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ABSTRACT

The associations between diseases/traits and copy
number variants (CNVs) have not been systemati-
cally investigated in genome-wide association stud-
ies (GWASSs), primarily due to a lack of robust and
accurate tools for CNV genotyping. Herein, we pro-
pose a novel ensemble learning framework, ensem-
bleCNV, to detect and genotype CNVs using single
nucleotide polymorphism (SNP) array data. Ensem-
bleCNV (a) identifies and eliminates batch effects at
raw data level; (b) assembles individual CNV calls
into CNV regions (CNVRs) from multiple existing
callers with complementary strengths by a heuris-
tic algorithm; (c) re-genotypes each CNVR with lo-
cal likelihood model adjusted by global information
across multiple CNVRs; (d) refines CNVR bound-
aries by local correlation structure in copy number
intensities; (e) provides direct CNV genotyping ac-
companied with confidence score, directly accessi-
ble for downstream quality control and association
analysis. Benchmarked on two large datasets, en-
sembleCNV outperformed competing methods and
achieved a high call rate (93.3%) and reproducibility
(98.6%), while concurrently achieving high sensitiv-
ity by capturing 85% of common CNVs documented

in the 1000 Genomes Project. Given this CNV call rate
and accuracy, which are comparable to SNP geno-
typing, we suggest ensembleCNV holds significant
promise for performing genome-wide CNV associa-
tion studies and investigating how CNVs predispose
to human diseases.

INTRODUCTION

As known GWAS loci only account for a fraction of
disease/trait heritability (i.e. ‘Missing heritability’) (1), as-
sessment of other types of human genetic variation besides
single nucleotide polymorphisms (SNPs) is warranted. The
human genome is rich in structural diversity, where copy
number variants (CNV) are the most common form. CNVs
are individually rare but collectively common across the hu-
man population (2). In fact, an estimated 8% of the general
population carries a large (>500 kb) deletion or duplica-
tion occurring at an allele frequency of <0.05% (1,2). More-
over, CNVs affect transcription in mouse (3) and human (4),
and contribute to a variety of different diseases (5). How-
ever, methods to genotype CNVs, particularly at the pop-
ulation level, are still in their infancy, lagging substantially
behind genotyping of SNPs (6,7). Furthermore, the land-
scape of CNVs in the human genome is not fully charac-
terized, including accurate assessments of CNV boundaries
in terms of probes targeting each specific CNV on the SNP
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arrays. Taken together, although many CNV analysis soft-
ware tools exist, the performance (sensitivity and accuracy)
is sub-optimal, making CNV characterization significantly
more challenging than SNP genotyping.

In the last decade, next-generation sequencing (NGS) has
emerged as a powerful technology, which is able to detect
CNVs up to base-pair resolution and discover the full spec-
trum of structural variants including CNVs (8-11). On one
hand, although the cost of NGS has been dramatically de-
creased in the past few years, it still does not scale well to
genetic studies of large populations, often with thousands
or tens of thousands of individuals, due to high sequencing
expense itself and, more importantly, prohibitive require-
ments of computational and storage resources (especially
for whole-genome sequencing). On the other hand, SNP ar-
ray, when appropriately designed for CNV analysis, is still
a method of choice for a genome-wide survey of CNVs in
large-scale GWASs. In this work, we focus on CNV detect-
ing and genotyping methods applicable to SNP array data.

In general, existing CNV calling methods based on SNP
array data can be categorized into two types: (i) individual-
wise analysis and (ii) joint analysis of multiple individu-
als (see review by Pinto et al. (12)). Among individual-wise
analysis, popular methods include hidden-Markov model
(HMM)-based methods, such as PennCNV (13) and Quan-
tiSNP (14), and segmentation-based methods, such as CBS
(15) and fused-lasso methods (16,17). These methods uti-
lize various types of information derived from SNP (or
CNYV) probes such as total intensity (i.e. Log R Ratio; LRR)
and allele fraction (i.e. B Allele Frequency; BAF) from II-
lumina platforms as well as external information, such as
population frequencies of the B allele at each locus (13)
and linkage-disequilibrium (LD) structure between adja-
cent loci (18). Generally, these methods are good at detect-
ing rare, large CN'Vs spanning at least ten probes on a SNP
array. On the other hand, they rely on the assumption that
allele intensities are properly normalized such that they are
comparable across probes throughout the genome, and are
thus less tolerant to spatial noise (e.g. genomic wave related
to GC content) and heterogeneity across different loci (19).
For example, at copy number polymorphism (CNP) loci
with a high frequency of CNV alleles, the baseline LRR
corresponding to a normal copy number may be distorted
during normalization, and as a result, deviates from 0, mak-
ing individual-based analysis error-prone. Moreover, from
these methods, the individual-level CNV calls are frequently
not aligned across individuals, adding additional difficulties
in comparing CNVs in the downstream analysis.

Joint analysis of multiple individuals, such as iPattern
(12), Piet (20), and msscan (21), to name a few, takes ad-
vantage of consensus CNV signals across individuals, which
are particularly useful for CNP detection. They often align
CNVs called across individuals into CNV regions (CN-
VRs), making the downstream analysis more accessible
than individual-based methods. However, the boundaries
of such constructed CNVRs are not carefully recalibrated.
Moreover, they mainly focus on signal patterns in total in-
tensity and do not fully utilize other CNV-related informa-
tion (e.g. BAF), and as a consequence, are less sensitive to
detect rare CNVs than individual-based methods. Lastly,
both individual-wise and joint analyses usually report CNV
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calls only, and do not perform direct genotyping (i.e. explic-
itly differentiating between normal copy number and miss-
ing genotype). This fact, we believe, creates additional bar-
riers for quality control and downstream association anal-
yses.

