OECs, such as the age of donor animal or species from which the tissue is collected [42,43]. Generally,
the proliferative capacity of OECs in vitro is limited, which is associated with their mitotic quiescence
upon dissociation [44]. It seems that the identification of factors that could promote their activity
would be of great interest [24,44]. However, it was noted that prolonged mitogenic stimulation of both
Schwann cells and OECs may cause spontaneous immortalization of these cells. It is assumed that the
susceptibility of spontaneous immortalization of rodent OECs is associated with enhanced expression
of GFAP and lowered expression of p75NTR [45], which is consistent with our results. The proliferative
activity of OECs may be enhanced by a combination of growth factors, for example, neuregulins,
fibroblast growth factor 2 (FGF-2) and agents elevating the intracellular cAMP level, such as forskolin
or dibutyryl-cAMP (dbcAMP) [46]. Anti-diabetic action of metformin also involves the reduction
of cAMP synthesis [47], thus the observed effect may explain our results associated with decreased
proliferative activity. Interestingly, it was also showed that p75NTR-positive cells from the olfactory
mucosa, highly similar to olfactory bulb OECs both morphologically and antigenically, could proliferate
longer than those from the olfactory bulb when cultured in identical conditions, and did not require the
addition of exogenous growth factors [48]. Furthermore, it was also reported that the slower doubling
time reflected a less mature phenotype [49]. Following this line, a lower proliferative activity, but
a higher proportion of progenitor cells in the transplanted population, could be more beneficial for
neuroregenerative medicine applications.
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Figure 3. The analysis of proliferative activity of mouse olfactory ensheathing cells (mOECs) cultured 
ex vivo, derived from control animals (CTRL) and those receiving metformin (MET). Metabolic 
activity was assessed using Alamar Blue assay after 24, 72 and 144 h of propagation. The results of 
Alamar Blue assay are shown as ΔΔA value, expressing the difference in absorbance of the 
supernatants at 600 and 690 nm, including the absorbance of blank samples. Statistical analysis 
showed no significant difference in metabolic activity of mOECs derived from CTRL and MET 
animals (a); The analysis of population doubling time indicated lowered proliferative potential of 
OECs derived from MET mice; however, no statistically significant differences were noted (b); The 
results of BrdU incorporation assay showed that mOECs derived from the MET group were 
characterized by suppressed replicative DNA synthesis (c). Similarly, the clonogenic potential 
(colony forming unit efficiency/CFU-E) of OECs expanded ex vivo from MET mice was lower in 
comparison to the cells derived from the CTRL group (d–f). The results are expressed as means ± SD. 
* p value < 0.05, ** p value < 0.01. 

2.3. Metformin Administration May Ameliorate the Viability of mOECs 

We asked whether MET administration improved the ex vivo viability of mOECs; for this 
purpose, we determined the expression of caspase-3, evaluated the percentage of dead cells 
(propidium iodide-positive cells) and the activity of SA-βgal (Figure 4). The results indicated that 
metformin can promote survival of mOECs cultured ex vivo, which was associated with a decreased 
expression of caspase-3 and a lowered number of dead cells, when compared to mOECs from the 
CTRL group. The pro-survival action of metformin was described previously by Chang et al., who 
showed that metformin may inactivate caspase-3, known as a crucial mediator of apoptosis through 
its protease activity [13]. Additionally, we observed senolytic action of MET on mOECs, as a 
decrease of SA-β-gal activity, which is a reliable and sensitive marker for the detection of cellular 
senescence. The obtained results are consistent with the most recent observation of Chen et al. [19], 
who demonstrated anti-apoptotic and anti-senescence effects of metformin on nucleus pulposus 
cells. Metformin was shown to target senescent cells and a certain senescence-associated secretory 
phenotype (SASP) interfering with pro-inflammatory nuclear factor-κB signaling [50]. It was shown 
that metformin could exert an immunomodulatory effect by suppressing the production of 
inflammatory cytokines in senescent cells. Metformin inhibited the expression of IL-1b, IL-6, IL-8, 
i.e., cytokines that impair tissue homeostasis and promote chronic inflammation. Interestingly, this 
effect was not dependent on AMPK activation or even on the context of cellular senescence, which 
was clearly demonstrated by Moiseeva et al. Metformin inhibited NF-κB pathway, which was 
shown to be stimulated by lipopolysaccharide (LPS) in ampk-null fibroblasts and in macrophages 

