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Despite continuous efforts, the century-old goal of eradicating malaria still remains.

Multiple control interventions need to be in place simultaneously to achieve this goal.

In addition to effective control measures, drug therapies and insecticides, vaccines are

critical to reducemortality andmorbidity. Hence, there are numerous studies investigating

various malaria vaccine candidates. Most of the malaria vaccine candidates are subunit

vaccines. However, they have shown limited efficacy in Phase II and III studies. To

date, only whole parasite formulations have been shown to induce sterile immunity in

human. In this article, we review and discuss the recent developments in vaccination

with sporozoites and the mechanisms of protection involved.
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INTRODUCTION

Malaria is one of the deadliest diseases, causing a major public health problem with high mortality
and morbidity. In 2017, the World Health Organization reported 219 million clinical cases and
435,000 deaths (1). The use of different control interventions such as insecticide-treated bed nets,
combination drug therapies and early diagnostics has greatly reduced malaria mortality worldwide
(2). However, with increasing drug resistance and insecticide resistance, these efforts are insufficient
to eradicate malaria globally (3, 4). It has become increasingly clear that there is no control
intervention that can singly eradicate malaria. Multiple control interventions need to be in place
simultaneously and a malaria vaccine is integral to global malaria eradication (5).

PARASITE LIFE CYCLE

Plasmodium parasites have a complex life cycle, infecting two hosts, the human and the mosquito.
In the human host, the Plasmodium life cycle consists of two stages, the liver stage and the blood
stage. Infected female Anophelesmosquitoes inject sporozoites into the dermis of their mammalian
host upon feeding. Sporozoites then enter the bloodstream and migrate to the liver, where the
liver stage begins. The sporozoites multiply in hepatocytes, eventually forming merozoites in
vesicles called merosomes. These vesicles rupture and release the merozoites into the bloodstream,
commencing the blood stage by infecting red blood cells (RBCs). It is the continual cycling of
malaria parasites within the RBCs, and the immune responses directed against this stage of the
parasite, that causes most of the pathologies observed in malaria infections. The malaria parasites
are then transmitted back to the mosquito following blood feeding by a female mosquito. The
sexual forms of the blood stage parasites, gametocytes, develop into male and female gametes which
fertilize each other, eventually forming oocysts in the mosquito’s midgut wall. The oocysts then
lyse to release sporozoites, which migrate to the mosquito’s salivary glands. When the Anopheles
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mosquito takes a blood meal on another human, the injected
sporozoites migrate from the dermis to the liver, thereby
beginning a new cycle of infection.

VACCINES AGAINST MALARIA

The development of vaccines for malaria has beenmet with many
difficulties. Despite decades of research efforts, there is still no
available vaccine for human use. This has led to the development
of a wide range of approaches, in the search for an efficacious
malaria vaccine. These approaches can be broadly divided into
three main categories: (1) whole parasite-based vaccines, (2)
subunit vaccines, and (3) viral, bacterial and parasite vectors as
delivery vectors.

Whole Parasite-Based Vaccines
Whole parasite-based vaccines have had considerably more
success than other vaccines. Whole parasite-based vaccines
contain all parasitic antigens. This approach allows the
development of different types of immune responses. Whole
parasites used for the vaccines are obtained by dissecting
sporozoites from mosquitoes or harvesting asexual blood stages
from culture. There are many technical, logistical, and regulatory
hurdles associated with large scale production and delivery of
whole parasite vaccines in the field. However, recent sporozoite
vaccine trials have shown considerable progress in overcoming
these hurdles (6, 7).

History
The development of malaria vaccines began with whole
parasite-based vaccines more than a 100 years ago when the
Sergent brothers used heat-inactivated P. relictum sporozoites
to immunize canaries and obtained partial protection (8). This
was followed by the work of Russell and Mohan where both
cellular and humoral responses against malaria were induced in
immunized domestic fowls (9). In 1946, Jules Freund invented
the Freund adjuvant and formulated the vaccine by combining
the adjuvant with formalin-inactivated-blood infected with P.
lophurae, an avian malaria parasite, or P. knowlesi, a monkey
malaria parasite (10, 11). The formulations showed promising
efficacy. However, the toxic side effects of the Freund adjuvant
have prevented its use in humans. The first attempt in humans
was done by Heidelberger et al., using formalin-inactivated
P. vivax-infected blood to immunize volunteers, however no
protection was induced (12). These initial studies, though
suboptimal, have paved the way for future whole parasite-based
vaccine development.

Vaccination With Sporozoites
Among the whole parasite-based vaccine candidates, there is
considerable research on the pre-erythrocytic parasites. The
pre-erythrocytic stage is an asymptomatic phase. Very few
sporozoites are injected and subsequently developed in the
hepatocytes during natural infection in human volunteers
(13). The idea of inducing an immune response that can
neutralize sporozoites in the skin and circulation and prevent
the penetration of a low number of sporozoites into hepatocytes

or destroy a low number of infected hepatocytes during
the asymptomatic phase make pre-erythrocytic stage vaccines
attractive. By preventing the pre-erythrocytic stage development,
the vaccines would prevent blood stage infection, hence
preventing pathology. In addition, the pre-erythrocytic stage
vaccines have had more success than the other stages, which
provides more support for their development.

Whole sporozoite-based vaccines developed thus far in
human include (1) irradiated parasites (6, 14), (2) genetically-
attenuated parasites (15, 16), and (3) drug-infection-treatment
vaccination (17, 18).

Vaccination with irradiated sporozoites
Irradiated sporozoite vaccine is the most clinically developed
whole parasite-based vaccine, and also the most clinically
developed pre-erythrocytic vaccine (17). The first few studies
that showed definitive protective immunity with irradiated
sporozoites were done in chicks and subsequently in mice
(18, 19). This was later demonstrated in humans, where
vaccination with irradiated sporozoites, via infective mosquito
bites, protected 92% of the volunteers from infection (20–
22). However, >1,000 mosquito bites are required to introduce
sufficient irradiated sporozoites to induce the high level of
efficacy. This prevented the development of this approach for
mass vaccination.