In sum, many CNV calling methods have been pro-
posed, each with various strengths and weaknesses. Thus,
it is logical to aggregate multiple methods using an ensem-
ble machine learning framework with the aim of achiev-
ing superior statistical performance. Herein, we propose a
novel CNV detection and genotyping framework, ensem-
bleCNYV, which is primarily implemented in two phases: (i)
the detection phase: initially locating CNVRs by assem-
bling CNV calls from multiple methods with complemen-
tary advantages; (ii) the re-genotyping phase: refining the
initial calls with local models tuned for each CNVR. The en-
sembleCNV framework also includes steps to identify and
eliminate batch effect at raw data level, which are essential to
generate high-quality CNV signals. By leveraging large em-
pirical datasets, we compare and intensively evaluated the
performance of ensembleCNV with existing methods.

MATERIALS AND METHODS
Food allergy (FA) dataset

In the genome-wide association study (GWAS) of food al-
lergy (FA) in a US cohort of children with/without FA
and their biological parents (22), a total of 2790 blood
DNA samples, including 839 nuclear families and 100 tech-
nically duplicated pairs, were genotyped on the Illumina
HumanOmnil-Quad BeadChip with 1 048 713 SNP probes
and 91 706 CNV probes. The mean and median of distances
between neighboring probes are 2.63 and 1 kb (Supplemen-
tary Table S1). After quality control (QC), a total of 2765
samples remained, including 835 nuclear families and 95
technically duplicated pairs (see Quality Control section for
details). The majority (85.5%) of the samples are of Euro-
pean ancestry (Supplementary Table S1).

STARNET dataset

In the Stockholm-Tartu Atherosclerosis Reverse Net-
work Engineering Task study (STARNET) (23), a to-
tal of 874 blood DNA samples collected from coro-
nary artery disease (CAD) patients, including 12 techni-
cally duplicated pairs, were genotyped on the Illumina
HumanOmniExpressExome-8 BeadChip with 951 117 SNP
probes. The mean and median of distance between neigh-
boring markers are 3.23 and 1 kb (Supplementary Table
S1). After quality control (see Quality Control section for
details), a total of 834 samples remained, including 12 tech-
nically duplicated pairs (Supplementary Table S1).

1000 Genomes Project (KGP) CNV dataset

We downloaded the KGP structural variant (SV) dataset
(in GRCh37 coordinates) in variant call format (VCF),
which consists of 68 818 SVs detected by whole-genome se-
quencing (WGS) in 2504 individuals from different genetic
populations (24). In this study, we focused on the subset



PAGE 3 OF 13

(CNV dataset) of 40 975 deletions (DELs), 6025 duplica-
tions (DUPs) and 2929 multi-allelic copy number variants
(CNVs) (Supplementary Table S2), because only these types
of SVs can be detected by SNP array platforms. To com-
pare with the CNVs detected in the FA and STARNET
SNP array data, we further defined the subset of detectable
CNYVs spanning at least five probes of the SNP arrays used
in the two studies, resulting in a total of 6456 and 3571 de-
tectable CNVs for the FA and STARNET datasets, respec-
tively (Supplementary Table S2).

Data processing and quality control

We processed the raw data (i.e. .idat files) with Genome Stu-
dio 2011.1 (Illumina, CA) following similar protocols as de-
scribed (25). For data processing with Genome Studio, an
important step is to update the cluster centers correspond-
ing to the so-called AA, AB and BB genotypes for each SNP
probe (CNV probe has only one cluster), where A and B
refers to the two alleles for the SNP probe. This was done
by re-clustering on the data points from samples with high
call rate (e.g. >95%). This step is necessary since the clus-
ter centers (in .egt file) accompanying the SNP array, or
which are built from other studies, do not always align with
the real cluster centers in the current study. In the FA and
STARNET datasets, the sample sizes are large enough to
build customized clusters. For the updated cluster centers of
each probe, we updated genotype calls and derived quanti-
ties (including LRR and BAF used for CNV analysis) and
exported them to final reports.

We performed two types of sample-level quality control
(QC). Firstly, as routine QC for a GWAS based on SNP
genotype data, we excluded samples with (i) mismatched
genders, (i) excessive missing genotype rates, (iii) exces-
sive heterozygosity in autosomes (an indication of potential
sample contamination) and (iv) outliers in principle com-
ponent analysis (PCA). We retained technical duplicates in
this study to evaluate CNV methods (see below). It should
be noted that we did not perform QC at the probe-level (as
in a typical QC for GWAS), because SNP probes with high
missing genotype rates and deviation from Hardy-Weinberg
equilibrium may be associated with CNVs. At these SNP
probes, data points corresponding to CNVs usually deviate
from empirical genotype clusters and such deviation is espe-
cially magnificent for those with CN = 0 (i.e. 0 copies of the
allele) (17,18). Secondly, we performed additional sample-
level QC to remove samples with abnormal CNV signals
and alleviate batch effects. Please refer to ensembleCNV
step (b) (see below) and Supplementary Results for details.

ensembleCNV workflow

The overall workflow of ensembleCNV is summarized in
Figure 1. This involves an initial localization of CNVRs by
assembling CNYV calls from multiple methods with comple-
mentary advantages, and then a refining of the initial calls
using local models tuned for each CNVR. The workflow
consists of two major phases implemented in five steps. In
the initial detection phase, we processed the raw image data
with Genome Studio (Illumina, CA) and extracted geno-
type and CNV signals, particularly LRR and BAF from the
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final report. Next, we applied three popular CNV detec-
tion methods, PennCNYV (13), QuantiSNP (14), and iPat-
tern (12), to create the initial CNV call sets, respectively
(step (a)). In the raw data and initial call sets, batch effects
may exist and affect the downstream analysis. For this rea-
son, we applied PCA on the raw LRR data and sample-
level summary statistics of CNV results from the individ-
ual callers to identify batches. When batches existed, we
re-processed each batch along the pipeline for the initial
detection phase (step (b)). In the following ensemble and
re-genotyping phase, we aimed to address three sub-tasks:
First, we aligned the CNVs called from the individual meth-
ods in all subjects and merged overlapping CNVs to con-
struct initial CNVRs using a heuristic algorithm (step (c)).
Second, we trained a local likelihood model on both LRR
and BAF CNYV signals at each CNVR with the ‘global’ in-
formation from frequent CNVRs incorporated (see Sup-
plementary Methods); and assigned a copy number (CN)
genotype to each subject, accompanied by a genotyping
quality (GQ) score to quantify the confidence level (step
(d)). Third, we refined the boundaries of CNVRs using
the correlation structure of the LRR values of the probes
around the CNVRs (step (e)). The whole pipeline results in
CN genotype data of refined CNVRs across each subject.
Details of the implementations are described as follows.

