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N E U R O S C I E N C E

Molecular profiling of human substantia nigra identifies 
diverse neuron types associated with vulnerability in 
Parkinson’s disease
Qian Wang1,2,3,4,5,6†, Minghui Wang1,5,6†, Insup Choi2,3,4†, Lily Sarrafha2,3,4, Marianna Liang2,3,4, 
Lap Ho1,5,6, Kurt Farrell3,4,7, Kristin G. Beaumont1, Robert Sebra1,6,8, Claudia De Sanctis9,  
John F. Crary3,4,7,9,10, Tim Ahfeldt3,11,12, Joel Blanchard3,11,12, Drew Neavin13, Joseph Powell13,14, 
David A. Davis15, Xiaoyan Sun15, Bin Zhang1,5,6,16*, Zhenyu Yue2,3,4,17*

Parkinson’s disease (PD) is characterized pathologically by the loss of dopaminergic (DA) neurons in the substan-
tia nigra (SN). Whether cell types beyond DA neurons in the SN show vulnerability in PD remains unclear. Through 
transcriptomic profiling of 315,867 high-quality single nuclei in the SN from individuals with and without PD, we 
identified cell clusters representing various neuron types, glia, endothelial cells, pericytes, fibroblasts, and T cells 
and investigated cell type–dependent alterations in gene expression in PD. Notably, a unique neuron cluster 
marked by the expression of RIT2, a PD risk gene, also displayed vulnerability in PD. We validated RIT2-enriched 
neurons in midbrain organoids and the mouse SN. Our results demonstrated distinct transcriptomic signatures of 
the RIT2-enriched neurons in the human SN and implicated reduced RIT2 expression in the pathogenesis of PD. 
Our study sheds light on the diversity of cell types, including DA neurons, in the SN and the complexity of molecu-
lar and cellular changes associated with PD pathogenesis.

INTRODUCTION
The degeneration of dopaminergic (DA) neurons in the substantia 
nigra (SN) is a major pathological hallmark of Parkinson’s disease 
(PD). DA neurons regulate movement, learning, reward, and addic-
tion. The loss of DA neurons and other types of cells in PD causes 
motor symptoms and can lead to psychiatric complications (1). The 
molecular mechanisms underlying the loss of DA neurons in the 
SN remains poorly understood; several hypotheses—such as dopa-
mine toxicity, iron burden, autonomous pace-making, and axonal 
arborization—have been proposed to explain their vulnerability in 

PD (2). However, detailed molecular and cellular dissection of hu-
man DA neurons is needed to understand the underpinning of DA 
neuron degeneration.

Genome-wide association studies (GWAS) have identified many 
genetic variants and risk alleles of PD and begun to gain insight into 
the molecular mechanisms of the disease (3). However, the vast ma-
jority of PD cases have no known genetic cause, and their etiology 
remains unclear (4, 5). To fully understand the molecular mecha-
nisms for DA neuron degeneration, particularly in idiopathic PD, 
post-GWAS research should investigate cell type–specific expression 
and functions of PD genes and GWAS variants.

Multiple studies in rodents have profiled DA neurons and dem-
onstrated the heterogeneity of DA neurons in the midbrain. With 
single-cell transcriptomic analysis, they identified several molecu-
larly distinct DA neuron subtypes in the midbrain, suggesting di-
verse functions and potentially differential vulnerability of different 
DA neuron types in PD (6–11). By integration of GWAS and single-
cell transcriptomic data from mouse brains, one study revealed an 
unexpected role of oligodendrocytes in PD progression (12). While 
challenging due to PD sample scarcity and quality, few studies have 
performed single-nucleus RNA sequencing (snRNA-seq) in human 
postmortem midbrain and identified cell clusters representing DA 
neurons. Their results suggested an association of common risk for 
PD with DA neuron-specific expression (13, 14). A previous study 
further examined PD midbrains by snRNA-seq and reported a 
disease-specific DA neuron cluster and “pan-glial” activation (15). 
A more recent report performed snRNA-seq analysis of NR4A2-
enriched neurons in the human SN and identified 10 subpopula-
tions of DA neurons that displayed differential vulnerability in PD 
(16). However, whether neuron types beyond DA neurons in the SN 
show vulnerability in PD remains to be clarified.

Unlike rodents, human DA neurons contain neuromelanin (NM; 
dark pigment), which increases in concentration during aging (17) 
and is biosynthesized from l-3,4-dihydroxyphenylalanine, a precursor 
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of DA. The loss of melanin-containing DA neurons in the SN has 
long been recognized in PD, but it is underappreciated that a sub-
population of DA neurons in the SN of PD persisted through many 
years after the onset of motor symptoms, suggesting resilience (18). 
Whether or not other types of neurons in the SN degenerate remains 
unclear. How gene expression and cellular functions are altered in 
the remaining DA neurons and other cell types in the SN of patients 
with PD is largely unknown.