More recently, delivery of cyropreserved irradiated
sporozoites into the host by direct venous inoculation via
needle and syringe, has been tested in humans and showed
promising efficacy data (6, 17, 23). While four doses only
protected 33% of the individuals (6), five doses protected 100%
of the individuals (6). More studies to perfect the vaccination
regimes would allow direct venous inoculation via needle and
syringe to replace mosquito bites as a delivery system. Another
hurdle with irradiated sporozoite vaccines is the need for a
high dose of irradiated parasites. Vaccine dosage, vaccination
regimen, and route of administration have been investigated
in malaria-naive adults (24). In the study, administration of
higher doses may further enhance protection— four intravenous
immunizations with a higher dose of 2.7 × 105 irradiated
sporozoites was found to be the most optimal, where 55% of
vaccinated subjects remained uninfected following controlled
human malaria infections (CHMI) 21 weeks after immunization.
The timing of the CHMI following vaccination has also been
found to be important, with vaccine efficacy being higher when
CHMI was performed 3 weeks after immunization, instead
of 21 weeks. While vaccination with irradiated sporozoites
led to sterile protection in 100% (6/6) of vaccinated malaria
naïve volunteers (6), irradiated sporozoites vaccination in
malaria-endemic Mali yielded a lower protection (14). There
are fundamental differences between the two studies, such
as the first study examines protection against homologous
challenge and the latter study examines protection against
heterologous challenge. Naturally transmitted parasites are
often different from the vaccine strain. Twenty-four weeks after
final immunization regimen, five doses of 2.7 × 105 irradiated
sporozoites protected 7 of 10 against homologous CHMI, but
only 1 of 10 against heterologous CHMI (25), showing that
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the vaccine efficacy against heterologous infection is markedly
reduced. In addition, the findings also suggest that pre-exposure
to the malaria parasites may prevent the establishment of a
protective immune response since blood stage infection is able
to induce immune suppression (26). This also further highlights
the need for optimization of the required dose and regime in the
target population to achieve robust and sterile protection.

The irradiation of parasites is a delicate process that requires
the sporozoites to retain a certain degree of viability. Similar to
heat-inactivated and frozen-thawed sporozoites, over-irradiated
sporozoites do not induce protection (27, 28). Irradiating
the sporozoites leads to DNA damage in the sporozoites
with no or limited reduction on hepatocyte infectivity (29,
30). Although irradiation results in an inhibition of parasite
DNA replication, ultrastructure modification and alteration in
gene expression (31, 32), eventually leading to developmental
arrest of the liver stage within hepatocytes (33, 34), it
still allows for parasite antigen presentation and priming of
immune responses.

Vaccination with genetically-attenuated sporozoites
Non-irradiated sporozoites have been postulated to be more
efficacious as whole parasite-based vaccines because, as compared
to irradiated sporozoites, they are able to progress to a later
stage of pre-erythrocytic development, (35). By doing so, the
host immune system is exposed to a wide repertoire of malarial
antigens and thus able to target more of the pre-erythrocytic
stage. To this end, research efforts have focused on developing
ways, other than irradiation, to attenuate the growth of the
parasite. Recent advances in Plasmodium research such as
genetic manipulation have brought forward a new approach to
attenuate parasites. Genetically-attenuated parasites are modified
by deleting key essential genes that result in developmental
arrest of the liver stage after hepatocyte infection, but do not
affect parasite viability, mosquito infectivity, and sporozoite
production in animal models (36). Inactivation of UIS3, UIS4, or
P36p prevented the attenuated parasites from developing beyond
the early pre-erythrocytic stage in mice (37–39). Vaccination
of these live genetically-attenuated parasites offered sterile
protection against a challenge with a wild type isolate. While
promising, one of the major concerns for the development
of genetically-attenuated parasites as vaccines is the possible
occurrence of breakthrough infections. The first clinical trial
using live genetically-attenuated parasites that lack the two genes,
p52 and p36, led to breakthrough infections (15). Breakthrough
infections in mice have also been observed for UIS4- and P36p-
deficient parasites (37, 39). However, great progress has been
made recently. Live genetically-attenuated parasites lacking three
genes (p52–/p36–/sap1–; “PfGAP3KO”) arrest early in liver-stage
development, and were safe with no observed breakthrough
infection following administration into human subjects by
infective mosquito bites (16). Compared to irradiated sporozoite
vaccine and early liver stage-arresting genetically-attenuated
parasites, second generation genetically-attenuated parasites that
arrest late liver stages have shown to demonstrate superior anti-
malarial immunity following vaccination in mice by having a
greater antigen repertoire (40, 41). These candidate vaccines

could also have greater efficacy in humans, but this remains to
be demonstrated.

Drug-infection-treatment vaccination
Drug-infection-treatment vaccination is the last approach. It
involves vaccination with live wild-type parasites under drug
prophylaxis, where the drug targets and eliminates the blood
stage parasites. This approach allows full liver development
and a limited initial blood stage development, thereby focusing
immunity toward the liver stages. Pioneer mouse studies
have, indeed, shown greater efficacy when the mice were
vaccinated with live P. berghei or P. yoelii sporozoites under
drug prophylaxis than when the mice were vaccinated with
irradiated sporozoites—fewer inoculations and less sporozoites
were required to induce sterile protection (42–44). Vaccination
with live sporozoites under chloroquine prophylaxis is the most
investigated vaccine formulation under this approach, and it
has shown very promising efficacy data. The first study in
humans examined the efficacy of the vaccine where the live
sporozoites were introduced into the volunteers via infective
mosquito bites (45). The study utilized CHMI and demonstrated
sterile protection, where 100% of the volunteers were protected
from infection following a wild-type sporozoite challenge. A
subsequent CHMI study investigated the efficacy of the vaccine
where the live sporozoites were intravenously inoculated via a
needle and syringe. In this study, a dose-dependent protection
was observed, where only three doses of 5.12 × 104 sporozoites
were sufficient to protect all volunteers from the challenge
(46). In addition to chloroquine, vaccination with live wild-type
parasites under prophylaxis of other antimalarials has also been
investigated. Primaquine (47), mefloquine (48) and artemisinin
derivatives such as artesunate (49) have been used in place of
chloroquine and vaccination with live wild-type parasites under
prophylaxis of these antimalarials has demonstrated protective
immunity against a homologous sporozoite challenge inmice and
in humans.