Initial CNV calls by selected methods. We chose Pen-
nCNYV (13), QuantiSNP (14), and iPattern (12) to make
the initial CNV calls using final report files generated by
Genome Studio 2011.1 (Illumina, CA). These methods use
different information to call CNVs from different perspec-
tives. Both PennCNYV and QuantiSNP are hidden Markov
Model (HMM)-based approaches, which take LRR (re-
flecting total copy number) and BAF (reflecting allelic
proportion/balance) jointly as observed data while model-
ing copy number (CN) status in the hidden layer. PennCNV
further accounts for population frequency of the B allele,
which can be estimated by the data. They make CNV calls
on an individual-wise basis. iPattern takes normalized in-
tensities from fluorescent measurements of the two alleles of
each SNP as input, calculates total intensities for each SNP,
and normalizes the total intensities (reflecting total CN)
across individuals. It then screens the genome with sliding
windows, within which a Gaussian mixture model (GMM)
is fitted to the normalized total intensities across individ-
uals and CNYV calls are made based on the fitted model.
While PennCNV and QuantiSNP are good at calling large
rare CNVs in a more sensitive way, iPattern performs better
in calling more frequent CN'Vs across individuals. We took
the complementary advantages of these methods and com-
bined their discovery sets to boost the sensitivity of CNV
detection for the initial call set.

Sample-level QC for batch effects. We used two orthog-
onal signals to identify batch effects in CNV calling: (i)
Along with CNV calls, the three detection methods can gen-
erate per-sample summary statistics, such as standard devi-
ations (SD) of LRR, SD of BAF, wave factor in LRR (19),
BAF drift (13), and the number of CNVs detected, reflect-
ing the quality of CNV calls at the sample level. Since these
quantities are highly correlated among themselves and be-
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Figure 1. Workflow of ensembleCNV.

tween methods (Supplementary Figure S1), we used PCA
to summarize their information. By examining the first two
or three PCs, we can identify sample outliers or batches that
deviate from the majority of the normally behaved samples
(Supplementary Figure S2). (ii) Batch effects may also be
orthogonally reflected in the first two or three PCs from
the LRR data before any CNV analysis is performed. We
randomly selected 100 000 probes and applied PCA to the
LRR values at these probes across individuals and visual-
ized the first few PCs in scatter plots. Batches can be iden-
tified by visual check if they exist (Supplementary Figure
S2). The batches identified by these two independent ap-
proaches should be consistent with each other. While iso-
lated outliers were excluded from downstream analysis, if
batch effects were identified, we re-normalized the samples
within each outstanding batch with Genome Studio (see
data processing section), re-did the CNV calling in step (a),
and combined the re-called CNVs with the remaining call
set of good quality (Figure 1). Please refer to Supplemen-
tary Results and Supplementary Figures S1-S3 for details
regarding the identification and removal of batch effects in
the FA dataset.

Construction of CNVRs. We defined CNVR as the region
in which CNVs called from different individuals by different
callers substantially overlap with each other. CNV events
belonging to the same CNVR are comparable across indi-
viduals and thereby the estimation of population frequency
can be made. For copy number polymorphisms (CNPs) fre-
quently observed in populations and inherited CNVs segre-
gating within pedigrees, their boundaries would be aligned
precisely across individuals. For recurrent CNVs (but not

CNPs), their affected genomic regions would largely over-
lap, albeit if not exactly aligned.

We modeled the CNVR construction problem as iden-
tification of cliques (a sub-network in which every pair of
nodes is connected) in a network context (Supplementary
Figure S4), where (i) CNVs detected for each individual
from a method are considered as nodes; (ii) two nodes are
connected when the reciprocal overlap between their cor-
responding CNV segments is greater than a pre-specified
threshold (e.g. 30%); (ii1) a clique corresponds toa CNVR in
the sense that, for each CNV (node) belonging to the CNVR
(clique), its average overlap with all the other CNVs of this
CNVR is above a pre-specified threshold (e.g. 30%). The
computational complexity for clique identification can be
dramatically reduced in this special case, since the CNVs
can be sorted by their genomic locations and the whole
network can be partitioned by chromosome arms—CNVs
from different arms never belong to the same CNVR. Cor-
respondingly, the adjacent matrix representing the network
model is banded along the diagonal (Supplementary Figure
S4).

Briefly, for CNVs in each chromosome arm, which were
sorted by their genomic locations, we constructed CNVRs
in a forward-screening and backward-pruning procedure.
In the forward-screening step, we initialized the first CNVR
with the first CNV in the list and screened the remaining
CNVs in their genomic order. For the current CNV un-
der consideration, we compared it against all existing CN-
VRs. If its average overlap with all CNVs of a most over-
lapping CNVR was above the pre-specified threshold (see
above definition (iii)), we assigned it to this CNVR; other-
wise we created a new CNVR with it. The screening contin-
ued until all CNVs in the list were assigned to a CNVR. In
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the backward-pruning step, for each CNVR, we re-checked,
for each CNV belonging to this CNVR, if its average over-
lap with all the other CNVs of this CNVR was above the
pre-specified threshold. If a CNV did not meet this crite-
rion, we removed it from this CNVR. This pruning proce-
dure would continue until no more CNVs could be removed
from the CNVR. The leftover CNVs would be assigned to
other CNVRs whenever possible; otherwise, they would be
assigned to newly created CNVRs.