Figure 3. The analysis of proliferative activity of mouse olfactory ensheathing cells (mOECs) cultured
ex vivo, derived from control animals (CTRL) and those receiving metformin (MET). Metabolic activity
was assessed using Alamar Blue assay after 24, 72 and 144 h of propagation. The results of Alamar Blue
assay are shown as ∆∆A value, expressing the difference in absorbance of the supernatants at 600 and
690 nm, including the absorbance of blank samples. Statistical analysis showed no significant difference
in metabolic activity of mOECs derived from CTRL and MET animals (a); The analysis of population
doubling time indicated lowered proliferative potential of OECs derived from MET mice; however,
no statistically significant differences were noted (b); The results of BrdU incorporation assay showed
that mOECs derived from the MET group were characterized by suppressed replicative DNA synthesis
(c). Similarly, the clonogenic potential (colony forming unit efficiency/CFU-E) of OECs expanded
ex vivo from MET mice was lower in comparison to the cells derived from the CTRL group (d–f).
The results are expressed as means ± SD. * p value < 0.05, ** p value < 0.01.

2.3. Metformin Administration May Ameliorate the Viability of mOECs

We asked whether MET administration improved the ex vivo viability of mOECs; for this
purpose, we determined the expression of caspase-3, evaluated the percentage of dead cells (propidium
iodide-positive cells) and the activity of SA-βgal (Figure 4). The results indicated that metformin can
promote survival of mOECs cultured ex vivo, which was associated with a decreased expression of
caspase-3 and a lowered number of dead cells, when compared to mOECs from the CTRL group.
The pro-survival action of metformin was described previously by Chang et al., who showed that
metformin may inactivate caspase-3, known as a crucial mediator of apoptosis through its protease
activity [13]. Additionally, we observed senolytic action of MET on mOECs, as a decrease of SA-β-gal
activity, which is a reliable and sensitive marker for the detection of cellular senescence. The obtained
results are consistent with the most recent observation of Chen et al. [19], who demonstrated
anti-apoptotic and anti-senescence effects of metformin on nucleus pulposus cells. Metformin was
shown to target senescent cells and a certain senescence-associated secretory phenotype (SASP)
interfering with pro-inflammatory nuclear factor-κB signaling [50]. It was shown that metformin
could exert an immunomodulatory effect by suppressing the production of inflammatory cytokines
in senescent cells. Metformin inhibited the expression of IL-1b, IL-6, IL-8, i.e., cytokines that impair
tissue homeostasis and promote chronic inflammation. Interestingly, this effect was not dependent on
AMPK activation or even on the context of cellular senescence, which was clearly demonstrated
by Moiseeva et al. Metformin inhibited NF-κB pathway, which was shown to be stimulated by
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lipopolysaccharide (LPS) in ampk-null fibroblasts and in macrophages [50]. These findings also
highlight the potential application of MET in the prevention of neurodegenerative conditions.
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(g–i). Images of caspase-3 and calcein AM-propidium ioide reactions were captured using an 
epifluorescence microscope while β-gal cells were observed with a phase contrast microscope (scale 
bar = 250 μm). A minimum of three figures were analyzed with ImageJ to perform quantitative 
analysis. The results are expressed as means ± SD. * p value < 0.05, ** p value < 0.01. 