However, there are various challenges with this approach
such as the technical and logistical issues associated with
generating sporozoites at large scale and field deployment.
There are also concerns that the sporozoite injections might
not be properly followed with antimalarial treatment, which
could lead to sickness. In addition, while sterile immunity
can be achieved against a homologous sporozoite challenge,
protection was suboptimal when immunized volunteers were
challenged with a heterologous strain (50, 51), suggesting that
the protective immunemechanisms target polymorphic antigens.
Nevertheless, the current published findings have demonstrated
very encouraging efficacy data and suggest that vaccination
with live sporozoites under chloroquine prophylaxis, following
vaccination regime optimization, could potentially be the most
efficacious sporozoite vaccine until date.

Subunit Vaccines
Subunit vaccines allow rational design of the vaccine to induce
the desired immune effectors against the parasite. In addition,
subunit vaccines are safe and generally easy to produce at large
scale and to administer in the field. Hence, efficacious subunit
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vaccines that offer long term protection are the preferred vaccines
of choice.

Peptides and Recombinant Proteins
Subunit vaccines have been developed either as peptides, multi-
peptide constructs or recombinant proteins. They can be based
on a single parasite antigen or a combination of multiple parasite
antigens, and often in a formulation that includes adjuvants.
Most constructs have been designed for the circumsporozoite
protein (CSP), a major sporozoite surface protein (52), as it is the
first cloned malaria antigen (53, 54). Both peptides and multi-
peptide constructs containing either the B epitope alone or both
B and T epitopes induced protection in mouse models (55–58).
However, when tested in humans, the peptide constructs did
not induce significant protection (59). The main reason for the
failure in humans is that the immune response to these constructs
was genetically restricted by major histocompatibility gene (60)
and thus could not induce an efficient immune response in
most volunteers.

To ameliorate immunogenicity and protective efficacy,
peptides and proteins have been designed to contain T cell
epitopes from the parasites or an unrelated proteins recognized
by many MHC genes (61), coupled to diverse chemical
backbones, or fused with other proteins to create particle vaccines
to be used with or without various adjuvants (62–67). All these
new constructs demonstrated a high efficacy inmousemodels but
have yet to be validated in humans.

Of all the subunit vaccines, RTS,S, a CSP-based subunit
vaccine, is the current most clinically-advanced malaria vaccine,
being the only malaria vaccine to have progressed to the pivotal
Phase III clinical trials (68). Enormous resources have been spent
on rationally improving RTS,S efficacy, which include developing
novel adjuvant systems. Multiple studies have demonstrated
a need for RTS,S be formulated with adjuvants such as
monophosphoryl lipid A and QS21, to achieve immunogenicity
(69–71). This was followed up by a series of clinical trials, where
significant progress has been made to improve immunogenicity
and efficacy (72, 73). The RTS,S vaccine has been designed to
inhibit the liver stage and prevent blood stage infection. RTS,S is,
ultimately, formulated with a chimeric molecule based on CSP,
fused to the S antigen of the hepatitis B virus, together with a
potent adjuvant, AS01. The first Phase IIb trials performed in
adult volunteers in the USA showed ∼50% protection against
clinical malaria (69, 70, 74).

When tested in the endemic regions, RTS,S’s efficacy against
infection was less impressive and was of short-duration (<3
months) (75, 76). What is encouraging is that RTS,S/AS01
vaccination has been found to induce a significant reduction
(∼60%) in the incidence of clinical infections in children in
the same study (76). This finding encouraged GlaxoSmithKline
and the Malaria Vaccine initiative, with financial support from
the Bill and Melinda Gates Foundation, to further develop this
vaccine for infants and young children in Africa. However, RTS,S
efficacy against clinical malaria was later found to be suboptimal
in malaria-endemic populations, with a vaccine efficacy against
clinical infection of 36.3% in young children and 25.9% in infants
(77–81). One possible explanation is that the CSP used in the

vaccine contains several T cell epitopes, which are all highly
polymorphic in parasite population in the field. Neafsey et al.
elegantly demonstrated that the overall vaccine efficacy was very
low in field settings with minimal matching of the CSP alleles in
the field with the CSP allele in RTS,S (80).

Another explanation for the limited efficacy of the CSP-
based vaccines is that it may not be the best antigen to
induce protection. It is likely that other antigens may be better
vaccine candidates, alone or in combination with the CSP. This
hypothesis was supported by various studies, which showed that
the sterile protection against a sporozoite challenge obtained in
mice immunized with irradiated sporozoites was independent of
the immune response against the CSP (82–85).

With the limited success of subunit vaccines developed
thus far, there have been many efforts to identify new pre-
erythrocytic (liver) targets for vaccine development using
various approaches (86–90). These new antigens have shown
encouraging efficacy data in animal models either alone (91, 92)
or in combinations (93, 94), however efficacy in humans has yet
to be demonstrated (95).

DNA Vaccines
DNA has been identified as a vaccine delivery system in the
1990s (96). This approach was quickly taken up, and DNA
vaccines against CSP were developed and tested in human (97–
99). Although the CSP-based constructs induced high levels
of protection in mice (100), they had poor immunogenicity
in humans (101). DNA constructs encoding multiple genes
(102, 103) or epitopes were also developed (104). However,
none of these constructs induced high level of protection
against a sporozoite challenge (104, 105). To enhance the
immune responses, malaria DNA vaccines were developed
in combination with DNA constructs encoding for cytokines
such as GM-CSF. Although some of these constructs had
increased immunogenicity and efficacy in murine models (106),
they did not induce protection against sporozoite challenge in
human (105).

Viral, Bacterial, and Parasite Vectors as
Delivery Vectors
Viral, bacterial and parasite vectors have been developed as
delivery vectors for malaria vaccines. As these vectors are based
on whole organisms, they usually do not need to be adjuvanted
to stimulate the innate immune system which is necessary for
the development of an optimal adaptive immune response (107).
However, in some studies, various adjuvants have also been used
to increase vector constructs immunogenicity (108).