To define the boundary of each CNVR, we stacked all
CNVs in a CNVR and defined the footprint carried by at
least a pre-specified proportion of CNVs (e.g. 50%) as the
initial boundaries of this CNVR (Supplementary Figure
S4). We adopted this major-vote type of strategy to enrich
CNV signals within the CNVR and reduce the noise from
surrounding probes. The initial boundaries were refined in
an iterative way as shown in Figure 1 and step (e) below.

CNVre-genotyping. Theinitial CNV calls withina CNVR
may be mixed with false positives and false negatives from
the initial call set. Moreover, the baseline LRR value cor-
responding to normal CN status may substantially devi-
ate from 0, violating the essential model assumptions for
individual-wise CNV callers (e.g. PennCNV and Quan-
tiSNP) (Supplementary Figures SSA and S6). To address
these issues, we re-genotyped CN status per individual at
each CNVR by a locally fitted likelihood model, with infor-
mation from other CNVRs borrowed for the initialization
of model parameters (see Supplementary Methods). Both
the LRR and BAF signals from SNP probes and the LRR
signal from CNV probes within a particular CNVR were
used for model fitting. With the additional signal from BAF,
the original samples with non-identifiable CN status based
on the LRR signal alone (e.g. iPattern) may be distinguish-
able in the expanded BAF-LRR 2D space (Supplementary
Figure S5B and C).

For BAF signal, denote x;; (i =1,...,n;j =1, ..., p) as
the observed BAF value for the ith individual at the jth
SNP probe in the CNVR. We adopted the mixture model

(13):

p G-l

pear(ilz) =[] Y b(&G) =1, ps))

Jj=1 g=0

X ¢(xij; Mx,zig» U,V,Zf,g)

where b(g; G(z) — 1, pp) and @(x; iy - g, Ox, - ¢) are density
functions for binomial and normal distributions respec-
tively; z; (z; € {0, 1, 2, 3}) is CN; G(z;) is the number of pos-
sible genotypes associated with the CN (e.g. G(z; =3) =4
corresponding to genotype AAA, AAB, ABB and BBB);
p B 1s the population B allele frequency (PFB), which can
be retrieved from PennCNYV analysis (13) in step (a). The
parameters in the BAF model are estimated from a set of
selected CNVRs (see Supplementary Methods).

For LRR signal, denote the median value of all probes
within the CNVR as y; (i = 1, ..., n) for the ith individual.
We adopted the commonly used Gaussian mixture model
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(GMM):
PrLrr()i) = Z 7., pLrR(Vi|Zi)
e(0.1.2,3)
= Z 7Tz,~¢(yi; Hy,zi O—J’qu)
e(0.1.2,3)

The model can be fitted by an EM algorithm (26). For a
CN Gaussian component in the GMM with adequate sam-
ple size (e.g. >10) from the initial call set generated in step
(a), we use these samples to estimate the initial value of
parameters for the EM algorithm; otherwise, we adopted
the parameters estimated from a set of selected CNVRs as
the initial value (see Supplementary Methods). It should be
noted that LRR signals are not always properly normalized
and centered at 0, so we used the mode of y; of the samples
absent from the initial CNV call set (i.e. CN = 2) for the
CNVR to estimate the initial location of normal CN com-
ponent (i, .—>) and calculate the relative locations of other
CN components with respect to i, -—>.

Once the CNVR-specific model is fitted, we computed
the Phred-scaled likelihood (PL) of a CN status (z; €
{0, 1,2, 3}):

PL(z;) = —10logo (-, pLrr(Vilzi) pBaF(Xi|2i)) .

We decided the CN genotype (including CNV and nor-
mal CN) as the one with the smallest PL value, with asso-
ciated genotype quality (GQ) score defined by the differ-
ence between the smallest and the second smallest PL val-
ues. This definition is similar to the GQ score used in GATK
pipeline for the analysis of next-generation sequencing data
(27). The GQ score can be used to measure the confidence
of a CN genotype call. The CN genotype with GQ score
greater than a pre-specified threshold will be reported and
otherwise be set as missing (‘no call’). The GQ threshold
can be tuned in a data-driven manner that balances accu-
racy and call rate. For example, technical duplicates are of-
ten adopted for QC purposes. We can adjust the GQ score
threshold to a level that the CNVs detected in technical du-
plicates achieve a high concordance rate while the call rates
at the individual-level and CNVR-level are not heavily com-
promised (see Results).

Boundary refinement. Fora CNVR with high frequency of
variant alleles, the LRR signals are highly correlated across
individuals among involved probes (Supplementary Figure
S7). We can take advantage of this structure to further re-
fine CNVR boundaries. In other words, we are able to find
a sub-block of high correlations within a local correlation
matrix. This strategy has also been adopted for CNV de-
tection in other studies (28,29). Considering the M SNPs
within the local region by expanding the initial boundaries
several times (e.g. twice the size of the initial region on both
sides), let r;; be the Pearson correlation of LRR values be-

tween SNP i and j. The refined left / and right 7 boundaries
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are obtained by optimizing:

(0, 7) = argmax
m<j—i<M-1

(S(z',j) s, M)—S(i,.n) / < 1 1 )
x - — + .
mi my —mj m my —mj

where S, j) = Y10 Y0 g o= =D —i +
1)/2, my= M(M—1)/2, and m 1is the pre-specified
minimum size of CNVR (e.g. spanning 5 probes). This
optimization is feasible by simple exhaustive search, since
the number of SNPs M involved in a CNVR is commonly
within the range of tens to hundreds.

When the refined boundaries are different from the initial
boundaries, the probes falling within the range of updated
boundaries will change. We needed to update the local like-
lihood model as in step (d) and re-did the genotyping step
(Figure 1). If several CNVRs share the exact boundaries af-
ter boundary refinement, we merged them into one.

