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Abstract

Salinity is among the most important abiotic stresses, which negatively affect growth, nutri-

ent uptake and yield of crop plants. Application of different micronutrients, particularly zinc

(Zn) have the potential to ameliorate the negative impacts of salinity stress. However, the

role of Zn in improving salinity tolerance of basil (Ocimum basilicum L.) is poorly understood.

This study evaluated the impact of different Zn levels (0, 5 and 10 mg kg-1) on growth and

nutrient acquisition traits of basil under different salinity levels (0, 0.5, 1.0 and 1.5% NaCl).

Data relating to biomass production, chlorophyll index, sodium (Na), potassium (K) uptake,

K/Na ratio, Zn, copper (Cu), manganese (Mn) and iron (Fe) uptake were recorded. Increas-

ing salinity level reduced biomass production, chlorophyll index and nutrient uptake traits

(except for Na and Fe accumulation) of basil. Zinc application (10 mg kg-1) improved bio-

mass production, chlorophyll index and nutrient acquisition traits under normal as well as

saline conditions. The reduction in chlorophyll index and biomass production was higher

under 0 and 5 mg kg-1 than 10 mg kg-1 Zn application. The K concentration decreased under

increasing salinity; however, Zn application improved K uptake under normal as well as

saline conditions. Different growth and nutrient acquisition traits had negative correlations

with Na accumulation; however, no positive correlation was recorded among growth and

nutrient uptake traits. The results revealed that Zn application could improve the salinity tol-

erance of basil. However, actual biochemical and genetic mechanisms involved in Zn-

induced salinity tolerance warrant further investigation.

Introduction

Salinity is an important constraint for crop production in many geographic regions of the

world, and frequently occurs in irrigated lands of arid and semi-arid regions [1]. Irrigation

water containing trace amounts of sodium chloride (NaCl) increases salt levels in arable soils

[2, 3]. Globally, salinity affects 831 million hectares of land [4], and the saline area is increasing

with each passing day [5]. Salinity excludes 1.5 million hectares of productive lands from agri-

cultural production each year [3]. Salinity is of important concern for salt sensitive crops

grown in arid zones [6, 7]. Soil and water salinity are major constraints in global food
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production, particularly in semi-arid and arid regions [8]. Saline groundwater is commonly

used to fulfill moisture requirements of crops sown in areas with limited water resources [9–

12]. Nonetheless, recycling of wastewater and its use for irrigation are also gaining popularity

[13, 14].

Salinity is among the most important abiotic stresses, which limit plant production; thus,

studied for many years. Salinity can directly damage plants, or inhibit plant growth depending

on salinity-tolerance level of plants and salt concentration in the environment [3, 14]. Salinity

induces chlorophyll and membrane breakdown (chlorosis and necrosis) starting from old

leaves [15, 16]. Salinity causes toxicity and mineral nutritional disorders in plants, ultimately

resulting in disturbed metabolism [15]. Thus, salinity causes both qualitative and qualitative

yield losses by limiting plant growth [17]. The growth-limiting factors for plant growing under

saline environments can be categorized in 3 different groups [15], which are water stress, Na+

and Cl- toxicity and associated nutrient uptake, ion toxicities and deficiency of K+ and Ca++.

Reclamation of saline soils through leaching soil profile is frequently recommended in the

literature to eliminate negative consequences on plant growth [18, 19]. However, this approach

is time-consuming and costly. In addition, salinity mostly occurs in arid and semi-arid regions

where water-based solutions are not practical. While salinity is a common problem of arid and

semi-arid regions, zinc (Zn) deficiency also impairs plant production in the same regions.

Although yield and quality of plants are negatively affected by salinity around the world [17,

20], Zn deficiency often occurs in calcareous, saline and sodic soils with high pH values [21,

22]. In addition to adverse impacts of Zn deficiency on yield and quality of plants, it is also a

serious problem for human nutrition.