The use of viral vectors as delivery vectors for malaria
vaccines is the most common (109). Recombinant influenza
viruses (110), pox viruses such as vaccinia virus (110, 111),
Sindbis virus (112), yellow fever virus (113, 114), adenovirus
(115), human cytomegalovirus (116) as delivery vectors have
shown promising efficacy in animal models. Bacterial vectors
such as Salmonella (117, 118), Bacille-Calmette Guerin (BCG)
(119), Shigella flexneri 2A strain (120) as delivery vectors have
also shown good immunogenicity and efficacy against sporozoite
challenge in mice. Currently, only Salmonella vectors as delivery
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vectors have been examined in humans, showing good safety
profile and immunogenicity (121). Parasites such as Leishmania
(122) and Toxoplasma (123, 124) as delivery vectors were also
able to induce partial protection in mice. However, it remains to
be seen if these vectors can induce protection in human.

Prime-Boost Combinations
To enhance humoral and T cell responses, various prime-
boost strategies have been developed using combinations of
different vaccine approaches. Vaccination with subunits or DNA
constructs, followed by viral vectors or combination of viral
vectors encoding one or multiple malaria antigens has been
examined and efficacy has been demonstrated in mouse models
(125–129). However, of all these combinations, only a few have
shown significant efficacy in humans (104, 109, 130–133). Recent
strategies, prime-and-target (134) and prime-and-trap (135),
have shown that the best combination, that can induce high level
of protection in mice, depends on the capacity to induce and
maintain tissue-resident memory cells in the liver.

MODEL SYSTEMS

The use of experimental models has an important role in the
development of vaccines. It is essential for the first assessments
of safety, immunogenicity and potential protective efficacy of
vaccine candidates. The early studies of malaria candidate
vaccines utilized avian models, despite being a poor alternative
to study pathogens with mammalian hosts. The eventual
establishment of other malaria models has brought new insights
and greatly facilitated malaria vaccine research. Current models
used include: (1) mouse, (2) non-human primates (NHP), (3)
humanized mice, and (4) human volunteers (CHMI).

Mouse Models
Until date, the traditional mouse model still remains the most
commonly usedmodel as it is less costly andmore easily available.
P. berghei and P. yoelii are two of the more commonly used
rodent malaria species for in vivo and in vitro studies. It is
often the starting ground for in vivo studies examining the
development of pre-erythrocytic stage and whole sporozoite
vaccine candidates. Human parasites such as P. falciparum and
P. vivax, which contribute to the majority of the malaria global
disease burden, display highly restricted host-cell tropism—they
cannot establish an infection and develop the pre-erythrocytic
stages effectively in vitro easily. A reproducible model of
full development of the pre-erythrocytic stage has only been
described in primary human hepatocytes (136). The mouse
model allows the examination of the parasite infection in the
liver in vivo, and the effectiveness of the whole sporozoite
vaccine candidates to protect the host from infection. While
vaccine efficacy in the mice does not necessarily predict vaccine
efficacy in humans, there have not been any examples where an
absence of vaccine efficacy in mice was contradicted by vaccine
efficacy in humans. Quite a number of whole sporozoite vaccine
candidates that are first identified to be protective in mouse
models (19, 42, 44) have went on to be validated in humans
(22, 45). The first study demonstrating that vaccination with a

whole sporozoite vaccine candidate, irradiated sporozoites, can
induce sterile protection from infective sporozoite challenge was
in a P. berghei mouse model (19). This has been established as
the gold standard as human volunteers vaccinated with irradiated
P. falciparum sporozoites were found to develop protective
immunity (22). Similarly, vaccination with live sporozoites under
drug prophylaxis was also first identified to have promising
efficacy in the P. berghei and P. yoelii mouse models (42,
44), before demonstrating sterile protection in all vaccinated
human volunteers (45). A new approach to chemically attenuate
sporozoites has been identified using the P. berghei model. This
was performed by treating sporozoites with centanamycin, a
DNA alkylating agent (137–139). This may also offer protection
in humans, however further studies to validate its efficacy are
still pending.

With the development of transgenic rodent malaria parasites,
knock-in (KI) parasites expressing P. falciparum (140) or P.
vivax (141) genes have been generated. These KI parasites allow
the examination of the efficacy of immunogens (142–144) or
antibodies against human malaria pre-erythrocytic antigens in
vivo (145, 146).

While the mouse models have greatly contributed to the
development of malaria vaccines, there are limitations. It is still
largely unknown how relevant the mouse models are for the
human parasite. The ability to interpret and draw conclusion
from the mouse and translate it to the human remains unclear.
There are major fundamental differences, both at genetic and
proteomic levels, between the rodent and humanmalaria species,
with the rodent parasite genomes missing orthologs for more
than 730 P. falciparum genes (147, 148). In addition, there
are differences in the both the liver and blood stages of
infection. While the mouse parasites, P. berghei and P. yoelii,
emerge from the liver after 2–3 days of infection, the human
parasites, P. falciparum and P. vivax, require 7–10 days of pre-
erythrocytic stage development (149). The formation of dormant
pre-erythrocytic stages in P. vivax infections, which is a hallmark
of P. vivax infections (150), is also not present in P. berghei
and P. yoelii infections in mice, although liver forms of P. yoelii
have been observed in the liver of their natural host, Thamnomys
gazellae, at least 8 months post-sporozoite infection (151). Lastly,
most murine studies are performed with genetically homogenous
inbred mice with a limited MHC gene repertoire, which do
not mimic the large genetic diversity of the human population.
Laboratory mice are maintained in clean specific-pathogen—free
facilities, hence the absence of the effect of environment (e.g.,
microbiome) on the mouse immune system may bias infection
and vaccine studies (152). Taken together, while it is a powerful
experiment tool, the traditional mouse model is not an ideal
model, especially for studying pre-erythrocytic malaria vaccines.

