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Abstract
Background: Because shape or irregularity along the tumor perimeter can
result from interactions between the tumor and the surrounding paren-
chyma, there could be a difference in tumor growth rate according to tumor
margin or shape. However, no attempt has been made to evaluate the corre-
lation between margin or shape features and tumor growth.
Methods: We evaluated 52 lung adenocarcinoma (ADC) patients who had at
least two computed tomographic (CT) examinations before curative resection.
Volume-based doubling times (DTs) were calculated based on CT scans, and
patients were divided into two groups according to the growth pattern (GP) of
their ADCs (gradually growing tumors [GP I] vs. growing tumors with a tempo-
rary decrease in DT [GP II]). CT radiomic features reflecting margin characteris-
tics were extracted, and radiomic features reflective of tumor DT were selected.
Results: Among the 52 patients, 41 (78.8%) were assigned to GP I and 11 (21.2%) to
GP II. Of the 94 radiomic features extracted, eccentricity, surface-to-volume ratio, LoG
uniformity (σ = 3.5), and LoG skewness (σ = 0.5) were ultimately selected for tumor
DT prediction. Selected radiomic features in GP I were surface-to-volume ratio, con-
trast, LoG uniformity (σ = 3.5), and LoG skewness (σ = 0.5), similar to those for total
subjects, whereas the radiomic features in GP II were solidity, energy, and busyness.
Conclusions: This study demonstrated the potential of margin-related radiomic
features to predict tumor DT in lung ADCs.

Key points
Significant findings of the study: We found a relationship between margin-
related radiomic features and tumor doubling time.
What this study adds: Margin-related radiomic features can potentially be used
as noninvasive biomarkers to predict tumor doubling time in lung adenocarci-
noma and inform treatment strategies.

Introduction

Sequential computed tomography (CT) scans and pulmo-
nary tumor volume measurements are useful for assessing

tumor growth rates.1 On sequential CT scan images, it is
important to determine whether a pulmonary nodule has
grown and, if it has, how fast it has grown. The doubling
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time (DT) of pulmonary tumors, which is the mean time
for a tumor to double in volume, is used to differentiate
malignant from benign tumors.2, 3 In lung cancer in partic-
ular, DT reflects tumor cell proliferation and serves as a
determinant of tumor aggressiveness.4 Moreover, the DT
of lung cancer on serial CT scans reflects tumor histology
and is closely associated with prognosis.5–8 Thus, the DT
of lung cancer is one of the key parameters that is used to
distinguish aggressive tumors from indolent ones.
Several studies have investigated the correlation between

tumor DT in lung cancer patients and imaging features.6–10

–10 Solid components of lung cancers on CT images reflect
their invasive potential and are associated with rapid
growth, whereas ground glass opacity (GGO) components
suggest a longer DT and good outcome, such as seen for
adenocarcinoma in situ (AIS) and minimally invasive ade-
nocarcinoma (MIA). However, these previous studies only
evaluated a few qualitative imaging characteristics, such as
solidity.
Radiomics extracts accurate quantitative imaging

descriptors from images using image processing
techniques,11 and several studies have attempted to provide
descriptive and predictive models relating image features
to tumor phenotypes.12, 13 The majority of features used in
classification has been derived from intratumoral descrip-
tors. Peritumoral radiomic features for both disease diag-
nosis and prognosis of brain, breast, and lung cancers have
also been explored.14–17 In the context of lung cancers, a
few studies have indicated that radiomic features of the
tumor surroundings can be used to discriminate granulo-
mas from adenocarcinomas (ADCs).15, 18 Because shape or
irregularity along the tumor perimeter can result from
interactions between the tumor and the surrounding
parenchyma, there could be a difference in tumor growth
rate according to tumor margin or shape. To the best of
our knowledge, no attempt has been made to evaluate the
correlation between margin or shape features and tumor
growth, even though these characteristics, which can be
extracted from lung CT images, may reflect the tumor
microenvironment.
Accordingly, we conducted a study to identify CT imag-

ing features with a focus on margin characteristics that
would allow us to predict the tumor DT of lung ADC
using a radiomics approach. Our main purpose was to
explore the potential of margin-related radiomic features
to predict tumor DT in patients with lung ADCs.