Concordance rate in duplicated pairs

To avoid overestimating the concordance rate, for each pair
of technical duplicates, we only considered the CNVRs with
CNYV genotype (CN = 2) in at least one of the pair, while
those with only normal CN genotype (CN = 2) in both were
excluded. The concordance rate was defined as the propor-
tion of CNVRs with consistent CNV status in both dupli-
cates among all the CNVRs considered for each pair of du-
plicates.

Mendelian errors and transmission rate in trios

From the nuclear families in the FA cohort, we included
those with complete trios (father-mother-child). Larger nu-
clear families with multiple children were converted to mul-
tiple trios. For example, a quartet family was converted to
two trios, each with one child and the parents. This resulted
in a total number of 1019 trios. In each trio, the CNVRs
with normal CN status (CN = 2) in all three individuals
were excluded. A CNVR has a Mendelian error if the CN
status in the trios does not follow the normal inheritance
pattern. For example, if CN = 0 in the father, CN = 2 in the
mother, then CN = 2 in the child will lead to a Mendelian
error. A Mendelian error could possibly arise from a de novo
mutation in the child, false positive CNV calls in the child,
or false negatives in the parents. To avoid ambiguity in the
estimation of transmission rate in a trio, we only considered
the CNVR with CNV status (CN # 2) in only one of the par-
ents. The transmission rate was estimated as the proportion
of CNVRs carrying CNV genotype in the child among all
CNVRs considered in the trio.

Sensitivity analysis

We used the ‘detectable’ subset of the 1000 Genomes Project
(KGP) CNV dataset (Supplementary Table S2) as the refer-
ence to evaluate the sensitivity of the six methods in CNV
detection. A CNV in KGP data was considered as detected
by a method if a CNV from the call set of the method was
found with > 30% reciprocal overlap with the KGP CNV
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and the allelic types of the two CNVs were compatible. For
example, if the CNV called by the method had only a dele-
tion allele while the KGP CNV had only a duplication al-
lele, then the KGP CNYV was not counted as detected even
though they had >30% reciprocal overlap. The sensitivity
of a method was defined as the proportion of the CNVs in
the KGP data that could be detected by the method.

RESULTS
Performance of ensembleCNV

We evaluated the performance of ensembleCNV using two
empirical datasets from the FA and STARNET studies (see
Material and Methods; Supplementary Table S1) and com-
pared with the three methods we adopted in our pipeline. In
addition, we also considered two simple integration meth-
ods commonly used in CNV studies: (i) the ‘intersection’
method where the CNVs called by at least two of the three
methods (i.e. major voting) were selected to the final call
set; and (ii) the “‘union” method where the CNVs called by
any of the three methods were added to the final call set
(Supplementary Figure S8). For the other five methods, we
used the ensembleCNV CNVR construction algorithm to
create CNVRs. Key summary statistics of the CNV call sets
from the six methods are shown in Supplementary Table S3.
The individual performance of these six methods were com-
pared from three perspectives: (a) concordance rate of de-
tected CNVs between technical duplicates in both datasets;
(b) Mendelian error and transmission rate evaluated in trios
of FA study; (c) the quality of detected CNVs evaluated
by the external CNV data from the 1000 Genomes Project
(KGP) (24).

Concordance rate and genotype call rate

To benchmark the accuracy of CNV detection methods, the
ideal way is to use real datasets with known ground truth
of CNVs in all subjects. Such a benchmark is usually not
available, especially for large-scale genetic studies. However,
for QC purposes in SNP genotyping, technical duplicates
are often considered in the experimental design as in the
FA and STARNET studies. Thus, the concordance rate (see
Methods for definition) of CNV calls in duplicated pairs,
i.e. the reproducibility, can be used as a surrogate of ac-
curacy measurement—with high reproducibility being an
indication of good quality for a CNV call set. In ensem-
bleCNYV, we also defined the genotyping quality (GQ) score
(see Materials and Methods) to quantify the confidence
of the CN genotype assigned to each individual at each
CNVR. As the GQ score threshold increases, the concor-
dance rate constantly increases with the median value across
duplicated pairs gradually approaching 100% at the cost of
decreased sample-wise and CNVR-wise call rates (Supple-
mentary Figures S9 and S10). To achieve a balance between
concordance rate and call rate, we selected GQ score thresh-
olds of 15 and 20 in the FA and STARNET datasets, respec-
tively (Supplementary Figures S9 and S10). We also used
these thresholds in the results sections below. Of note, the
strategy of utilizing technical duplicates along with the GQ
score can be used when applying ensembleCNV in real data
analyses. For the other five methods, however, there is no
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such quantification of genotyping confidence for every in-
dividual at each CNVR. In particular, these methods do not
distinguish between normal CN (CN = 2) versus no call. In-
stead, we set the genotype of an individual without a CNV
call (CN # 2)ata CNVR as normal (CN = 2). The call rate,
therefore, cannot be defined for these five methods.

In this evaluation, not only did ensembleCNV achieve
the highest concordance rates with medians of 98.6% and
95.5% in the FA and STARNET datasets, but it also re-
sulted in the greatest stability (i.e., the smallest variability)
across duplicated pairs (Figure 2A and D). On the other
hand, the medians of sample-wise call rate and CNVR-
wise call rate reached 93.3% and 97.0% for the FA data
and 96.3% and 99.5% for the STARNET data, respec-
tively (Figure 2B, C, E, and F). A similar QC based on
call rate at both individual and CNVR Ilevels can be per-
formed as what is routinely done for SNP QC in GWAS.
For the purpose of fair comparison, we kept all samples
and CNVRs generated by ensembleCNV without any fil-
tering unless otherwise specified. Following ensembleCNYV,
the joint analysis based method, iPattern, performed bet-
ter than the individual-wise analysis based methods, Pen-
nCNYV and QuantiSNP, in terms of concordance rate. It
should be noted that the straightforward integration meth-
ods ‘intersection’ and ‘union’ did not make any improve-
ment on the individual methods, but instead reached a com-
promise between the three methods — they underperformed
as compared to iPattern and outperformed as compared
to PennCNV and QuantiSNP (Figure 2A and D). More-
over, in the FA data, the concordance rate produced by
ensembleCNV was mostly comparable between the dupli-
cated pairs, either within the same batches or those belong-
ing to different batches. This suggests robustness of ensem-
bleCNYV to batch effects, whereas the other five methods
were vulnerable (Supplementary Figure S11).