Non-human Primates
Due to the limitations of the traditional mousemodels, there have
been substantial efforts to develop alternative animal models that
are able to generate adequate parallels in an in vivo approach of
the human immune system. Historically, non-human primates
(NHP) have been used as the alternative model. Compared to
the mouse, NHP share a lot more similarities with the human.
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Simian Plasmodium species can infect various NHP species. In
particular, human parasites can be adapted to NHP and some
NHP can even support direct infection with P. falciparum and P.
vivax (153). The Aotusmonkeys have served as a valuable model.
They can be infected by P. falciparum and P. vivax (154, 155).
The NHPmodels are particularly important for assessments of P.
vivax pre-erythrocytic stage vaccines (156), due to the formation
of dormant pre-erythrocytic stages in P. vivax infections, which
cannot be recapitulated in the mouse models. Simian malaria
parasites, such as P knowlesi or P. cynomolgi in macaques, have
also been used for immune and vaccine studies (157, 158).
Vaccination with live sporozoites under chloroquine prophylaxis
has shown promising efficacy data in Toquemonkeys immunized
with P. cynomolgi (159). However, the lack of availability, the
high costs to maintain a colony and the restriction of utilization
due to ethical issues limit the use of NHP, especially where large
numbers are required.

Humanized Mouse
In the more recent years, the development of a humanizedmouse
as an animal model (160, 161) has greatly facilitated the study
of human malaria research. These models mainly arise from the
xenotransplantation of human hepatopoietic cells and/or tissues,
allowing the long-term establishment of components of human
immunity in permissive immunodeficient mice.

Using a human liver chimeric SCID/Alb-uPA mouse, studies
on the pre-erythrocytic stages can be performed (162, 163).While
it has been shown to be a viable model to study P. falciparum pre-
erythrocytic stage development, the study of human malaria in
this model is limited to the pre-erythrocytic stage as P. falciparum
cannot transit from the pre-erythrocytic stages to the blood stages
in this model (164). Other drawbacks include infertility of the
mice due to the SCID/Alb-uPA immunodeficient background
(165), and hepatotoxicity and high neonatal mortality due to the
uPA transgene expression (166). These have made the generation
of large number of the mice extremely costly and difficult.

Due to these drawbacks, an alternative, a human liver chimeric
FAH−/−Rag2−/−IL2Rγnull (FRG) mouse, has been developed.
These mice can be bred relatively easily and do not suffer from
hepatotoxicity. In addition, this model has been shown to support
robust pre-erythrocytic stage infection and development (149).
When human RBCs were transplanted into these mice, the new
model supported the transition from a pre-erythrocytic infection
to a blood stage infection (167). The NOD mice deficient for
the IL2Rγ gene and transgenic for the thymidine kinase gene
(TK-NOG) is another model that has also been developed. These
mice do not suffer from liver failure. A transient injection of
the drug gancyclovir induces a controlled ablation of the mouse
hepatocytes. Treated mice are easily repopulated with human
hepatocytes (168). These mice can also be doubly engrafted with
human red blood cells and this allows the full development
of P. falciparum in the liver and the transition to the blood
stage. Interestingly, this model also supported the liver stage
development of another human parasite, P. ovale (169).These
findings are extremely encouraging as this raises the possibility
of using these models to study a liver stage infection and also a
combined liver and blood stage infection. While the use of the

humanized mice offers many new possibilities to study human
malaria biology in a non-human model in vivo, it is worth
noting that these mice are immuno-compromised, which makes
them unsuitable for vaccine immunogenicity and efficacy studies.
Nonetheless, they have shown to be useful in passive transfer
experiments to test antibody efficacy (170–172).

Studies on the development of humanized mice with
a fully reconstituted immune system are underway (173).
In fact, humanized mice that possess the human immune
system (HIS) have been established for malaria research, using
recombinant adeno-associated virus (AAV)-based gene transfer
technologies (174). With functional human CD4T cells and B
cells (HIS-CD4/B mice), these HIS mice were able to produce a
significant level of human IgG against P. falciparum CSP upon
immunization (175). The HIS-CD4/B mice were also protected
against infection from an in vivo challenge with transgenic
P. berghei sporozoites expressing the PfCSP protein following
immunization. While these models are essential pre-clinical
models to understand immune responses against humanmalaria,
it is worth noting that these HIS mice still retain mouse myeloid
compartments that are likely to influence antigen presentation
and immune cell residency, and in vivo vaccine efficacy can only
be examined using transgenic rodent malaria parasites expressing
selected P. falciparum proteins. New iterations of humanized
mice that possess the humanization of the liver, bone marrow,
lymphoid compartments, and human erythrocytes would be the
ideal mouse model and would greatly help to understand human
malaria parasite infection and immunology. It would be an
essential tool in providing a more accurate initial assessment
of the safety profile and vaccine efficacy of malaria vaccine
candidates before moving onto human studies.

Human Volunteers
The most relevant model is the human host itself. The
establishment of the CHMI model has greatly helped malaria
research. The CHMI model involves exposing healthy human
volunteers to the parasite via infective mosquito bites,
monitoring the volunteers closely for signs and symptoms
of malaria infection, and treating the volunteers with drug upon
detection of fever and/or detection of parasites (45, 176).

The CHMI model uses the most relevant host-parasite pair.
While CHMI has been performed via other routes such as
intravenously and intramuscularly, it is more commonly done
via infective mosquito bites. The use of infective mosquito
bites in the model mimics the natural route of infection,
offering advantages in the prediction of the potential efficacy
of vaccine candidate against natural infections. However, it
also has its limitations. The CHMI model is often performed
with one parasite strain, while there are many antigenically
diverse heterologous parasites in the field. Infection in the CHMI
model is controlled and the parasite load is administered at
one single time, whereas high parasite load at one single time
is uncommon in natural field setting. Despite the limitations,
CHMI studies with no observed efficacy could halt the pursuit
of large and expensive clinical trials in malaria-endemic areas in
time. CHMI studies with partial efficacy could provide insights
on how protective efficacy could be improved by alterations in
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vaccination regimes such as the number of doses and number
of immunizations. In particular, through a series of CHMI
studies, the company Sanaria was able to optimize their PfSPZ
vaccine, which is composed of radiation-attenuated, aseptic,
purified, cryopreserved P. falciparum sporozoites, to induce
sterile protection against homologous challenge for at least 59
weeks (24) and heterologous challenge for at least 33 weeks
(51) in malaria-naïve individuals. The vaccination also prevented
naturally transmitted heterogeneous P. falciparum in malaria-
endemic adults in Mali for at least 24 weeks (vaccine efficacy
of 29%) (14). Further CHMI studies to optimize dosage and
vaccination regimes could improve the vaccine efficacy.