2.4. Metformin Reduces the Expression of Oxidative Stress Markers in mOEC Cultures Derived from Animals 
Receiving MET 

We measured extracellular ROS and NO production, as well as the activity of SOD, to 
investigate whether the mechanism of senescent cell clearance induced in mOECs by MET 
administration was associated with the inhibition of oxidative stress markers. We also visualized 
active mitochondria with MitoRed staining (Figure 5). The results indicated that mOECs derived 
from MET animals launched adaptive responses that enhanced antioxidative defense mechanisms 
against reactive oxygen species (ROS and NO) associated with increased SOD expression and 
improved mitochondrial activity. This observation is consistent with previous findings, showing that 
metformin profoundly attenuates the production of ROS in AMPKα+/+ and AMPKα−/− mouse 
embryonic fibroblasts [51]. We have previously shown that metformin reduces the accumulation of 
oxidative stress markers in mouse adipose-derived stromal cells isolated from animals receiving 
metformin [52]. Hou et al. [53] proposed a possible mechanism, wherein metformin reduces 
intracellular ROS levels; they emphasized the role of AMPK-FOXO3 pathway activation by increased 

Figure 4. Viability of mouse olfactory ensheathing cells (mOECs) derived from animals from the control
group (CTRL) and those receiving metformin (MET). OECs derived from MET mice and cultured
ex vivo were characterized by the lowered expression of caspase 3 when compared to the mOECs
from CTRL animals (a–c); The presence of dead cells was more prominent in OECs than in CTRL
mice (d–f); Similarly, SA-βgal positive cells were more abundant in the CTRL mOEC cultures (g–i).
Images of caspase-3 and calcein AM-propidium ioide reactions were captured using an epifluorescence
microscope while β-gal cells were observed with a phase contrast microscope (scale bar = 250 µm).
A minimum of three figures were analyzed with ImageJ to perform quantitative analysis. The results
are expressed as means ± SD. * p value < 0.05, ** p value < 0.01.

2.4. Metformin Reduces the Expression of Oxidative Stress Markers in mOEC Cultures Derived from Animals
Receiving MET

We measured extracellular ROS and NO production, as well as the activity of SOD, to investigate
whether the mechanism of senescent cell clearance induced in mOECs by MET administration was
associated with the inhibition of oxidative stress markers. We also visualized active mitochondria
with MitoRed staining (Figure 5). The results indicated that mOECs derived from MET animals
launched adaptive responses that enhanced antioxidative defense mechanisms against reactive oxygen
species (ROS and NO) associated with increased SOD expression and improved mitochondrial activity.
This observation is consistent with previous findings, showing that metformin profoundly attenuates
the production of ROS in AMPKα+/+ and AMPKα−/− mouse embryonic fibroblasts [51]. We have
previously shown that metformin reduces the accumulation of oxidative stress markers in mouse
adipose-derived stromal cells isolated from animals receiving metformin [52]. Hou et al. [53] proposed
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a possible mechanism, wherein metformin reduces intracellular ROS levels; they emphasized the
role of AMPK-FOXO3 pathway activation by increased expression of antioxidant thioredoxin (Trx).
Oxidative stress mechanism becomes more visible during the process of aging, making neurons
more sensitive to degeneration and development of neurodegenerative disorders. The decrease
of ROS induced by MET could reduce DNA damage, and thus positively affects self-renewal and
neurogenesis [54]. Metformin’s ability to directly scavenge ROS was also related to the increased
expression of several mitochondrial genes with simultaneous preservation of mitochondrial complex
I, II and III activity. The neuroprotective role of metformin associated with decreased ROS activity
was also demonstrated in the studies using a model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced Parkinsonian mice; they also addressed the neuroprotective effect of metformin
through the enhanced expression of BDNF in substantia nigra [55]. This observation leads us to the
next question, i.e., whether metformin affects the expression of BDNF in mOBCs from the MET group.
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Figure 5. Visualization of mitochondria (a–c) and the assessment of SOD activity (d) and oxidative stress
markers (e,f) in mOEC ex vivo cultures from CTRL and MET animals. The obtained data indicated that
metformin administration decreased oxidative stress in OECs derived from MET mice. Additionally,
it simultaneously improved antioxidative protection associated with increased SOD (superoxide
dismutase) activity and lowered production of ROS (reactive oxygen species) and NO (nitric oxide).
The results are expressed as means ± SD. * p value < 0.05, ** p value < 0.01; *** p value < 0.001.