Mendelian error and transmission rate

Taking advantage of family information from the FA
dataset, we calculated the number of Mendelian errors in
the trios (see Materials and Methods). Though a Mendelian
error may imply a de novo CNYV, the number of such errors is
expected to be within a certain range. As suggested by KGP
CNYV data (Supplementary Table S2), the median number
of singleton CNVs per sample is 8. Therefore, an excessive
number of Mendelian errors per trio indicates poor qual-
ity of a CNV call set. Figure 3A summarizes the number
of Mendelian errors per trio for the six methods. The me-
dian number for ensembleCNYV is 13, a little above the num-
ber suggested by KGP data. It should be noted that the GQ
score threshold was not optimized for Mendelian errors (see
above section). With the increment of GQ score threshold,
the number of Mendelian errors continues to decrease at the
expense of call rate (Supplementary Figure S12). In con-
trast, the median number for iPattern is 45 and those num-
bers for the other four methods are all above 200, implying a
large amount of false positive CNV calls in offspring and/or
false negatives in parents.

Concurrently, with trio data, we estimated the transmis-
sion rate of CN'Vs from parents to offspring (see Methods).
Normally, the average transmission rate should be around
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0.5 (30). The medians of transmission rates in the trios for
ensembleCNYV and iPattern were close to 0.5, whereas the
median values for the other four methods were all well be-
low 0.5 (Figure 3B). Moreover, as expected, the median of
transmission rates for ensembleCNV converged to 0.5 as the
GQ score threshold increased (Supplementary Figure S12).

Evaluation with 1000 Genomes Project CNV (KGP) data

We used the KGP CNV data (24) as an external dataset to
evaluate the sensitivity of the six methods (Supplementary
Table S2). Since KGP CNV data was produced by whole-
genome sequencing (WGS), the size of detectable CNVs can
be smaller than 1kb at base-pair resolution, which is be-
yond the capability of SNP array platforms. To make the
reference data comparable to the results from the FA and
STARNET datasets, we defined the subsets of ‘detectable’
CNVs as those spanning at least 5 probes in the SNP array
used in the FA and STARNET studies, respectively (Sup-
plementary Table S2). Since the majority of subjects in the
FA and STARNET studies are of European ancestry and
the SNP arrays used (Supplementary Table S1) are mainly
designed for European populations (reflected in the number
of detectable singleton CNVs per sample; Supplementary
Table S2), we focused on the statistics in European popu-
lations from KGP. The sensitivity assessment was further
stratified by the allele frequency in KGP European popula-
tions at 1% (Figure 4). Overall, the total number of CNVs
detected per sample from ensembleCNV (median: 620 and
38) was the closest, among the six methods, to the number
(median: 633 and 48 for European populations) of the de-
tectable subsets of KGP data in both the FA and STAR-
NET studies (Supplementary Tables S2 and S3). Regarding
the sensitivity, ensembleCNV was able to identify 85% and
71% of detectable common CNVs in the FA and STAR-
NET data, respectively. That the sensitivity for rare CNVs
was found to be much lower is not surprising (Figure 4).
The call set from iPattern is the most conservative and bi-
ased toward common CNVs, while the other four methods
tend to be slightly more sensitive than ensembleCNV at a
greater cost of accuracy (Figures 2-4). Interestingly, for the
detectable common CNVs (containing >5 probes on the
SNP genotype array), the CN genotype frequencies docu-
mented in the KGP CNV dataset were better matched with
those estimated by ensembleCNYV than the other five evalu-
ated methods (see Methods; Supplementary Figure S13).

Size and frequency distribution of CNVRs

The size and frequency of CNVs called by the different
methods were found to be comparable both to each other
and to CNVs released by KGP (Figure 5). In the FA study,
84.2% and 91.1% of all CNVRs were below the frequencies
of 1% and 5%, respectively. In the STARNET study, 83.7%
and 93.7% of all CNVRs were below frequencies of 1% and
5%, respectively. This frequency spectrum is similar to that
observed for SNPs (31). Importantly, in the FA (by ensem-
bleCNV) and KGP data, a total of 1752 and 1948 CNVRs
with frequency >1% was detectable, offering sufficient sta-
tistical power to perform large CNV-GWAS.

The CNVRs detected had a wide size range (Figure 5B
and D), which is consistent with findings in KGP. 63.7%
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Figure 4. Sensitivity of detecting CNVRs in the KGP dataset. The fraction of detectable KGP CNVRs spanning at least 5 probes in the FA (A) and
STARNET datasets (B) were compared among the six methods. In each subfigure, the detectable CNVRs are further stratified by allele frequencies in
European populations of KGP into common (frequency > 1%; left panel) and rare CNVRs (frequency < 1%; right panel).

and 43.8% of CNVRs in the FA and STARNET data were
20 kb or shorter, respectively. It should be noted that there
were only two CNVs with a size of >1 Mb in the KGP CNV
dataset (Supplementary Table S2), and these two CNVs did
not pass the 5-probe lower limit and thus did not appear in
the detectable sets for the FA and STARNET studies.