Immunity and Correlates of Protection
Against the Pre-erythrocytic Stage
The malaria parasite has a complex life cycle. Depending on the
stage of development in its mammalian host, the parasite can be
extracellular or intracellular. They can also infect different cell
types. Hence, various innate and adaptive immune mechanisms
are needed for parasite control and elimination. In order
to develop an efficacious pre-erythrocytic stage vaccine, it is
important to know the protective immunemechanisms to induce
(Table 1).

In addition, through better understanding of the mechanisms
involved in the protection, we could potentially identify
correlates of protection. The identification of correlates of
protection is particularly important to the vaccine development
as it helps to assess vaccine efficacy and design better
immunogens. Through various animal models, we are beginning
to tease out the potential correlates of protective immunity.

Innate Immunity
Upon infection, the innate immunity is triggered by the malaria
parasites. Immune responses initiated by the innate immune
system in response to parasites play key roles in protective
immunity development. Early pro-inflammatory responses
regulate anti-parasitic Th1 development and promote effector
cell function for efficiently clearing infections. The use of a proper
adjuvant is necessary to trigger the adequate innate pathway.

Cytokines
Cytokines play an important role in the protection against
malaria. Upon infection, the RNA of the parasites is recognized
by the cytosolic pathogen-recognition receptors of mouse
hepatocytes. As a result, type I interferon pathway is induced,
which can inhibit late stage parasites. Type I interferon leads
to the recruitment of leukocytes that inhibit late liver forms
through IFNγ (179, 212). IFNγ can inhibit the development of
P. yoelii and P. berghei in vitro and in vivo in mice (177, 178),
P. falciparum in human hepatocytes in vitro (213) and P. vivax
infected chimpanzees in vivo (214). The effect of IFNγ is through
the induction of the inducible nitric oxide synthase enzyme in
hepatocyte which generates high of toxic nitric oxide (180–182).

In addition to IFNγ, IL6, and TNFα have also been
implicated in protection. TNFα is able to inhibit parasite
liver stage indirectly through induction of yet-to-be-identified

mediators secreted by hepatocytes (215) or through IL-6 on non-
parenchymal cells (216). IL-6 inhibits liver stage development
through the induction of iNOS (217, 218).

NK and NKT Cells
NK and NKT cells are abundant in the liver, and interact
with the parasites to initiate liver-stage cell-mediated immunity.
Following the activation of the type I interferon pathway,
the hepatocytes produce chemokines to recruit macrophages,
neutrophils, lymphocytes, NK and NKT cells to the site of
infection in mice (179, 219). This eventually leads to the killing
of late liver stage parasites by NKT cells. NK cells have also
been shown to inhibit the development of the liver stages in
the hepatocytes, limiting the infection and/or reinfection in mice
(185). NK cells also play an important role in CD4T cell priming
during murine malaria infections (186, 187), bridging between
the innate and adaptive immunity.

γδ T Cells
Similar to NK T cells, γδ T cells are innate-like T cells that
have been postulated to bridge the gap between innate and
adaptive immunity (220). Early production of IFNγ by γδ T
cells was detected following in vitro exposure of P. falciparum-
infected RBCs to PBMCs from malaria-naïve donors (188). In
mice, γδ T cells induced by whole sporozoites vaccination can
inhibit intrahepatic parasitic development (190). γδ T cells are
also important for the induction of early immunity against
malaria (191). γδ T cell-deficient mice immunized with irradiated
sporozoites were more susceptible to liver stage infection 42 h
following a sporozoite challenge (191). γδ T cells can also directly
prime CD4 and CD8T cell responses in vitro (192, 193).

Sterile protection in mice following vaccination with
irradiated sporozoites requires γδ T cells (194). Without γδ

T cells, protective CD8T cell responses were impaired (194).
γδ T cells have been postulated to act either as effector cells
that operate in the absence of αβ T cells, or as accessory cells
for appropriate protective responses from other cells (194).
In humans, γδ T cells have also been shown to recognize
malaria antigens and proliferate, conferring immunity against
clinical malaria in children from Uganda (221). In addition
to influencing the protective CD8T cell response, γδ T cells
can also influence cytokine production. Higher frequencies
and higher cytokine production by γδ T cells correlate with
protection against subsequent infection in children living
in endemic settings (189, 222). Recent studies on irradiated
sporozoite vaccines have shown that γδ T cells expanded in a
dose-dependent manner in immunized malaria-naïve subjects
(6, 24), and were associated with protection (24). Hence, γδ T
cells could be a potential correlate of protection, and further
studies to better define a most appropriate outcome to represent
a measurable positive correlation of γδ T cells with protection
would be advantageous for vaccine development.

CD8α Dendritic Cells
Early adaptive immunity is triggered as early as a few hours
post an infective mosquito bite, with T cell activation being
observed in the skin draining lymph nodes in the murine model
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TABLE 1 | Immunity against pre-erythrocytic stage parasites.

Immune response Mode of action References

Innate type I interferon response Plasmodium RNA as a pathogen-associated molecular pattern (PAMP) to

activate a type I IFN response, which in turn reduce the liver parasite load

(177–179)

Cytokines IFNγ induces the inducible nitric oxide enzyme to produce nitric oxide to kill

the sporozoites

(180–182)

TNFα increases the capacity of monocytes and macrophages to

phagocytose parasite to limit parasite infection

(183, 184)

NK cells Inhibit liver stage development to limit liver parasite load

CD4T cell priming

(185–187)

γδ T cells IFN-γ production

Inhibit intrahepatic parasitic development

Prime CD4 and CD8T cell responses

(188–194)

CD8α dendritic cells CD8T cell priming (195–197)

CD8T cells Lysis of infected hepatocytes by perforin and granzymes (184, 198–200)

Indirectly through the action of pro-inflammatory cytokines such as IFN-γ to

mediate anti-parasite effects

(180–182, 201–204)

CD4T cells B cell development to produce antibodies against the liver stage (198)

Survival of protective effector and memory CD8T cells (205, 206)