Methods

Patients and data acquisition

First, we retrieved data from 511 consecutive patients with
lung ADC who underwent complete resection at our

institution from July 2003 to January 2011. Subjects who
had at least two preoperative chest CT examinations with a
time interval of at least six months between the first and
last preoperative CT to allow us to assess differences in
tumor sizes were selected for our study. The first CT was
regarded as the initial CT, and the last preoperative CT
was regarded as the final CT. Finally, 52 subjects with an
adequate CT protocol from which we could extract radio-
mic features at an optimal resolution were included in our
study. This retrospective study was approved by the insti-
tutional review board of our institution (institutional
review board file number 2016-04-135), and the require-
ment for informed consent to review patient medical
records was waived.
Clinical data were collected from electronic medical

records at the time of diagnostic work-up. Sex, age,
smoking status, Union for International Cancer Control
stage, and operation type were recorded. Histologic reports
were also retrieved from electronic medical records, with
histological classification based on the International Asso-
ciation for the Study of Lung Cancer/American Thoracic
Society/European Respiratory Society multidisciplinary
classification of lung ADC.19

Imaging acquisition

All helical CT images were obtained with a 64-detector
row CT scanner (LightSpeed VCT, GE Healthcare, Wauke-
sha, WI). CT image parameters were as follows: detector
collimation, 1.25 or 0.625 mm; field of view, 36 cm; beam
pitch, 1.375 to 1.500; beam width, 10 to 20 mm; gantry
speed, 0.5 or 0.6 seconds per rotation; 120 kVp; 125 mA;
reconstruction interval, 1 to 2.5 mm; and matrix,
512 × 512 mm. Helical acquisitions were reformatted into
contiguous 2.5 to 3.5 mm axial sections overlapping by
1 to 1.5 mm on a standard workstation. CT scanning was
performed 90s after administration of contrast material
(100 mL of iopamidol [Iomeron 300, Bracco, Milan, Italy])
at a rate of 1.5 mL/second using a power injector. This was
followed by a 20 cm3 saline flush at a rate of
1.5 mL/second.

Tumor doubling time calculations

Reconstructed thin-section CT data were transferred to our
personal computer–based in-house software program for
lesion segmentation. Two readers independently performed
manual segmentation of region of interests (ROIs) on axial
CT images to generate a volume of interest that included
the entire lesion (both GGO and consolidation compo-
nents). Tumor volume of ROI was computed by multiply-
ing the number of voxels by the unit volume of a voxel.
Initial and final tumor volumes referred to the initial
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tumor volume and final tumor volume, respectively. If
additional longitudinal CT images were obtained between
the initial and last CT scan date, the two readers also per-
formed segmentation of ROIs for those CT scans. Volume
doubling time (DTvolume) of a tumor was obtained using
the following equation:

DTvolume = t�log2ð Þ= log RCvolumeð Þ½ �

where t was the interval (in days) between two CT scans,
and RCvolume was the ratio of volume change of the initial
and final volumes for each nodule.20

Growth pattern analysis

Two radiologists performed sequential image review
and noted a temporary decrease in tumor volume on
serial CT scans in 11 (21.2%) tumors with a GGO com-
ponent. The temporary decrease in tumor volume,
which corresponds to a negative DT, is considered to
result from alveolar collapse and central fibrosis with
tumor progression causing tumor shrinkage.21, 22 Thus,
the radiologists classified tumors into two groups based
on their growth pattern (GP) on serial CT images. The
one group comprised patients with gradually growing
tumors without a temporary decrease in tumor volume
through observation on CT (GP I), (n = 41, 78.8%),
while the other group comprised patients with growing
tumors with a temporary decrease in tumor volume
(negative DT) between the initial and final CT scans
(GP II), (n = 11, 21.2%) (Fig 1). If opinions differed
with regard to growth pattern, consensus was achieved
by discussion.