2.5. Metformin Increases Circulating Levels of BDNF and Affects Downstream Genes in the BDNF Pathway

To address our last question, we determined the serum level of BDNF and analyzed the expression
of genes involved in the BDNF pathway in mOEC in both groups of experimental animals (Figure 6).
The results indicated that mice receiving metformin at a dose of 2.8 mg/day had a significantly
increased level of serum BDNF. Our results are consistent with observations of Patil et al. [55],
who reported that, in addition to antioxidant properties, metformin showed neuroprotective activity
and neurotrophic potential by enhancing the expression of BDNF in the substantia nigra. Furthermore,
a recent study of Wang et al. [30] implied that BDNF played a crucial role in the migration of OECs.
It was postulated that BDNF secreted by injured tissues and/or OECs could promote the migration
of transplanted OECs, thereby affecting the regeneration-promoting ability of OECs [30]. We were
interested in whether MET administration influenced secretory activity of mOECs ex vivo. Our results
revealed that mOECs from the MET group produced higher concentrations of BDNF; however,
the observed differences were not statistically significant. The role of paracrine BDNF derived from
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OECs was showed previously by Sasaki et al. [56], who indicated that BDNF expression was increased
after OEC transplantations in a spinal cord injury site. This observation, consistent with the results of
Wang et al. [30], highlights the role of OECs as cells that have distant neuroprotective effects, associated
with secretion of trophic substances and/or activation of endogenous neurotrophic secretion. In this
light, secretion of BDNF by OECs promoted by metformin can be potentially utilized in the neurorescue
or restorative treatment of neurodegenerative disorders [55,57]. BDNF is considered as one of the most
promising neurotrophic factors due to its crucial role in the development and survival of neurons.
It is well known that BDNF exerts its biological effect by binding to transmembrane receptors of two
different classes, i.e., p75NTR and the tyrosine kinase receptor (TrkB) [57]. Wang et al. showed that the
role of BDNF in OEC biology is mediated by TrkB. The activation of TrkB by BDNF leads to an enhanced
PI3K/Akt signaling [58]. Akt, activated by PI3K, promotes neuronal survival, coordinating the effects
of growth factors and neural activity throughout the nervous system [59]. Moreover, Akt was found
to sequester pro-apoptotic proteins (namely BAD) in the cytoplasm away from their transcriptional
targets [60]. Our results showed an increased transcription of BDNF mRNA in mOECs derived from
MET animals. The transcript level of BDNF receptor (TrkB) and downstream genes (PI3K and Akt)
was also upregulated in mOECs harvested from the MET group. We also found a trend regarding the
decreased mRNA levels of pro-apoptotic BAD and BAX genes; however, the observed tendencies were
not statistically significant. Simultaneously, Bcl-2 transcript levels were significantly increased in OECs
isolated from MET mice. Our results are consistent with the study of Fatt et al. [61], who characterized
metformin as an optimal preconditioning agent that could be used to improve neuroregenerative
efficiency of progenitor cells, propagated ex vivo before transplantation for the treatment of brain injury
and neurodegenerative diseases. For example, BDNF-induced TrkB receptor signaling was shown
to be crucial in rescuing caspase-3-mediated cell death, specifically in Huntington mutant striatal
cells [62]. Additionally, Gupta et al. [11] using a differentiated neuronal cell line submitted to chronic
hyperinsulinemia (Neuro-2a, neuroblastoma cell line) showed that metformin may prevent amyloid β

(Aβ) generation and tau protein hyperphosphorylation. This suggests that metformin could be also
used for the treatment of Alzheimer’s disease. On the other hand, Imfeld et al. [34] indicated that
prolonged usage of metformin is associated with a slightly higher risk of AD development. This stands
in good agreement with the studies of Allard et al. [3], who showed that metformin may decrease
expression of the antioxidant pathway regulator i.e., Nrf2. It seems that, due to a wealth of information
regarding the neuroprotective or neurodegenerative function of metformin, we are still far from a clear
consistent picture of its mechanism of action.
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Circulating levels of BDNF were measured in the serum of animals, both in CTRL and MET groups
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3. Materials and Methods