Zinc reduces excessive Na uptake under saline environments through affecting structural

integrity and permeability of stem cell membrane [23]. Zinc nutrition is effective in decreasing

Na accumulation and improving K/Na ratio in plants under salinity [1, 24]. Therefore, cell

membranes show high permeability or leakage of some compounds from the roots under Zn

deficiency [25]. Zinc deficiency can lead to accumulation of toxic ions such as Na and Cl.

Therefore, combined effects of salinity and Zn-deficiency on plant growth are important and

need investigation.

Basil (Ocimum basilicum L.), a member of Lamiaceae is an annual, herbaceous plant of

Mediterranean regions. The basil is rich in antioxidant and phenolic compounds, such as ros-

marinic acid and other cafeic acid derivatives, and is regarded as a source of aromatic com-

pounds [26]. The plant is grown as a medicinal and spice plant in many countries of the world

[27, 28]. The large consumption of basil as a food ingredient makes it a possible candidate of

bio-fortification.

Although impacts of salinity and Zn have been investigated on many plants, there are

almost no studies carried out on basil. Therefore, this study determined the growth, biomass

production and nutrient uptake response of basil under different salinity and Zn application

levels. It was hypothesized that increasing salinity level will suppress the growth and nutrient

uptake, whereas increasing Zn levels will ameliorate the negative consequences of salinity on

basil.

Materials and methods

Experimental site

The study was conducted on basil population grown in Aegean Region. A calcareous and Zn-

deficient soil having DTPA extractable Zn level of 0.20 mg kg-1 was used in the study. The pH

of the experimental soil and total salts were analyzed following Jackson [29]. The method of

Bouyoucos [30] was followed to determine soil texture. Organic matter was analyzed
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according to Walkley and Black [31]. Total phosphorus (P) and potassium (K) were analyzed

by following Olsen [32] and Carson [33], respectively. Iron (Fe), zinc (Zn), manganese (Mn)

and copper (Cu) were analyzed according to Lindsay and Norvell [34]. The experimental soil

was slightly alkaline (pH 8.02), non-saline (0.24 mmhos cm-1), clay-loam, low in organic mat-

ter (1.1%), moderately calcareous (10.2%), low in available P (4.8 mg kg-1), sufficient in avail-

able K (149 mg kg-1), Zn-deficit (0.2 mg kg-1), medium in Fe (0.85 mg kg-1), low in Mn (2.74

mg kg-1) and sufficient in Cu content (0.46 mg kg-1).

Experimental treatments

Four salinity levels (i.e., 0, 0.5, 1 and 1.5% NaCl) were used in the experiment. Similarly, three

Zn application levels [i.e., Zn0 = 0 mg kg-1, Zn5 = 5 mg kg-1 and Zn10 = 10 mg kg-1 Zn (in the

form of Zn SO4.7H2O)] were included in the study. All treatments had three replications. The

experiments were performed in greenhouse of Çukurova University, Faculty of Agriculture,

Department of Soil Science and Plant Nutrition. Basic nutrients, i.e., 200 mg kg-1 N in the

form NH4SO4, 100 mg kg-1 P and 125 mg kg-1 K in the form of KH2PO4 and 2.5 mg kg-1 Fe in

the form of Fe-EDTA were applied. The pots were filled with 1.65 kg of soil and 20 seeds were

planted in each pot. After seed germination, plants were reduced to 10 per pot. Salinity was

imposed through irrigation water three times with an interval of two days [35] and 0, 0.5, 1

and 1.5% (w/v) NaCl solutions were applied 53 days after planting. The pots of salinity-free

treatment were maintained at field capacity by irrigating with distilled water. Experiments

were conducted according to factorial design where salinity was considered as main factor,

while Zn application levels were regarded as sub-factor. There were no specific permits

required for the experiments since no endangered/protected species were involved in the

study.

Data collection

The SPAD values were determined at the end of experiment. Aboveground parts were har-

vested on the 72nd day depending on Zn deficiency symptoms observed in control treatment.