In this study, we performed molecular profiling of human SN 
and midbrain organoids and identified a unique neuron subtype, 
marked by the expression of RIT2, a PD risk gene, and spatially 
concentrated in the SN with vulnerability in PD. Our observations 
of RIT2 neuron population are validated in independent cohorts and 
human midbrain organoids. We also delineated cell type–specific 
gene expression changes in the SN in PD. Our transcriptomics data 
will be an important resource for the elucidation of the cellular 
heterogeneity in the SN and molecular mechanisms underlying the 
complexity of PD symptoms.

RESULTS
Cell-type composition and diversity in the human SN
We have collected the SN samples from postmortem brains of 32 
donors, including 23 idiopathic PD and 9 controls with an average 
age of 81, and processed them for snRNA-seq analysis (sequencing 
cohort, Table 1 and table S1). By using 10x Genomics Chromium 
Single Cell 3’ Solution, we obtained 457,453 droplet-based snRNA-
seq profiles from these brains. Using an established Seurat-based data 
preprocessing (19) and clustering analysis pipeline that includes quality 
control, data integration by Harmony (20), cluster stability assess-
ment, and doublets detection (detailed in Materials and Methods 
and fig. S1), we obtained 315,867 high-quality nuclei (248,245 of PD 
and 67,622 of the control) and identified 12 cell clusters (c0 to c11) 
(Fig. 1B), ranging in number from 134,011 (c0) to 1384 (c11). To 
discern the identity of each cluster, we used two complementary 
strategies: (i) examining the expression pattern of known gene 
markers of major brain cell types, such as astrocytes (AQP4), neu-
rons (SLC17A6, GAD1, and RBFOX3), microglia (C3 and CSF1R), 
oligodendrocytes (MOG), oligodendrocyte progenitor cells (VCAN), 
endothelial cells (FLT1), and pericytes (PDGFRB) (Fig. 1C) and (ii) 
comparing de novo cluster-specific marker gene signatures (fig. S2 
and table S2) with a large-scale collection of cell-type markers cu-
rated from more than 1054 single-cell experiments (fig. S3) (21). 
Together, our annotation identified nine different cell types with 
fractions as follows: oligodendrocytes (c0 and c3; 51.3%), neurons 
(c6, c7, and c9; 13.1%), microglia (c1; 9.4%), astrocytes (c2; 8.4%), 
endothelial cells (c4; 7.0%), oligodendrocyte progenitor cells (OPC) 

(c5; 6.5%), pericytes (c8; 3.1%), fibroblast-like cells (c10; 0.8%), and 
T cells (c11; 0.4%). Thus, in our data, we observed the largest cell type 
in the human SN is oligodendrocytes, followed by neurons, microglia, 
astrocytes, and the rest (Fig. 1D).

Identification of RIT2-enriched neurons in the human SN 
that show vulnerability in PD
Our initial clustering analysis of the combined control and PD sam-
ples identified three distinct neuron clusters, c6, c7, and c9 (Fig. 1C). 
First, we noticed that the relative fractions of the control versus PD 
samples are proportional to the ratio of their sample size (9 versus 
23) in all clusters, except neuron cluster c9 (Fig. 1E). c9 displayed a 
disproportionate distribution of the cell fractions between the con-
trol and PD (2741 control versus 1479 PD) (Fig. 1E), suggesting a 
reduction of c9 cell number in PD samples. To test the loss of c9 
neurons, we calculated the odds ratio and performed an immuno-
histochemistry (IHC) study by using two separate cohorts (table S1). 
In the first cohort, the control brains presented a significantly higher 
proportion of c9 neurons than PD brains [mean of 3% versus 0.6%, 
overall odds ratio (OR) = 6.6, P = 0.0073 by Wilcoxon rank sum test 
of odds] (Fig. 2, A and B) despite the smaller number of control 
samples sequenced. Omission of one control sample, which appears 
to contribute >30% of the cells in the control cluster (fig. S1B), has 
little effect in the outcome (mean of 2.7% versus 0.6%, overall 
OR = 4.3, Wilcox rank sum test P value = 0.016). We noticed that 
RIT2 is a marker gene for c9 (Fig. 1C). RIT2 encodes a neuronal 
guanosine triphosphatase (GTPase) and was previously identified as 
a PD susceptible gene based on at least two large-scale GWAS reports 
(3, 22). A fraction of c9 from the control (7.1%, 194 of 2741) ex-
pressed tyrosine hydroxylase (TH), a marker gene for DA neurons.