3.1. Experimental Animals

The experiments were conducted with the consent of the II Local Ethics Committee of
Environmental and Life Science University (Decision no. 177/2010 of 15 November 2010).
The experimental conditions of animal housing have been described in details previously [52,63]. In this
study, we used twelve 4-week-old female mice (C57BL/6 strain) kept at 22 ± 0.2 ◦C, three per cage in
an ultraclean facility on ventilated racks housed in the Animal Experimental Laboratory (Wroclaw
Medical School, Norwida, Poland). During the eight-week experiment, a 12-h light-dark cycle was
used. Additionally, the animals were fed with a standard diet containing 4.2% fat (Morawski, Labofeed
H, Kcynia, Poland). Water and feed was administrated ad libitum. Mice were randomly divided
into two groups i.e., control (n = 6) and experimental (n = 6). Experimental mice received metformin
(Metformax 850; Teva Pharmaceuticals, Warszawa, Poland) in drinking water at concentration equal to
2.8 mg per day. The water was changed every two days. After the experiment, mice were euthanized
using carbon dioxide. Olfactory bulbs were collected for OEC isolation.

3.2. Isolation and Culture of Mice Olfactory Ensheathing Glial Cells (mOECs)

Mouse OECs were isolated using a method established previously in a rat model [64]. Tissue
samples were finely cut with surgical scissors and incubated for 10 min at 37 ◦C in 0.2% collagenase
solution. Following collagenase digestion, the tissue was homogenized using syringe needles (18, 20,
22 G). The olfactory bulb homogenates were washed with Hank’s balanced salt solution (HBSS;
Sigma Aldrich, Munich, Germany) and centrifuged for 5 min at 300× g. The resulting pellets were
suspended in a complete growth medium (CGM) consisting of Dulbecco’s Modified Eagle’s Medium
with Nutrient F-12 Ham and supplemented (Sigma Aldrich, Munich, Germany) with 10% fetal bovine
serum (FBS, Sigma Aldrich, Munich, Germany). Additionally, a 2% antibiotic/antimycotic solution was
added to CGM. Primary cultures of mOECs were maintained in the incubator with 5% CO2 and 95%
humidity at 37 ◦C in T-25 flasks. CGM was not changed within first 72 h of mOEC cultures; after this
time, media was changed every two to three days. Cultures of mOECs were passaged using trypsin
solution (TrypLE™ Express, Thermo Fisher Scientific, Warszawa, Poland), when the cells reached
about 80% confluence. The cells were passaged three times before using them in the experiments.

3.3. Analysis of mOEC Morphology

For the analysis, the cells (p. 3) were inoculated to 24-well plates at a density of 3 × 104 cells per
well. Microscopic observations were performed after six days of culture (144 h). Cell morphology
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was evaluated using phase contrast microscopy (PCM/Axio Observer A.1, Zeiss, Oberkochen,
Germany). Visualization of cultures with epifluorescent microscopy (EpiFM/Axio Observer A.1, Zeiss,
Oberkochen, Germany) required culture fixation in ice-cold 4% paraformaldehyde (PFA, Sigma Aldrich,
Munich, Germany) for 15 min at room temperature. Cultures designated for scanning electron
microscopy (SEM) were fixed with 2.5% glutaraldehyde for 1 h at room temperature.

The procedure of culture staining with 4′,6-diamidino-2-phenylindole (DAPI; 1:1000) and
phalloidin (atto-565; 1:800) was performed according to the protocol described previously [65,66].
Both dyes were purchased from Sigma Aldrich (Munich, Germany). Documentation was performed
with a digital camera (Cannon PowerShot A640, Canon, Warszawa, Poland). The obtained pictures
were merged using ImageJ software (version 1.6.0, U. S. National Institutes of Health, Bethesda, MD,
USA). Preparation of samples for SEM imaging has also been described in details elsewhere [64,66].
In the present experiment, the cultures were dehydrated in a graded ethanol series (from 50% to 100%,
increasing 10% at each step). The samples were coated with gold particles using the 300-s program
(Edwards, Scancoat six, HHV Ltd., Crawley, UK). Prepared specimens were imaged using a SE1
detector at 10 kV filament tension (SEM, Evo LS 15, Zeiss, Oberkochen, Germany) and 1000× and
2000×magnification.