Radiomic analysis

Radiomic analysis of initial CT images was performed
based on shape, local (texture based), filter-based, and frac-
tal model-based features from the manually derived ROI,
which was obtained as described for the tumor volume cal-
culation. Shape, filter-based, and fractal model-based fea-
tures except local features (texture based) were regarded to
be margin-related features. Details are provided in Appen-
dix S1 and the categorization of all features is presented in
Table S1. A total of 94 CT radiomic features were calcu-
lated using the open-source code (PyRadiomics)23 and in-
house code using MATLAB. Features unavailable in
PyRadiomics were implemented using the in-house code
and there are several published articles which have been
used the same software.24, 25

Data management and statistical analyses

Radiomic feature data from initial CT scans were used
to establish a predictor of tumor DT. We utilized
94 radiomic features as the input to assess potential
associations of these radiomic features with tumor
growth rate.
The P-values of all 94 radiomic features were calcu-

lated using univariate generalized estimating equations
(GEEs) for the initial CT and final CT measures. Fea-
tures with a P-value < 0.1 and clinical significance were
selected as significant for tumor DT prediction. Next,
to remove redundant radiomic information, we chose
more significant features among the selected radiomic
features and then constructed a prediction model using
multiple GEEs with those final selected features. We
performed subgroup analysis according to tumor
growth pattern in the same way. To compare the pre-
diction models and verify our results, predicted and
observed values were analyzed by Spearman’s correla-
tion analysis. The Shapiro-Wilk test was used to verify
normality of continuous variable. A flow chart showing
the development of our tumor DT prediction model
based on radiomic features is shown in Fig 2.
We evaluated the stability of various radiomic fea-

tures by calculating intraclass correlation coefficients
(ICCs) as a measure of interobserver reliability. ICC
values >0.4, >0.6, >0.8, and >0.9 were regarded as rep-
resenting moderate, good, very good, and excellent
reproducibility, respectively.26

Overall survival (OS) and disease-free survival (DFS)
were calculated for all patients who underwent curative
operations for lung adenocarcinoma.

Results

Demographic information and tumor characteristics are
listed in Table 1. Prior to complete resection, the median
CT interval between the first and last scan was
23.5 months (interquartile range [IQR], 12.5 to
53.5 months).

Reliability and reproducibility of tumor
segmentation and feature extraction

ICC values ranged from 0.59 to 1, with mean a value of
0.91, indicating a moderate or high level of agreement.
Most radiomic features showed very good or excellent
reproducibility, but kurtosis-related filter-based fea-
tures showed relatively lower levels of agreement
(Table S2).
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Radiomic prediction of tumor
doubling time

Of the 94 total features evaluated, 48 with a P-value < 0.1
were selected from univariate GEE analysis. Selected radio-
mic CT image features were eccentricity, surface-to-volume
ratio, auto correlation, cluster tendency, variance, busyness,
Laplacian of Gaussian (LoG) mean (σ = 0.5–3.5 in 0.5
voxel increments), LoG maximum (σ = 1–3.5), LoG
median (σ = 0.5–3.5), LoG entropy (σ = 2–3.5), LoG uni-
formity (σ = 1.5–3.5), LoG standard deviation
(σ = 1.5–3.5), LoG skewness (σ = 0.5), and LoG kurtosis
(σ = 0.5–3.5). To remove redundant features, we reduced
the list to 30 of the more significant features without
redundancy (Table 2). When we performed multiple GEE
analyses, eccentricity, surface-to-volume ratio, LoG unifor-
mity (σ = 3.5), and LoG skewness (σ = 0.5) were ultimately
identified as predictive of tumor DT (Table 2).
The results of subgroup analysis according to tumor

growth pattern are presented in Table 3 and Table S3.
Majority of patients had tumors with a GP I (n = 41,
78.8%), and the selected radiomic features for predicting
tumor DT from GEE analysis were similar to those for
total subjects: surface-to-volume ratio, contrast, LoG uni-
formity (σ = 3.5), and LoG skewness (σ = 0.5) (Table S3).
However, in the GP II group (n = 11, 21.2%), the final
selected radiomic features for tumor DT prediction were

different: roundness factor, solidity, max3D diameter,
energy, max probability, intensity variability, LoG kurtosis
(σ = 0.5), and fractal signature dissimilarity (Table 3, all P-
value <0.01). After analyzing the data using multiple GEEs
with backward stepwise variable selection, solidity, energy,
and busyness were found to be predictive of DT in the GP
II group (Table 3).