The harvested plants were dried at 65˚C for 48 hours to determine biomass production. The

dried plants were weighed and a pre-weighed quantity was burnt in H2O2-HNO3 acid mixture

in a closed system (Milestone 1200 Mega) microwave oven for Zn analysis. The Zn, K and Na

concentrations in the obtained filtrate were measured in an Inductively Coupled Plasma-

Atomic Emission Spectrometry (ICP-AES) device.

Statistical analysis

The collected data were tested for normality and homogeneity of variance first, which indi-

cated a normal distribution. Two-way analysis of variance (ANOVA) was used to infer signifi-

cance in the data. Least significant difference test at 5% probability level was used as a post-hoc

test to separate the means. All statistical analyses were performed on SPSS version 20.0.

Results

Salinity and zinc (Zn) levels and their interaction significantly altered biomass production and

chlorophyll index (Table 1).

Plants grown under salinity-free environment produced the highest biomass, whereas those

grown under 1.5% salinity level produced the lowest biomass (Fig 1). Similarly, the lowest bio-

mass production was recorded for the plants grown under no Zn application, whereas plants

grown under Zn5 and Zn10 levels produced the highest biomass (Fig 2). Regarding interaction

PLOS ONE The influence of Zinc on Basil (Ocimum basilicum L.) growth under salinity

PLOS ONE | https://doi.org/10.1371/journal.pone.0246493 February 2, 2021 3 / 12

https://doi.org/10.1371/journal.pone.0246493


among salinity and Zn levels, plants grown under 1% salinity and no Zn treatment had the

lowest biomass production, whereas no salinity with Zn5 and Zn10 treatments resulted in the

highest biomass production (Fig 3).

The lowest chlorophyll index was noted for the plants grown under 1.5% salinity, whereas

plants grown under no salinity had the highest chlorophyll index (Fig 4). Similarly, the lowest

and the highest chlorophyll index was recorded for the plants grown under Zn0, Zn5 and Zn10

levels, respectively (Fig 5). Regarding interaction of salinity × Zn levels, plants grown under

Table 1. Analysis of variance for biomass production, chlorophyll index, nutrient acquisition traits and K/Na ratio of Basil (Ocimum basilicum L.) grown under dif-

ferent NaCl salinity and zinc (Zn) levels.