3.4. Phenotype of Mice OECs

For immunophenotyping, mOEC cultures (p. 3) were inoculated at a density of 3 × 104 on 24-well
plates. After six days of culture, the cells were fixed with PFA and incubated in 1% bovine serum
albumin/10% normal goat serum/0.3 M glycine in 0.1% PBS-Tween for 1 h to permeabilize the cells
and block nonspecific protein–protein interactions. The cells were then incubated overnight with
primary antibodies, i.e., rabbit antiglial fibrillary acidic protein (anti-GFAP, Abcam, Cambridge, UK)
and rabbit p75 nerve growth factor receptor (NGFR, Bioss Antibodies, Gentaur Poland Sp. z o.o.,
Sopot, Poland) at 4 ◦C. The secondary antibody used for the reaction was goat anti-rabbit conjugated
with Alexa Fluor 488 (Abcam, Cambridge, UK). Cultures were incubated with secondary antibody for
1 h at 4 ◦C. Primary antibodies were diluted to a concentration of 1:100, whereas secondary antibodies
were diluted to a concentration of 1:1000. Cell nuclei were counterstained with DAPI (1:1000) for 5 min
at room temperature. Protocols used for phenotypic characterization of cells have been published
previously [64,67,68]. Images were analyzed using ImageJ and Pixel Counter plugin (version 1.6.0,
U. S. National Institutes of Health, Bethesda, MD, USA) [69,70].

3.5. Analysis of mOEC Proliferation

Comprehensive assays were performed in order to determine the proliferative potential of mOECs.
Metabolic activity of the cells was evaluated using a commercial resazurin-based assay (Alamar Blue,
Sigma Aldrich, Munich, Germany); DNA synthesis was determined with a bromodeoxyuridine (BrdU)
assay (Abcam, Cambridge, UK), while clonogenic potential was evaluated with a colony forming
unit (CFU) assay. The procedures were performed accordingly to the protocols established previously
in multipotent stromal cells [49,65,71]. To analyze metabolic activity, the cells were inoculated to
24-well plates with a density equal to 3 × 104. Metabolic activity of mOECs was monitored after 24,
72 and 144 h of culture in vitro. For this purpose, the cultures were incubated in a medium containing
10% Alamar Blue for two hours at predetermined time points. The absorbance of the supernatants
was measured spectrophotometrically (BMG LABTECH, Ortenberg, Germany) at a wavelength of
600 nm for resazurin and 690 nm as a reference wavelength. The metabolic activity was expressed
as ∆∆A value including absorbance of blank samples. Additionally, the population doubling time
(PDT) of mOECs derived from control (CTRL) and experimental (fed with metformin, MET) mice
was determined using an algorithm proposed previously by Heuer et al. [72] and supported by
the population doubling time online calculator (Cell Calculator ++) [73]. The number of mOECs
was estimated based on the cell growth curve determined during the test. The analysis of DNA
synthesis was performed with the BrdU Cell Proliferation ELISA Kit (Abcam, Cambridge, UK) after
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144 h of culture. For BrdU incorporation assay, mOECs were inoculated to a 96-well plate in an
amount of 2 × 104 into each well. Colorimetric detection of specific reaction was performed with
a spectrophotometer microplate reader (BMG LABTECH, Ortenberg, Germany) at a wavelength of
450/550 nm. BrdU ELISA test sensitivity was <40 cells/well. For the clonogenic assays, mOECs were
inoculated into 6-well plates at a density of 1 × 103. After ten days of culture, the cells were fixed
with 4% PFA and visualized with pararosaniline staining. Colonies formed by more than 30 cells
were considered as a colony-forming unit (CFU). Colony forming efficiency was calculated using
the following formula: number o f colonies > 30 cells

number o f inoculated cells × 100%. All experimental cultures were performed
in triplicate.