Can be induced to expresses CD107a, a marker for cytotoxic

degranulation, to mediate protection

(48)

Antibodies Inhibit sporozoite motility in the liver

Mediate cytotoxicity against sporozoites in the host skin

(207, 208)

Opsonize sporozoites for the subsequent sporozoite phagocytosis by

monocytes or macrophages

(208, 209)

Inhibit sporozoite invasion into hepatocytes (210)

Inhibit sporozoite development inside the hepatocytes (210)

Bind to parasite neo-antigens such as heat shock protein expressed at the

surface of infected hepatocytes to induce liver parasite killing through an

antibody-dependent cell-mediated mechanism

(211)

(196). After dermal inoculation, a fraction of sporozoites actively
migrates to the draining lymph nodes (195). There is a direct
uptake of the parasites by lymph-node resident CD8α dendritic
cells followed by CD8T cell-dendritic cell cluster formation in the
draining lymph nodes (223). CD8α dendritic cells are also shown
to be essential for the development of the protective immunity
induced by intravenous injection of irradiated sporozoites since
mice depleted of these subsets are not protected against a
sporozoite challenge (224, 225). A subsequent study showed
that splenic but not liver CD8α dendritic cells are the main
cells involved in effector parasite specific-T cell priming (226).
It was also shown recently that monocyte-derived CD11c cells
infiltrated the liver after infection, acquired parasite-derived
antigens and primed protective CD8T cells (227). The role and
functions of other dendritic subsets is controversial and remains
to be determined (199, 228, 229).

Adaptive Immunity
Aswith any vaccination, the focus has been to trigger the adaptive
immunity to induce an efficacious and long-lasting immunity.
Various arms of the adaptive immunity are required to act in
concert to provide protection against malaria.

CD8 T Cells
CD8T cells have been implicated as the principal effector
cells, central to protection against malaria. The importance of

CD8T cells in protective immunity was first demonstrated in
mice vaccinated with irradiated sporozoites (177). The sterile
immunity induced by the vaccination was abolished when CD8T
cells were depleted (177, 178). CD8T cells can kill the parasites in
mice (200) either directly through lysis of infected hepatocytes by
perforin and granzymes (184, 230) or indirectly through IFNγ-
mediated protection (180–182, 201–204). It must be stressed
that while leukocytes and, in particular, CD8T cells can kill
liver parasites by these mechanisms, they differ depending of the
host/parasite combinations (231).

Given the central role of CD8T cells in protection, it is one
potential correlate of protective immunity. In humans, CD8T
cells have been shown to be associated with protection from
severe malaria (232), and a few of the identified CD8T cell
responses are directed against pre-erythrocytic stage antigens
such as LSA1 and CSP (233, 234). However, vaccination studies,
where human volunteers were immunized with irradiated
sporozoites, showed that, while CD8T cell response were also
detected against various pre-erythrocytic stage antigens, the
responses were not found to be associated with protection
(235). More recently, a human trial where human volunteers
were immunized with irradiated sporozoites showed seemingly
contradicting data, where sterile protection correlated with the
numbers of IFNγ-producing CD8T cells in isolated PBMCs
(6). This is also evident in animal studies on irradiated
sporozoite vaccines, where high frequency of parasite-specific
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CD8T cells was observed in the liver of non-human primates
and mice, and was associated with protection in mice (236). The
differences are likely due to the differences in the vaccination
regimes and the methods to detect/quantify T cells. Indeed,
in humans, T cell activity is measured in peripheral blood,
whereas, in mice, T cell activity is usually measured in spleen
or liver.

Central memory T cells
Memory T cells provide long-term protection. Upon re-infection,
these cells rapidly gain effector functions including cytokine
production and lytic activity. There are three subsets of memory
T cells: (1) central memory T cells, which predominantly reside
in lymphoid tissues, (2) effector memory T cells, which reside in
the spleen and peripheral tissues, and (3) tissue-resident memory
T cells, which reside in the tissues and do not recirculate. The
role of central memory T cells in protection against malaria
is limited. While central memory T cells can produce IFN-γ
after in vitro stimulation (201), their presence has not been
associated with protection. Despite having a large proportion of
central memory T cell, mice that were vaccinated with modified
vaccinia ANKARA expressing the multiple epitope string and
thrombospondin-related adhesion protein (ME-TRAP) were not
protected from malaria challenge (237).

CD8 effector memory T cells
In contrast to the central memory T cells, the presence of effector
memory T cells has been associated with sterile protection in
the murine model, although large numbers are required for
protection against malaria (238). Long-term sterile protection
was only observed in mice when the parasite-specific CD8T
cells made up >1% of the total peripheral blood CD8T cell
population (238). Degree of protection in mice correlated with
the frequencies of CD8 effector memory T cells present in liver,
and failure to achieve the protective threshold frequency of these
cells might make the host susceptible to infection (203).

CD8 tissue-resident memory T cells
More recently, a new subset of memory T cells, with a distinct
gene expression profile, has been characterized (202). The liver
tissue-resident memory T cells develop naturally during the
course of an immune response following TCR stimulation,
with rapidly expanding population due to the liver infection
or inflammation in mice (239). These cells are found to be
patrolling within the liver sinusoids, a process dependent on LFA-
1–ICAM-1 interactions (240). Tissue-resident memory T cells
were essential for sterile protection against sporozoite infection in
mice following immunization with irradiated sporozoites (241).