Source DF Sum of squares Mean squares F value P value

Biomass production

Salinity levels (S) 3 0.04 0.01 86.91 < 0.0001�

Zn levels (Zn) 2 0.01 0.01 43.93 < 0.0001�

S × Zn 6 0.01 0.00 6.28 0.0005�

Chlorophyll index

Salinity levels (S) 3 2545.04 848.35 233.87 < 0.0001�

Zn levels (Zn) 2 389.98 194.99 53.75 < 0.0001�

S × Zn 6 332.56 55.43 15.28 < 0.0001�

Na accumulation

Salinity levels (S) 3 192.13 64.04 1822.43 < 0.0001�

Zn levels (Zn) 2 3.81 1.91 54.27 < 0.0001�

S × Zn 6 17.23 2.87 81.71 < 0.0001�

K accumulation

Salinity levels (S) 3 15.00 5.00 108.44 < 0.0001�

Zn levels (Zn) 2 0.57 0.28 6.15 0.0070NS

S × Zn 6 0.57 0.09 2.04 0.0988NS

K/Na ratio

Salinity levels (S) 3 24.59 8.20 617.74 < 0.0001�

Zn levels (Zn) 2 1.64 0.82 61.77 < 0.0001�

S × Zn 6 2.10 0.35 26.39 < 0.0001�

Zn accumulation

Salinity levels (S) 3 92.92 30.97 4.27 0.001�

Zn levels (Zn) 2 19529.54 9764.77 1346.40 < 0.0001�

S × Zn 6 462.95 77.16 10.64 < 0.0001�

Cu accumulation

Salinity levels (S) 3 2.08 0.69 4.83 0.0090�

Zn levels (Zn) 2 9.77 4.88 34.08 < 0.0001�

S × Zn 6 11.01 1.83 12.80 < 0.0001�

Mn accumulation

Salinity levels (S) 3 4820.70 1606.90 75.74 < 0.0001�

Zn levels (Zn) 2 1197.66 598.83 28.23 < 0.0001�

S × Zn 6 1764.52 294.09 13.86 < 0.0001�

Fe accumulation

Salinity levels (S) 3 68544.94 22848.31 547.18 < 0.0001�

Zn levels (Zn) 2 9818.04 4909.02 117.56 < 0.0001�

S × Zn 6 45133.57 7522.26 180.15 < 0.0001�

DF = degree of freedom

� = significant, NS = non-significant

https://doi.org/10.1371/journal.pone.0246493.t001
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1.5% salinity and Zn5 had the lowest chlorophyll index, whereas no salinity with Zn5 resulted

in the highest chlorophyll index (Fig 6).

Individual and interactive effects of salinity and Zn levels significantly affected different

nutrient acquisition traits such as sodium (Na), potassium (K), K/Na ratio, Zn, copper (Cu),

manganese (Mn) and iron (Fe) uptake (Table 1). The highest and the lowest Na accumulation

was recorded for plants grown under 1.5 and 0% salinity, respectively. Similarly, plants grown

under Zn5 acquired the highest amount of Na, whereas 10 mg kg-1 Zn resulted in the lowest

Na accumulation. Nonetheless, plants grown under no salinity and 10 mg kg-1 Zn accumulated

Fig 1. The influence of different NaCl salinity levels on dry biomass production of Basil (Ocimum basilicum L.).

The vertical bars are means ± standard errors. Any two means having different letters are statistically different from

each other (p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g001

Fig 2. The influence of different Zinc (Zn) levels on dry biomass production of Basil (Ocimum basilicum L.). The

vertical bars are means ± standard errors. Any two means having different letters are statistically different from each

other (p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g002
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the lowest amount of Na, whereas 1.5% salinity and 5 mg kg-1 Zn resulted in the highest Na

accumulation (Table 2).

Plants grown under 0% salinity accumulated the highest amount of K, whereas plants form

rest of the salinity levels accumulated similar amounts of K. Similarly, plants grown under Zn5

level acquired the highest amount of K, whereas Zn0 application resulted in the lowest K accu-

mulation. In the same way, plants grown under 0% salinity with Zn10 acquired the highest

amount of K, while similar amounts of K accumulated in the rest of interactions (Table 2).

Fig 3. The influence of different zinc levels on dry biomass production of Basil (Ocimum basilicum L.) grown

under different NaCl salinity levels. The vertical bars are means ± standard errors. Any two means having different

letters are statistically different from each other (p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g003

Fig 4. The influence of different NaCl salinity levels on chlorophyll index of Basil (Ocimum basilicum L.). The

vertical bars are means ± standard errors. Any two means having different letters are statistically different from each

other (p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g004
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The highest K/Na ratio was recorded under 0% salinity and Zn10 level. However, the lowest

K/Na ratio was observed in 1 and 1.5% salinity levels and Zn5 and Zn10 levels. Regarding inter-

active effect, 0% salinity with Zn10 level had the highest K/Na ratio, whereas 1 and 1.5% salinity

levels with all Zn application levels had the lowest K/Na ratio (Table 2).

The highest Zn uptake was noted for the plants grown under 0.5% salinity and Zn10 applica-

tion, whereas Zn0 application and 1% salinity resulted in the lowest Zn accumulation. Regard-

ing the interaction of salinity × Zn application levels, 0.5% salinity with Zn10 recorded the

Fig 5. The influence of different Zinc (Zn) levels on chlorophyll index of Basil (Ocimum basilicum L.). The vertical

bars are means ± standard errors. Any two means having different letters are statistically different from each other

(p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g005

Fig 6. The influence of different Zinc (Zn) levels on chlorophyll index of Basil (Ocimum basilicum L.) grown

under different NaCl salinity levels. The vertical bars are means ± standard errors. Any two means having different

letters are statistically different from each other (p< 0.05).

https://doi.org/10.1371/journal.pone.0246493.g006
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highest Zn accrual, while no salinity with no Zn application had the lowest Zn accumulation

(Table 2).