3.6. Analysis of mOEC viability

Specific staining were performed in order to determine the effect of MET administration on
mOEC viability. Detection of caspase-3 was performed using anti-caspase-3 polyclonal active antibody
produced in rabbit (Sigma Aldrich, Munich, Germany). Immunostaining procedure was performed as
described above (Section 3.4), except that the secondary antibody was goat anti-Rabbit IgG—Atto 594
(Sigma Aldrich, Munich, Germany). The amount of viable and dead cells was evaluated with
Cellstain Double Staining Kit (Sigma Aldrich, Munich, Germany), according to the manufacturer’s
instructions. In the reaction, viable cells were stained with Calcein-AM (acetoxymethyl) and emitted
green fluorescence, whereas dead cells’ nuclei were stained orange with propidium iodide. Moreover,
to identify the presence of β-galactosidase-associated senescence, the cells were stained using
Senescence Cells Histochemical Staining Kit, according to the manufacturer’s protocol. Stained
mOEC cultures were observed under an inverted microscope (Axio Observer A.1, Zeiss, Oberkochen,
Germany) and analyzed with an ImageJ Pixel Counter plugin [69,70].

3.7. Visualization of Mitochondria and Determination of Oxidative Stress Factors in mOEC Cultures

In order to visualize the mitochondria, mOEC cultures were incubated with MitoRed dye (1:1000)
in 37 ◦C for 30 min in CO2 incubator, according to the protocol of the manufacturer. For imaging
with an epifluorescence microscope (Axio Observer A.1, Zeiss, Oberkochen, Germany), the cells were
stained with 4% PFA. The intensity of fluorescent signal derived from mitochondria was analyzed using
ImageJ Pixel Counter plugin [69,70]. Oxidative stress factors were determined in the supernatants
collected after 144 h of mOEC cultures derived from MET and CTRL animals. Intracellular reactive
oxygen species (ROS) were measured using H2DCF-DA solution (Thermo Fisher Scientific, Warszawa,
Poland), while superoxide dismutase (SOD) was determined using a commercially available SOD
determination kit (Sigma Aldrich, Munich, Germany). Nitric oxide (NO) activity was measured
using Griess reagent kit (Thermo Fisher Scientific, Warszawa, Poland). The formation of oxidative
stress biomarkers was evaluated spectrophotometrically with microplate reader (BMG LABTECH,
Ortenberg, Germany). The reactions were performed accordingly to the manufacturers’ protocols.
Each experiment was performed three times.

3.8. Analysis of mRNA for BDNF and Its Downstream Target Genes

After 144 h, the cultures of mOECs derived from CTRL and MET animals were homogenized
using TRI Reagent® (Sigma Aldrich, Munich, Germany). Subsequently, total RNA was isolated
using the single-step method described by Chomczynski and Sacchi [74]. The quantity and quality
of specimens were evaluated using a spectrophotometer (WPA Biowave II, Cambridge, UK). Total
RNA (500 ng) was used to transcribe cDNA using PrimeScript™ RT reagent Kit with gDNA Eraser
(Takara Bio Europe, Saint-Germain-en-Laye, France). Simultaneous total RNA purification and cDNA
synthesis was performed on T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA), according to the
protocols supplied by the producer of the kit. The total volume of PCR was 20 µL, while cDNA 2 µL.
The concentration of primers in the reaction mixture was 0.5 µM. The list of primers used in the reaction
and their characteristics are presented in Table 1. Amplification of desired products was performed
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using SensiFast SYBR & Fluorescein Kit (Bioline Reagents Limited, London, UK) on a CFX Connect
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The following cycling conditions
were applied in the reaction: 95 ◦C for 2 min, followed by 50 cycles at 95 ◦C for 30 s, annealing for
30 s, and elongation at 72 ◦C for 30 s with a single fluorescence measurement. All reactions were
performed in three repetitions. The specificity of PCR products was determined by analyzing the
dissociation curve of the amplicons. A melting curve was performed using a gradient program of
the range from 65 to 95 ◦C at a heating rate of 0.2 ◦C/s and continuous fluorescence measurements.
The value of the threshold cycle (Ct) was used to calculate the fold change in relation to the expression
of the housekeeping gene, i.e., β-actin (ACTB), as described previously [63].