Correlation of CNVRs and nearby SNPs

A key question for CNV-GWAS is whether the CNVs are
already well tagged by nearby SNPs, in which case making
CNV calling becomes redundant. We estimated linkage dis-
equilibrium (LD; %) between each CNVR (with >90% call
rate from ensembleCNV) and SNPs within 500 kb (Figure
6). In the FA data for all CNVRs, only 7.3% were tagged at
#* > 0.6. In contrast, for CNVRs at frequencies >1% and
> 5%, the corresponding numbers were 46.5% and 76.3%,
respectively. In STARNET, a SNP array with fewer SNPs
than FA was used, and the LD between CNVRs and SNPs
was therefore even lower. For all CNVRs, 4.4% were tagged

at 12 > 0.6, and for CNVRs at frequencies >1% and >5%,
15.3% and 36.9% were tagged at > > 0.6, respectively. These
results indicate that testing CNV-disease associations is nec-
essary and potentially fruitful for both rare and common
CNVs.

Functional relevance of CNV

In the STARNET and FA datasets, we found that 5.58%
and 17.49% of the genome were affected by CNVs, re-
spectively. For more frequent CNVs (e.g. frequency > 5%),
0.74% (FA) and 1.23% (STARNET) of the genome were af-
fected. Furthermore, 0.54% (FA) and 0.4% (STARNET) of
the genome were affected by CNVs with null (CN = 0) geno-
type.

Given that CNVs directly change the dosage of genes,
they are likely functional and possibly important for dis-
ease. For that reason, we overlapped the CNVRs with the
NHGRI-EBI GWAS catalog (32), holding 43 927 unique
variants with convincing evidence of variant-trait associ-
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ations. Importantly, 23.97% (10 530) of the GWAS cata-
log variants were affected by CNVRs (i.e. within CNVR
boundaries), where 2% (881) were affected by frequent CN-
VRs and 1.1% (485) by CNVRs with null genotype.

It is known that most genomic loci can affect sev-
eral traits either by affecting multiple genes at the locus
or genetic pleiotropy (33-35). In our results, risk loci of
the GWAS catalog affected by CNVs we detected in ei-
ther the FA or the STARNET data were linked to mul-
tiple traits. The top diseases/traits with the most GWAS
SNPs affected by CNVs were breast cancer (220 CNV-
affected variants), schizophrenia (220 variants), obesity-
related traits (213 variants), height (174 variants), and body
mass index (170 variants). As an example, the 7q36.3 lo-
cus with susceptibility to testicular germ cell tumor (lead-
ing SNP rs11769858; P-value = 2¢-8) (36) was within a
CNVR (CNVR_954_r1 _chr7_q) of 4kb length (Supplemen-
tary Figure S14A). In the FA cohort, 2014, 483 and 31
subjects are of 2, 1 and 0 copy numbers, respectively, at
this CNVR (Supplementary Figure S14B). This CNVR
(CNVR_954_r1_chr7_q) is reliably called based on 15 probes
on the Illumina HumanOmnil-Quad-vl BeadChip (Sup-
plementary Figure S14C and D). The promoter region of a
gene proposed to be responsible for testicular germ cell tu-
mor risk (36), NCAPG2, was affected by this CNVR (Sup-
plementary Figure S14A).

DISCUSSION

Despite the availability of large, relevant datasets (e.g.
SNP array of large GWASs) (7), the hypothesis that CNV
broadly influences disease risk in the population and across
diseases has not been systematically evaluated in a well-
powered study. The main challenge has been a lack of ro-
bust and accurate methods to quantify CNVs. Here, we de-
scribe and report on the utility of ensembleCNYV for detect-
ing and genotyping CNVs; a technique that is readily ap-
plicable to a large amount of existing data. We demonstrate
that our ensemble approach quantifies CNV genotype with
accuracy and properties comparable to SNP genotyping,
and as such paves the way for large-scale population-based
CNV-disease association studies (i.e. CNV-GWAS).

EnsembleCNYV has several key advantages over existing
methods:

(1) High genotyping accuracy and reproducibility. In the
STARNET and FA cohorts, we observed 96.2% and
98.6% consistency, respectively, among technical dupli-
cates (Figure 2), and the median number of Mendelian
errors was 13 per family in the FA data, which outper-
formed other methods.

(2) Detection and re-genotyping functions. Many existing
methods are designed as CNV detection tools (e.g. Pen-
nCNYV and QuantiSNP) and do not distinguish CN =
2 versus ‘no call’, causing substantial mis-classification.
EnsembleCNV has both detection and re-genotyping
functions and employed a GQ score to identify ‘no call’
for genotypes with low confidence.

(3) High genotyping call rate. In the STARNET and FA co-
horts, we obtained 97.0% and 93.3% sample-wise geno-
typing call rates (Figure 2), respectively.
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(4) High detection rate. The detection phase of ensem-
bleCNV utilizes multiple underlying callers, and en-
sures a high detection rate (i.e., ability to detect and
genotype more CNVRs). For example, in the FA co-
hort, ensembleCNYV called 19 695 CNVRs, more than
the 10 200 CNVRs called by iPattern; in the mean-
time, ensembleCNV achieved a higher rate of consis-
tency for duplicate pairs (98.6% versus 90.5%; Figure
2) and fewer Mendelian errors (13 versus 45; Figure 3).

(5) Improved calling quality and functional interpretability.
The boundary refinement of ensembleCNV both im-
proves the CNV calling quality and downstream func-
tional interpretability.

(6) Prepared for CNV-GWAS. EnsembleCNV outputs
aligned CNVRs and CNV genotype matrix with simi-
lar format and properties as SNP genotype matrix (e.g.
PLINK format (37)), ready for association testing.

(7) Identification and elimination of batch effects. Proper
ways to handle batch effects are prerequisite to produce
high-quality CNV signals. However, this is often over-
looked and rarely addressed in a proper way by existing
methods. We proposed steps to address this issue at raw
data level from the beginning of the pipeline. In the FA
dataset, we identified and eliminated batch effects to a
considerable extent (Supplementary Results and Sup-
plementary Figures S1-S3 and S11).