Comparison of prediction models

The results of Spearman’s correlation analysis of three pre-
diction models are presented in Fig 3. The Spearman cor-
relation coefficients between the observed and predicted
DTs were 0.556, 0.606, and 0.887 in total subjects, GP I,
and GP II, respectively.

Survival outcomes

See Appendix S2 and Figure S1.

Discussion

In this study, we investigated the utility of margin-related
radiomic features to predict the tumor DT of lung ADC.
Margin-related radiomic characteristics used in this study
comprised 76 of 94 total CT radiomic features of three

Figure 1 Serial computed tomographic (CT) images of lung adenocarcinomas according to growth pattern. (a–c) A case of growth pattern I. (a) On
the initial CT, a 7 mm pure ground-glass opacity (GGO) nodule was detected in the right lower lobe. (b) On follow-up CT after 13 months, a solid
component newly appeared in the central area of the GGO. The nodule had increased slightly in size to 9 mm in diameter. (c) Six months later, both
solid component and GGO area demonstrated an increase in size (11 mm). (d–f) A case of growth pattern II. (d) On the initial CT, an 18 mm part-
solid lesion was detected in the right lower lobe. (e) One year later, the lesion had decreased in size with a diameter of 14.4 mm. (f) After two years,
the solid component had become enlarged, while the GGO had decreased.
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main types: 10 shape features, 63 filter-based features (LoG
filter), and three fractal model-based features. Shape fea-
tures describe the three-dimensional size and shape of the
tumor region. Filter-based features are composed of
histogram-based features of the Laplacian of Gaussian. The
Laplacian of an image brings out areas of rapid intensity
change and is typically used for edge detection. A Gaussian
filter is applied prior to the Laplacian to smooth the image
and reduce noise. Scale of texture in LoG (fine to coarse)
was specified by modifying the Gaussian radius parameter
(from 0.5 to 3.5 in 0.5 voxel increments). Histogram-based
features for LoG (mean, maximum, median, minimum,
entropy, uniformity, standard deviation, skewness, and
kurtosis) were also investigated. Fractal model-based fea-
tures are composed of a fractal dimension (box-counting),
lacunarity, and fractal signature dissimilarity. They
describe the heterogeneity of the tumor margin or shape
(Appendix S1).27–30

Using these features, we found two distinct tumor
growth patterns that had specific margin-related radiomic
features that were predictive of tumor DT. Our major

findings were: (i) for all ADCs, the combination of eccen-
tricity, surface-to-volume ratio, LoG uniformity (σ = 3.5),
and LoG skewness (σ = 0.5) had predictive ability for
tumor DT; (ii) the majority of subjects were assigned to
the GP I group (n = 41) because they had gradually grow-
ing tumors without a temporary decrease in tumor vol-
ume, and the finally selected radiomic features for
predicting tumor DT in this group were similar to those
found for total subjects, namely surface-to-volume ratio,
contrast, LoG uniformity (σ = 3.5), and LoG skewness
(σ = 0.5). The only difference between radiomic features
predictive of total DT in all subjects versus the GP I
group was eccentricity, which was predictive for total sub-
jects. Eccentricity is a measure of how close a shape is to
an ellipse on the 2D image; thus, this feature may reflect
an increase in tumor margin irregularity in accordance
with tumor evolution. We also performed a calibration
test using Spearman’s correlation analysis by comparing
predicted values from the prediction models and observed
values. The Spearman correlation coefficients for the
observed and predicted DT values were high: 0.606 and

Figure 2 Development of a tumor
DT prediction model based on radio-
mic characteristics.

2604 Thoracic Cancer 11 (2020) 2600–2609 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

Radiomics for doubling time of lung CA H.J. Yoon et al.