CD4 T Cells
In contrast to CD8T cells, the role of CD4T cells in protection
against malaria is not well understood. Despite this, it is clear
that the development and maturation of an effective CD8T cell
response is dependent on CD4T cells help. CD4T cells are
activated to amplify the anti-pathogen response by driving B cell
germinal responses and supporting CD8T cell activation. Mouse
hepatocytes express MHC Class I and Class II molecules that
can be loaded with parasite antigen-derived epitopes following

the TAP or the endosomal pathways (242–245). CD4T cells are
required to prime effective immunity. CD4T cells recognizing
CSP have been shown to protect against a P. yoelii sporozoite
challenge in mice (243, 246). Pre-immunization but not pre-
challenge depletion of CD4T cells also resulted in a loss of
protection in mice immunized with sporozoites, suggesting that
CD4T cells might provide signals for efficient maturation of
effector CD8T cells (247). In mice, CD4T cells were essential
to ensure survival of protective effector and memory CD8T cell
induced by irradiated sporozoites (205, 206). In humans, many
studies have described a CSP-specific CD4T cell response that is
associated with protection against natural infection and disease
(248), and is able to inhibit pre-erythrocytic stage development
(249). CD4T cells have also been shown to correlate with
sterile protection in humans following immunization with live
sporozoites under chloroquine prophylaxis. CSP-specific CD4T
cells were induced to express CD107a, a marker for cytotoxic
degranulation, after immunizations with live sporozoites under
chloroquine prophylaxis in humans, and these cytotoxic markers
has been shown to be associated with sterile protection against
the pre-erythrocytic stages (48). In addition to being crucial for
B cell development to produce antibodies, CD4T cells are also
important for CD8T cell responses.

While it is clear that CD4T cells are involved in protective
immunity against malaria, its use as a potential correlate
of protection needs further validation. Together with CD8T
cells, the definitive role of CD4T cells in protection requires
more unraveling and the information will be critical to the
development of a validated T cell-based correlate of protection
for vaccine efficacy assessment.

Antibodies
Lastly, in addition to inducing an effective CD8T cell response,
the development of many malaria candidate vaccines also
aims at being able to induce an effective antibody response.
Antibodies are often the first host immune response being
studied. Antibodies against the pre-erythrocytic stage can
mediate protection by limiting pre-erythrocytic stage infection
and development. More specifically, the antibodies do so by (1)
inhibiting sporozoite motility in the dermis and liver (207), (2)
mediating cytotoxicity against sporozoites in the host skin (208,
250), (3) opsonizing the sporozoites and subsequently facilitating
sporozoite phagocytosis by monocytes or macrophages in the
spleen or the liver (208, 209), (4) inhibiting sporozoite invasion
into hepatocytes (210), (5) inhibiting sporozoite development
inside the hepatocytes (210), and (6) binding to parasite neo-
antigens such as heat shock protein expressed at the surface of
infected hepatocytes and eventually inducing liver parasite killing
through an antibody-dependent cell-mediated mechanism that is
likely to involve Kupffer cells or NK cells (211).

Antibodies are potential correlates of protection. Passive
transfer of RTS,S-induced human anti-CSP monoclonal
antibodies into humanized mice at concentrations within
the range observed in human, protected the mice against P.
falciparum challenge (170). Immunization with genetically-
attenuated sporozoites that arrest late in the liver stage
development elicited protection against both a sporozoite
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challenge and a direct blood stage challenge by inducing the
production of stage-transcending protective antibodies in mice
(251). Sporozoite-specific antibodies induced by vaccination
with irradiated sporozoites (252) or genetically-attenuated
sporozoites (253) have also been shown to inhibit sporozoite
invasion into human hepatocytes in vitro and correlate with
protection in human individuals (254–256). However, a recent
human study examining protection following vaccination
with irradiated sporozoites in malaria-naïve individuals has
found no significant correlation of antibody response with
protection (46). In addition, there is no distinct antibody profile
that allows differentiation of protected individuals from the
susceptible individuals (257) following RTS,S vaccination.
There is increasing awareness that, in addition of high level of
antibodies, the quality of the antibodies is also important. In vitro
assays to examine the functionality of the induced antibodies
following vaccination of pre-erythrocytic stage vaccine have been
developed. These assays include gliding motility assays (258),
sporozoite traversal and invasion inhibition assays (6, 253, 259),
and pre-erythrocytic stage development inhibition assays
(136, 260). Recently, human monoclonal antibodies have been
derived from volunteers immunized with irradiated sporozoites.
These antibodies recognized an important epitope at the junction
of the N terminal part and the repeat regions of the CSP. This
can lead to the design of better CSP-based vaccines (146, 261).
Further studies to draw parallels between the readouts of these
assays and the protection in the field are necessary to develop
a validated antibody-based correlate of protection for vaccine
efficacy assessment.

CONCLUDING REMARKS

In contrast to the limited efficacy of RTS,S and other subunit
vaccines, vaccination with sporozoites has had more success. In
addition to promising efficacy data, a series of recent clinical
trials on sporozoite-based vaccines has demonstrated formidable
advances in overcoming issues in vaccine manufacturing and
delivery (6, 14, 23, 46). Furthermore, there are now data
showing that sporozoite vaccines are safe and tolerated in
malaria-endemic areas (14, 23). While the vaccine efficacy is
markedly reduced against heterologous CHMI (as compared
with homologous CHMI), it is encouraging that it offers some
protection against heterologous CHMI (25). Further studies to

optimize the immunization regimen could potentially improve
the vaccine efficacy. Here, we reviewed the various types
of vaccination strategies with sporozoites and the different
animal models being used for the vaccination studies. We
also discussed the mechanisms of protection against the pre-
erythrocytic parasites. While the mechanisms of protection
are slowly being unraveled, the establishment of validated
correlates of protection for assessment of vaccine efficacy
has proved to be challenging. Half of the world population
is at risk of a malaria infection. The target population is
highly diverse, with individuals from different age groups
(infants, adults and elderly), different exposed status (endemic
and non-endemic), and different immunological background
(immunocompromised and pregnant). The presence of co-
infections in some populations in malaria-endemic regions
adds further complexity. In addition, the complexity of the
parasite and the diversity of its genome also makes it difficult
to definitively establish correlates of protection. Depending
on which part of the parasite life cycle the malaria vaccine
candidates target, different forms of immunity are induced.
As it is still unclear if the ultimate goal of a malaria vaccine
should be to protect against infection or simply to protect
against disease, different clinical endpoints have been used to
measure vaccine efficacy. Vaccine-induced immune responses
that correlate with protection against one endpoint may not
necessarily correlate with protection against a different endpoint.
Hence, until date, there is no validated correlate of protection.
A concerted effort to develop/refine relevant animal models,
investigate the definitive mechanisms of protection and identify
validated correlates of protection would greatly help to inform
critical decisions in human vaccine clinical trial, which will
accelerate future progress in the development of an efficacious
malaria vaccine.
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