3.9. Determination of BDNF Protein Levels—Secretory Activity of mOECs and Circulating Level of the Protein

BDNF concentrations in the serum and supernatants were analyzed after 144 h of mOEC
propagation using an enzyme-linked immunosorbent assay (EIAab ELISA kit, Biokom, Warszawa,
Poland), characterized by the detection range of 0.156–10 ng/mL. Mice sera were five-fold diluted
for the analysis, while the supernatants remained undiluted. All tested samples and standards
were measured in triplicate. Optical density was determined immediately after reactions at 450 nm
wavelength using a microplate reader (BMG LABTECH, Ortenberg, Germany). The results were
analyzed by comparing BDNF concentration in the experimental samples with calibration curve values.

3.10. Statistical Analysis

All experiments were performed at least in three replicates. Statistical analysis was performed
using GraphPad Prism 5 software (version, Manufacturer, La Jolla, CA, USA). Differences between
groups were determined by Student’s t-test or Mann–Whitney U test and two-way ANOVA
(analysis of data obtained in Alamar Blue assay). Differences with a probability of p < 0.05 were
considered significant.
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Table 1. Primer sequences used for the detection of selected genes.

Gene Abbreviation Primer Sequence 5′–3′ Loci Aplicon Lenght (bp) Accesion No.

Brain derived neurotrophic factor BDNF
F GCCGCAAACATGTCTATGAGGGTT 670–693

174 NM_001316310.1R TTGGCCTTTGGATACCGGGACTTT 843–820

Tropomyosin receptor kinase B TrkB/NTRK2
F GCGAACCTGCAGATACCCAAT 1306–1326

148 XM_006517152.2R CCAAATTCCCAACGTCCCA 1453–1435

B cell leukemia/lymphoma 2 Bcl-2
F ATCGCCCTGTGGATGACTGAG 1918–1938

129 NM_009741.5R CAGCCAGGAGAAATCAAACAGAGG 2046–2023

Bcl-2-associated death promoter Bad
F ACATTCATCAGCAGGGACGG 199–218

115 NM_001285453.1R ATCCCTTCATCCTCCTCGGT 313–294

Bcl-2-associated X protein Bax
F TGCTAGCAAACTGGTGCTCA 476–495

113 XM_011250780.1R CTTGGATCCAGACAAGCAGC 588–569

RAC-γ serine/threonine-protein kinase Akt3
F ATCCCCTCAACAACTTCTCAGT 450–471

156 XM_011238805.1R CTTCCGTCCACTCTTCTCTTTC 605–584

Phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K
F CTCTCCTGTGCTGGCTACTGT 2932–2952

157 XM_006536015.2R GCTCTCGGTTGATTCCAAACT 3088–3068

β-actin ACTB
F CCTGAGGCTCTTTTCCAGCC 881–900

110 NM_007393.5R TAGAGGTCTTTACGGATGTCAACGT 990–966
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4. Conclusions

Our study demonstrated that metformin administration may improve physiological activity of
olfactory ensheathing cells ex vivo. In our model, metformin demonstrated senolytic, antioxidant
and anti-apoptotic activity on OECs, but also stimulated an increased release of BDNF to the serum.
In this context, metformin administration could help to obtain autologous OECs characterized with
high cellular activity and maintaining great regenerative potential. However, due to the wealth of
information regarding the neuroprotective or neurodegenerative functions of metformin, we are still
far from a clear and consistent picture of its mechanism of action. The neuroprotective effects of
metformin along with the regenerative potential of autologous OECs transplants could be determined
deeply, for example, using the rodent model of spinal cord repair. Moreover, we are interested if the
OECs treated in vitro with metformin will also be characterized by the high viability associated with
cellular homeostasis in terms of oxidative status and increase in BDNF production. In light of this,
metformin could be used as an agent reducing oxidative stress in OEC cultures before transplantation
for central nervous system repair. Antioxidant and senolytic properties of metformin could be used to
treat not only OECs, but other progenitor cells where long-term cultures and multiple passages are
required to obtain a sufficient number of cells for transplantation.
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