Table 1 Demographics and tumor characteristics of patients with lung adenocarcinoma

Total (n = 52) GP I (n = 41) GP II (n = 11)

Sex
Male 26 (50) 22 (53.7) 4 (36.4)
Female 26 (50) 19 (46.3) 7 (63.6)

Age (mean � SD) (years) 60.1 � 18.6 59.8 � 18.6 61.2 � 18
Smoking status
Current smoker 4 (7.7) 3 (7.3) 1 (9.1)
Ex-smoker 14 (26.9) 11 (26.8) 3 (27.3)
Non-smoker 34 (65.4) 27 (65.9) 7 (63.6)

Initial tumor size (mean � SD) (cm) 2.2 � 1.7 2.4 � 1.7 1.5 � 1.7
Initial tumor volume (mean � SD) (voxels) 5511.9 � 28 772.9 6764.7 � 28 772.9 842.7 � 28 772
Tumor volume doubling time (mean � SD) (days) 1159 � 2015 888 � 20 2171 � 2015
UICC stage
I 42 (80.8) 31 (75.6) 11 (100)
II 4 (7.7) 4 (9.8) 0 (0)
III 6 (11.5) 6 (14.6) 0 (0)

Operation type
Wedge resection 18 (34.6) 11 (26.8) 7 (63.6)
Lobectomy 34 (65.4) 30 (73.2) 4 (36.4)
Pneumonectomy 0 (0) 0 (0) 0 (0)

Histologic grade
Low 12 (23.1) 10 (24.4) 2 (18.2)
Intermediate 32 (61.5) 23 (56.1) 9 (81.8)
High 6 (11.5) 6 (14.6) 0 (0)
AIS 1 (1.9) 1 (2.4) 0 (0)
Unknown 1 (1.9) 1 (2.4) 0 (0)

Predominant subtype
Lepidic 8 (15.4) 7 (17.1) 1 (9.1)
Acinar 32 (61.5) 24 (58.5) 8 (72.7)
Papillary 4 (7.7) 3 (7.3) 1 (9.1)
Micropapillary 0 (0) 0 (0) 0 (0)
Solid 5 (9.6) 4 (9.8) 1 (9.1)
Variant 3 (5.8) 3 (7.3) 0 (0)

Unless otherwise indicated, data are number of patients with percentages in parentheses.

AIS, adenocarcinoma in situ; GP, growth pattern; SD, standard deviation; UICC, Union for International Cancer Control.

Table 2 Selected radiomic features for predicting tumor doubling time from generalized estimating equations in all lung adenocarcinomas

Radiomic features Univariate Multiple
Coefficient† SE P-value Coefficient† SE P-value

Shape features Eccentricity 1.201 0.5929 0.04289 0.7222 0.4147 0.0816
Surface-to-volume ratio −0.7881 0.4671 0.09154 −1.0237 0.3834 0.0076

Local features (texture-based) Variance (GLCM) −0.00002794 0.00001113 0.01204
Busyness (NGTDM) −1.074 0.5245 0.04057

Filter-based features LoG mean (σ = 0.5) 0.0003892 0.000176 0.02699
LoG maximum (σ = 1) 0.003213 0.00118 0.006463
LoG uniformity (σ = 3) −6.375 1.773 0.0003247
LoG uniformity (σ = 3.5) −4.079 1.1 0.0002087 −2.2418 1.0026 0.0254
LoG skewness (σ = 0.5) −0.5456 0.1797 0.002397 −0.4953 0.1768 0.0051
LoG kurtosis (σ = 1) −0.3122 0.1191 0.008781

GLCM, gray level co-occurrence matrix-based features; LoG, Laplacian of Gaussian Features in bold are those that were selected from the multiple
generalized estimating equation; NGTDM, neighborhood gray tone difference matrix-based features; SE, standard error.
†Coefficient estimated by generalized estimating equation.
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Table 3 Selected radiomic features for predicting tumor doubling time from generalized estimating equations in growth pattern II lung
adenocarcinomas

Radiomic features Simple Multiple‡

Coefficient† SE P-value Coefficient† SE P-value
Shape features Roundness factor −3.06 1.15 0.00786

Solidity‡ −4.58 1.53 0.00279 −11.119 1.65 1.60E-
11

Surface area 0.000956 0.000406 0.0187
Max3D diameter 0.0527 0.0168 0.00176

Local features (texture-
based)