Plants grown under 0.5% salinity and Zn10 application resulted in the highest Cu uptake,

whereas Zn0 application and 1% salinity resulted in the lowest Cu accumulation. Regarding

interactions, 0% salinity with Zn5 application recorded the highest Cu accrual, while 1% salin-

ity with no Zn had the lowest Cu accumulation (Table 2).

The highest Mn uptake was noted for the plants grown under 0 and 0.5% salinity levels and

Zn0, whereas Zn10 and 1.5% salinity resulted in the lowest Mn accumulation. Regarding inter-

action, no salinity with Zn0 application recorded the highest Mn accrual, while 1.5% salinity

with all Zn levels had the lowest Mn accumulation (Table 2).

Plants grown under 1.5% salinity and Zn0 resulted in the highest Fe uptake, whereas 1%

salinity and Zn10 resulted in the lowest Fe accrual. Regarding interaction, 1.5% salinity with

Zn0 recorded the highest Fe accrual, while 0.5% salinity with Zn10 had the lowest Fe accumula-

tion (Table 2).

Different growth and nutrient uptake traits had no positive correlation with each other;

however, some traits were negatively correlated with each other (Fig 7). The Na accumulation

Table 2. The influence of different zinc (Zn) levels on nutrient acquisition traits and K/Na ratio of Basil (Ocimum basilicum L.) grown under different NaCl salinity

levels.

Treatment Na K K/Na Zn Cu Mn Fe

(%) (%) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1)

Salinity levels

0% 2.28 d 5.82 a 2.62 a 45.99 ab 9.29 ab 168.82 a 147.58 b

0.5% 3.69 c 4.37 b 1.35 b 47.36 a 9.40 a 167.57 a 88.54 d

1% 6.61 b 4.27 b 0.65 c 43.14 c 8.79 c 156.84 b 118.87 c

1.5% 8.12 a 4.38 b 0.54 c 44.29bc 9.00bc 139.94 c 206.82 a

LSD 0.05 0.18 0.20 0.23 2.62 0.36 4.48 6.28

Zinc levels

0 mg kg-1 5.24 b 4.57 b 1.12 b 15.11 c 8.41 c 165.78 a 156.55 a

5 mg kg-1 5.54 a 4.87 a 1.15 b 48.63 b 9.64 a 157.35 b 147.06 b

10 mg kg-1 4.75 c 4.69 ab 1.59 a 71.85 a 9.31 b 151.75 c 117.75 c

LSD 0.05 0.15 0.18 0.21 2.26 0.31 3.88 5.44

Salinity × zinc interaction

S1Zn1 2.27 h 5.45 b 2.40 b 12.37 f 7.87fg 186.10 a 104.03 f

S1Zn2 2.67 g 6.00 a 2.25 b 56.10 c 10.63 a 158.47 d 163.23 d

S1Zn3 1.89i 6.02 a 3.19 a 69.50 b 9.37bcd 161.90 cd 175.47 c

S2Zn1 5.17 e 4.38 cd 0.85 e 14.00ef 9.63 b 170.43 b 96.97fg

S2Zn2 3.74 f 4.42 cd 1.18 d 48.23 d 9.77 b 165.07bcd 88.57gh

S2Zn3 2.15 hi 4.30 d 2.02 c 79.83 a 8.80 de 167.20bc 80.10 h

S3Zn1 6.51 d 4.21 d 0.65 f 16.20ef 7.67 g 168.33bc 131.73 e

S3Zn2 6.76 cd 4.38 cd 0.65 f 45.07 d 9.20bcd 163.60bcd 138.03 e

S3Zn3 6.54 d 4.21 d 0.64 f 68.17 b 9.50bc 138.60 e 86.83gh

S4Zn1 6.98 c 4.21 d 0.60 f 17.87 e 8.47ef 138.27 e 293.47 a

S4Zn2 8.98 a 4.68 c 0.52 f 45.10 d 8.97cde 142.27 e 198.40 b

S4Zn3 8.41 b 4.23 d 0.50 f 69.90 b 9.57bc 139.30 e 128.60 e

LSD 0.05 0.31 0.36 0.28 4.53 0.63 7.76 10.88

S1 = 0% NaCl, S2 = 0.5% NaCl, S3 = 1% NaCl, S4 = 1.5% NaCl, Zn1 = 0 mg kg-1 Zn, Zn2 = 5 mg kg-1 Zn, Zn3 = 10 mg kg-1 Zn, Any two means followed by same letter