We then took an independent human cohort and performed 
IHC analysis of human SN with anti-RIT2 or anti-TH antibodies. 
The distribution of RIT2+ neurons seem to resemble that of TH+ 
neurons in the SN (Fig. 2C). Furthermore, we found that ~80% frac-
tion of RIT2+ neurons contain NM (yellow arrows and arrowheads), 
while ~20% (blue arrowhead) are negative for NM (Fig. 2, D and E). 
The RIT2+NM+ neurons can be separated into TH+ (70%, yellow 
arrows) and TH− (~30%, yellow arrowheads) two subpopulations 
(Fig. 2, D and E). Consistently, a previous study reported that 7 to 
30% of NM+ neurons are negative for TH staining (23). We con-
firmed that the total number of NM+ neurons is reduced in the SN 
of PD (81.58% reduction; Fig. 2F). The number of RIT2+NM+ (in-
cluding TH+ and TH−) and RIT2+NM− neurons are both decreased 
in the SN of PD (Fig.  2F), supporting the observation from the 
snRNA-seq analysis that c9, likely representing RIT2+TH− neurons, 
degenerate in PD (Fig. 1E). We have also examined additional marker 
genes of c9 through RNAscope in situ hybridization assay (fig. S2). 

Table 1. Sequencing cohort demographic information. Data were represented by means ± SD for age and postmortem interval (PMI). NA, not applicable.

Control (n = 9) PD (n = 23)

Age (years) 83.8 ± 8.3 78.8 ± 7.6

Sex: Male (%) 4 (44) 17 (73.9)

PMI (hours) 17.3 ± 6.3 19.1 ± 8.5

Braak NA II:4; III:3; IV:5; VI:8; NA:3
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Fig. 1. Cellular diversity in the SN from patients with PD and control samples. (A) Flow chart of the experimental procedure and data processing. Barcoded single-
nucleus suspension was prepared using frozen SN samples from PD and control subjects followed by RNA sequencing. Sequencing data were quality controlled and 
classified into cell clusters, which were annotated with known cell-type markers. Downstream analyses include cell composition changes, immunofluorescence (IF) stain-
ing, DEG identification, and cell communication alterations. (B) UMAP plot showing cell clusters. Ast, astrocytes; Neu, neurons; Mic, microglia; Oli, oligodendrocytes; OPC, 
oligodendrocyte progenitor cells; End, endothelial cells; Fib, fibroblast-like cells; Per, pericytes; T, T cell. (C) Expression pattern of known brain cell-type marker genes in the 
control cells. (D) Pie-chart for the fractions of major cell types in the human SN. (E) Sequenced cell distribution represented by disease status in each cluster.



Wang et al., Sci. Adv. 10, eadi8287 (2024)     10 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 18

Fig. 2. Evidence of RIT2+ neuronal populations in health and PD brain. (A) Fraction of c9 neurons in one cohort containing PD and the controls. (B) Distribution of the 
fraction of c9 neurons in PD and the controls shown in (A). P value was computed by one-tailed Wilcoxon rank sum test. (C) IHC staining of the postmortem tissue of the 
human SN with anti-TH (blue, left) and -RIT2 (purple, right) antibodies. Enclosed areas are SN pars compacta (SNpc). Scale bars, 4 mm and 100 μm in magnified images. 
(D) IF staining of the postmortem tissue of the human SN with anti-RIT2 (red) and anti-TH (green) antibodies. Yellow arrows, NM+RIT2+TH+neurons; yellow arrowheads, 
NM+RIT2+TH−neurons); blue arrowheads, NM−RIT2+TH−neurons. DA neurons contain neuromelanin (bright-field images). Scale bar, 100 μm. (E) Quantification of the 
fractions of RIT2+ among NM− neurons and RIT2+TH+ and RIT2+TH− among NM+ neurons from five unaffected controls. (F) Quantification of the number of RIT2+ among 
NM− neurons and RIT2+TH+ and RIT2+TH− among NM+ neurons in the SNpc of the control (n = 5) and PD (n = 5). P values were calculated by unpaired two-tailed Student’s 
t test. (G) RNAscope in situ hybridization assay in mouse brain. Rit2+Th+ and Rit2+Th− cells were mapped on the schematic images of mouse brain. Scale bars, 1 mm.
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For example, CADPS2 is another marker gene of c9. We found the 
presence of CADPS2+RIT2+ cells, which are TH+ or TH− (fig. S4A), 
consistent with the cell cluster analysis.

Furthermore, we validated Rit2+Th− and Rit2+Th+ neurons in the 
SN of mouse brain via RNAscope analysis. Rit2+ cells were highly 
enriched in the SN and largely overlap with Th+ cells (top panels, 
Fig. 2G). Rit2+Th− cells are sparce in ventral SN pars compacta and 
clustered at lateral SN (bottom panels, Fig. 2G). Furthermore, we 
observed a similar distribution between Rit2+Th− and Cadps2+Th− 
cells at lateral SN (fig. S4B).