Auto correlation (GLCM) −0.0000321 0.0000147 0.0295
Cluster tendency (GLCM) −0.00000812 0.00000369 0.0277

Dissimilarity (GLCM) −0.0428 0.0238 0.0721
Entropy (GLCM) 0.285 0.149 0.0552
Energy (GLCM)‡ −243 86.3 0.0048 297.929 62.323 1.70E-

06
Homogeneity (GLCM) 16.4 5.6 0.00345

Max probability (GLCM) −100 34.5 0.0037
Variance (GLCM) −0.0000329 0.0000148 0.0262

Intensity variability (ISZM) 0.0156 0.00479 0.00111
Size zone variability (ISZM) 0.0721 0.0283 0.0108

Contrast (NGTDM) −1.68 0.858 0.0504
Busyness (NGTDM)‡ −54.661 15.476 0.00041

Filter-based features LoG entropy (σ = 1.5) 0.403 0.232 0.0829
LoG entropy (σ = 2) 0.505 0.298 0.0906

LoG uniformity (σ = 1.5) −38.5 18.2 0.0351
LoG uniformity (σ = 2) −29.5 13.6 0.0303
LoG uniformity (σ = 3) −7.46 3.23 0.0208
LoG uniformity (σ = 3.5) −4.53 2.28 0.0465
LoG kurtosis (σ = 0.5) 0.835 0.257 0.00113

Fractal model-based features Lacunarity 0.336 0.146 0.0213
Fractal signature

dissimilarity
−0.536 0.187 0.00409

†Coefficient estimated by generalized estimating equation.
‡Variables were selected using a backward stepwise variable selection method.

Variables in bold are those that had clinical significance without redundancy within the radiomic information as well as a P-value < 0.01 after multi-
ple generalized estimating equation analysis.

GLCM, gray level co-occurrence matrix-based features; ISZM, intensity size zone matrix-based features; LoG, Laplacian of Gaussian; NGTDM, neigh-
borhood gray tone difference matrix-based features; SE, standard error.

Figure 3 Spearman’s correlation analysis results for predicted values and observed values to compare prediction models. Spearman correlation coef-
ficients for observed versus predicted DTs were 0.556, 0.606, and 0.887 for (a) total subjects; (b) growth pattern I; and (c) growth pattern II groups,
respectively.
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0.887 for groups GP I and GP II, respectively. Based on
these results, it appears that margin- or shape-related
radiomic features extracted from the initial CT scan
might reflect the growth kinetics of lung ADCs.
Several previous studies have investigated the microenvi-

ronment of the tumor perimeter.31–33 Tumor-infiltrating
lymphocytes, often found in the stroma around the tumor,
play an important role in immunosurveillance and tumor
rejection.31 In lung cancers, the density of stromal macro-
phage infiltration has been shown to be associated with
tumor stage and the likelihood of metastasis.32 Tripathi
et al. found that neoplastic infiltration of malignant nod-
ules distorted the neighboring tissue.33 Thus, histopatho-
logical tumor margin or peritumoral characteristics, which
may contribute to the imaging appearance of a tumor,
could reflect changes to the microenvironment based on
interactions between the tumor and surrounding paren-
chyma. We therefore hypothesized that margin-related
radiomic features might predict tumor behavior and/or
growth of lung ADCs.
Lung ADCs may grow due to multistep progression

from atypical adenomatous hyperplasia (AAH) through
AIS or MIA to ADC.6, 34 It is generally accepted that a
GGO nodule increases in size, then a solid portion appears,
and finally the solid portion increases in extent.34