CNVsin a given individual can be inherited and de novo.
We found, when accurately typed, CNVs are overwhelm-
ingly inherited (98.1%), following simple Mendelian inher-
itance, which is consistent with previous reports (7). Im-
portantly, we found that inherited CNVs are often not well
tagged by nearby SNPs. One important reason is that cur-
rent SNP genotyping arrays are primarily optimized to tag
SNPs rather than CNVs. In the STARNET and FA stud-
ies, only 4.4% and 7.3% of CNVRs were tagged by nearby
SNPs at 7> > 0.6 (Figure 6), emphasizing the need for CNV-
GWAS to capture at least part of the missing heritabil-
ity of human diseases. Further, CNVs are of great func-
tional relevance. Among the unique variants documented in
the NHGRI-EBI GWAS catalog, 23.97% (10,530 variants)
were inside CNVRs detected in the STARNET and/or FA
studies, and 485 variants were inside CNVRs with null
(i.e. CN = 0) genotype.

An enormous amount of raw SNP array data generated
from large GWASs has not been comprehensively investi-
gated in terms of CNVs, leaving a large gap of CNV geno-
typing and CNV-based association analyses. To address this
gap, we systematically benchmarked the performance of en-
sembleCNYV on large SNP array datasets, suggesting its ap-
plicability for CNV-GWAS. In this context, it should be
noted that the ensembleCNV framework can be extended
to next-generation sequencing (NGS) data (8), where multi-
ple NGS-based CNV calling tools have been proposed (e.g.,
GenomeSTRIP (38,39) and LUMPY (40)) and their indi-
vidual call sets can be aggregated in a similar way. Exten-
sion of ensembleCNV to NGS data would address the lim-
itations of CNV detection using SNP array data. For ex-
ample, using the boundary refinement functionality of en-
sembleCNYV, but limited by the pre-specified distribution of
probes in a SNP array, the boundaries of CNVs can only
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be approximated as being somewhere between neighbor-
ing probes. By aggregating signals around CNV boundaries
(i.e. break point) from split reads and discordant read pairs
across multiple individuals, the boundary location may be
increased to base-pair resolution (8). Using NGS data with
sufficient coverage, we would also alleviate the signal satu-
ration limitation in SNP array data, where we cannot reli-
ably distinguish CN = 3 versus CN > 4 genotypes at many
CNVRs (38,39). We will extend the functionality of ensem-
bleCNV to NGS data in future work.

In the 1000 Genomes Project data, some CNVs are more
frequent (i.e. frequency > 1%); which are also termed copy
number polymorphisms or CNPs (41-43). In the FA data,
indicating a high sensitivity for CNPs, we were able to detect
and genotype 85% of these frequent CNVs using ensem-
bleCNV. Indeed, the ability to accurately detect and geno-
type CNPs is particularly important from the perspective
of successfully performing CNV-GWAS. The relative con-
tribution of rare and common variants to genetic varia-
tion can be measured as a fraction of the number of loci
that differ in copy-number between any two unrelated in-
dividuals. In a recent analysis, > 90% of the loci were ob-
served to differ in copy-number between pairs of individ-
uals among involved CNPs, and ~80% involved common
CNPs (with minor allele frequency >5%) (41-43). This in-
dicates that a large fraction of the copy-number differences
between any two individuals arise from a limited set of com-
mon polymorphisms (41-43), analogous to an earlier ob-
servation that the largest component of human sequence
variation (at fine scale) arises from common SNPs. In the
FA cohort, 15.8% of the CNVs detected belong to CNPs in
which the same mutant allele exists in multiple pedigrees.

It should be noted that the detection rate of CNVs is in-
fluenced by the density of SNP array probes and sample
size. Our working definition requires at least five probes per
CNV. At this threshold, we investigated the number of 1000
Genomes Project (KGP) CNVs that could be theoretically
detected by a variety of commonly used Illumina SNP ar-
rays with different numbers of probes. The number of de-
tectable CN'Vs is approximately proportional to the num-
ber of probes distributed on the array (Supplementary Ta-
ble S4). SNP arrays with higher probe density as well as
specifically designed CNV probes, or next generation se-
quencing (NGS), may potentially detect more and smaller
CNVs. To investigate the effect of sample size on CNV de-
tection, we performed a down-sampling analysis on the FA
dataset, where subsets of 500, 1000, 1500 and 2000 samples
were randomly drawn from the full dateset (n = 2765). The
concordance rate, Mendelian errors and the transmission
rate of ensembleCNYV results did not vary substantially as
the sample size changed (Supplementary Figure SISA-C).
In contrast, the sample-wise and CNVR-wise call rate as
well as the total number of detected CNVRs increased as
the sample size increased (Supplementary Figure S15D-F).

In conclusion, we proposed and benchmarked ensem-
bleCNYV, a novel method for CNV calling and genotyping.
It makes highly reproducible and accurate CNV calls, ob-
tains a high call rate, and pinpoints CNV boundaries reli-
ably. Importantly, this high performance is not achievable
by simply taking the intersection or union of the call sets
from individual callers. Our tool is freely available at https:
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/Igithub.com/HaoKeLab/ensembleCNV. Given the amount
of SNP array data that has been generated in large GWASs
of many diseases and traits, we believe ensembleCNV is
a powerful and timely tool to quantify CNVs on existing
data, and to investigate the contribution of CNVs to hu-
man disease predisposition. Our tool also makes it feasible
to genotype SNPs and CNVRs simultancously from SNP
array data in future GWASs, and to examine the two types
of variants together for association with disease traits.

DATA AVAILABILITY

The source code for ensembleCNV is freely available on
GitHub at https://github.com/HaoKeLab/ensembleCNV.
The STARNET dataset is available at dbGaP under study
accession number: phs001203.v1.pl. The 1000 Genomes
Project structural variant data is available at ftp:/ftp-trace.
ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/.
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Supplementary Data are available at NAR Online.
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