within a column are statistically similar to each other (p > 0.05)

https://doi.org/10.1371/journal.pone.0246493.t002
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had significant negative correlations with biomass production, chlorophyll index, K/Na ratio

and accumulation of Mn and K (Fig 7). All other traits exhibited no positive/negative

correlation.

Discussion

Salinity significantly reduces plant growth depending on salt concentration and growth stage

of the plants [6, 7]. Inhibition of photosynthesis is among the first indicators of salinity stress.

Numerous studies have reported photosynthetic changes in crop plants in response to salinity

stress [36–39]. Generally, photosynthesis is retarded by increasing salt levels [36, 37, 40, 41].

Stomatal and non-stomatal factors are responsible for retarded photosynthesis under salinity

stress [42]. Salinity decreases CO2 assimilation and diffusion from the stomata to mesophyll

cells [43] or alters photosynthetic mechanism [44].

Biomass production and chlorophyll index were reduced under increasing salinity levels in

the current study. The decreased chlorophyll index and biomass production can be explained

with ion toxicity caused by excessive salt levels. Results revealed that damage caused by salinity

decreased with Zn application. The positive effect of Zn application on reduction of salt dam-

age has been reported by several researchers [22–24, 45, 46]. Daneshbakhsh et al. [22] reported

that negative effect of salt decreased with Zn application depending on genotype and salt con-

centration. In addition, K accumulation decreased under salinity; however, Zn application

improved K uptake. Similarly, Na accumulation increased under salinity, while Zn application

decreased Na concentration. Similar results have been reported in the current study. Results

revealed significant decrease in biomass production with increasing salinity levels. However,

basil managed to survive high salt stress. With increasing salinity levels, decreases in growth

Fig 7. Correlation matrix of biomass and nutrient acquisition traits of Basil (Ocimum basilicum L.) grown under

different NaCl salinity and Zn application levels. The size and color of the circles indicate the strength of correlation,

whereas cross marks indicate that correlation is non-significant (p> 0.05).

https://doi.org/10.1371/journal.pone.0246493.g007
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were higher in roots than in leaves [47]. The increased Na accumulation and a reduction in K,

Zn, Cu and Mn concentrations could be responsible for decreased biomass. An earlier study

has also reported that biomass of basil was decreased with increasing salinity [6, 7].

Nutrient uptake was significantly altered by different salinity levels included in the study.

Decline in ion accumulation and selectivity has been well documented in wheat [48], sorghum

[49], maize [50], barley [51] and rice [52]. However, basil exhibited a strong selectivity for K

uptake, which improved K/Na ratio. Zinc reduces excessive Na uptake under saline environ-

ments by affecting structural integrity and permeability of stem cell membrane [23]. Zinc

nutrition is effective in decreasing Na accumulation and improving K/Na ratio of plants under

salinity. Therefore, cell membranes show high permeability or leakage of some compounds

from the roots under Zn deficiency [25]. Zinc deficiency can lead to accumulation of toxic

ions such as Na and Cl.

Different growth and nutrient uptake traits had no positive correlation with each other;

however, some traits were negatively correlated (Fig 7). The Na accumulation had significant

negative correlations with biomass production, chlorophyll index, K/Na ratio and accumula-

tion of Mn and K (Fig 7). All other traits exhibited no positive/negative correlation. This indi-

cated that Na accumulation has been the prime source of decreased growth and disturbed

nutrient acquisition traits in the current study. This study suggested that field trials are neces-

sary in saline and Zn deficit regions. In addition, Zn has potential to play a protective effect up

to a certain extent in ameliorating salt damage.
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