Kakinuma et al.22 however, found that malignant GGO
nodules did not always increase in size or attenuation but
sometimes decreased in size. Interestingly, in our study,
during the follow-up period prior to surgical resection, a
temporary decrease in tumor volume on serial CT scans
occurred in 11 (21.2%) cases of tumors with a GGO com-
ponent. This temporary decrease in tumor volume, which
corresponds to a negative DT, is likely due to tumor vol-
ume shrinkage caused by alveolar collapse and central
fibrosis with tumor progression.21, 22 Honda et al.35 and
Koike et al.20 determined the volumetric DTs of lung can-
cers and reported negative DTs for five of 40 (12.5%) and
11 of 70 (15.7%) adenocarcinomas, respectively, similar to
our observations. Interestingly, in the 11 tumors with a
negative DT (GP II group), the final radiomic features
selected for DT prediction were quite different from those
of the total and GP I group. They were solidity, energy,
and busyness (Table 3), with solidity being the most signif-
icant feature. This finding is meaningful because a tempo-
rary decrease in tumor volume (GP II) tends to occur in
some adenocarcinomas with a predominant GGO (negative
solidity) that becomes denser and smaller due to alveolar
collapse or central fibrosis.21, 22 This explains why solidity
on the initial CT scan is relevant to DT prediction in GP II
tumors. Based on our findings, if a lung ADC has a promi-
nent GGO portion and a temporary negative DT on serial
CT, DT prediction modeling should be performed sepa-
rately according to growth pattern.

For radiomic analysis, we focused more on margin-
related features than intratumoral features. Shape- or
margin-based classification of lung tumors is different from
textural analysis. Nonshape features such as textural- and
intensity-based features may be more affected by intensity
and scanner variability.18 In other words, different CT
scanners and scanning parameters such as slice thickness
and reconstruction algorithms could affect the resulting
textural features.36 By contrast, margin-related features
tend to be less sensitive to differences in image intensity
and scanner platforms and potentially more predictive of
lesion diagnosis than texture features. Our use of margin-
related radiometric features is one of the strengths of our
study.
However, reproducibility of margin-related radiomic fea-

tures might be a critical issue because all radiomic features
were extracted from manually derived ROIs. For this rea-
son, two readers independently performed manual segmen-
tation of ROIs on axial CT images, and we evaluated the
stability of various radiomic features by calculating ICC as
a measure of interobserver reliability. Most radiomic fea-
tures showed very good or excellent reproducibility, and
the mean ICC value was 0.91, indicating excellent agree-
ment. The exception was kurtosis-related filter-based fea-
tures, which showed a relatively lower level of agreement
(ICC = 0.62–0.90) (Table S2). The reason for the lower
ICC values of kurtosis-related filter-based features is
unclear, and there is no previous research that can shed
light on this issue. Further study of this finding is needed
in the future.
In the survival analysis, the OS and DFS were slightly

better in GP II than those of GP I (Appendix S2 and
Figure S1). We assumed that DT was in inverse proportion
to the prognosis, thus, GP I with shorter DT (888 days)
might have worse prognosis than GP II with longer DT
(2171 days). Even though the study population was rela-
tively small to have statistical power, and GP I had some
advanced stage cases, these tumor DT might have an effect
on survival outcomes.
Our study had several limitations. First, the data were

retrospective and limited to 52 patients from a single insti-
tution. Furthermore, we only selected tumors that were
histologically proven after surgical resection. This might
have caused selection bias. Nevertheless, 52 subjects is a
reasonable subject size because it is difficult to find patients
who have relatively long-term, preoperative, serial follow-
up CT scans prior to surgery. This deficiency could be
addressed in future work by using a larger patient cohort.
Second, we did not perform external validation using an
independent population. However, we conducted this study
with a calibration test using Spearman’s correlation analy-
sis to verify our results. Third, because of differences in
subgroup sizes, the generalizability of our findings is
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limited. Finally, a negative DT could result from uncer-
tainties in tumor volume determination. In cases where the
tumor volume did not change much, the second volume
could be smaller than the initial volume based on absolute
numbers, but might be the same or vice versa within the
error bars. To avoid calculation errors, we double-checked
the DT results and minimized such cases.
In conclusion, we analyzed the associations between

margin-related radiomic features and tumor DT and found
a relationship between radiomic features and tumor growth
rate. This study demonstrates the potential of margin-
related radiomic features to capture properties of the
tumor microenvironment that in turn reflect tumor
growth. These margin-related radiomic features can poten-
tially be used as noninvasive biomarkers to predict tumor
DT in lung ADC and inform treatment strategies.
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