Together, our data suggest the presence of a transcriptomically 
distinct, RIT2-enriched neuron population (c9) in the SN, which 
degenerates in PD. Our observation also suggests that RIT2+ neuron 
populations are heterogeneous (e.g., RIT2+TH− and RIT2+TH+). The 
validations with IHC and RNAscope analysis showed a different pro-
portion of RIT2+TH− versus RIT2+TH+ neurons from the snRNA-seq 
data, which has limitations due to the current technology.

The presence of RIT2-enriched neurons in the human SN and 
midbrain organoids
We next compared our results to the published snRNA-seq datasets 
of human SN from two independent cohorts, which contain only 
non-PD samples (13, 14). We reprocessed their original datasets 
using our analytic pipeline to identify subtypes of the neuron clusters 
(figs. S5, A to E, and S6E). In the dataset developed by Agarwal et al. 
(13), we found a RIT2-enriched neuron subcluster (Ac6_0), which 
overlaps significantly with c9 from our study and is distinguished 
from subcluster Ac6_1 enriched for typical DA markers such as TH, 
SLC18A2, and SLC6A3 (fig.  S5, B and D). Note that the RIT2-
enriched neuron subtype Ac6_0 from Agarwal et al. (13) express 
reduced levels of TH and SLC18A2 compared to Ac6_1 (fig. S5D). In 
the second dataset from Welch et al. (14), a RIT2-enriched neuron 
subcluster Wc4_5 overlaps significantly with c9 in our study and is 
separated from Wc4_3, which is enriched for DA markers TH, 
SLC18A2, and SLC6A3 (fig.  S6D). These results confirmed the 
presence of RIT2+ populations either THLow [Agarwal et al. (13)] 
or TH− [Welch et al. (14)], distinct from a typical DA neuron.

We expanded our investigation to midbrain organoids derived 
from human pluripotent stem cells (hPSCs) (24) for the evidence of 
RIT2+ neurons (c9) subtype of human SN. We performed single-cell 
RNA sequencing (scRNA-seq) analysis of the organoids and identi-
fied at least 17 distinct cell clusters (Fig. 3A and fig. S7). We observed 
that organoid cluster 0 (Oc0), 1 (Oc1), and 3 (Oc3) were enriched in 
TH expression, while Oc0 and Oc2 were enriched in RIT2 produc-
tion (Fig. 3, B and C, and table S3). By comparing cell clusters be-
tween human SN and midbrain organoids, we observed that the 
marker genes of c9 from human SN showed the greatest similarity to 
that of Oc1 (adjusted P value = 3.7 × 10−13 by hypergeometric test), 
followed by Oc4, Oc14, and Oc2 (Fig. 3D and table S4). We found 
that c6 of human SN shared a similar expression profile with organ-
oid clusters Oc1 and Oc2 and a minor cluster Oc8 (adjusted P value 
ranging from 2.2 × 10−4 to 1.4 × 10−16) (Fig. 3D and table S4). In 
contrast, c7 of human SN showed overlapping gene signatures with 
the organoid cluster Oc0 and two minor clusters (Oc10 and Oc14) 
(adjusted P value ranging from 5.5 × 10−4 to 1.9 × 10−4) (Fig. 3D 
and table S4). The strong similarity of gene signatures of c6 and c9 
with Oc1 and Oc2 may suggest that both c6 and c9 neurons emerge 
from a similar neuronal type during the developmental stage but 
diverge into two distinct populations with aging. Consistent with 

the sequencing data, IHC analysis of the organoids showed many 
cells coexpressing TH and RIT2 and cell populations producing RIT2 
but not TH (Fig. 3, E and F).

Identification of subtypes of DA neurons associated with 
vulnerability in PD
Next, to define the neuron clusters c6 and c7, we performed further 
clustering analysis and identified multiple subclusters in c6 (c6_0 to 
c6_5, while c6_4 and c6_5 were excluded from the further down-
stream analysis due to their limited cell numbers) (Fig. 4, A to C) 
and c7 (c7_0 to c7_3) (Fig 4, D to F). The subclusters c6_2 and c7_3 
were enriched for the expression of DA neuron marker genes such 
as TH, SLC18A2, and SLC6A3, indicative of typical DA neurons. 
Similar to c9 (Fig. 1E), the fractions in c6_2 and c7_3 appear dispro-
portionately distributed between the control and PD according to 
the sequenced samples. For example, 49.7% of the total sequenced 
of 1654 nuclei in c6_2 were from the control (overall OR = 3.7, 
Wilcoxon P = 0.00096) (Fig. 4C), and 60.8% of the total sequenced 
of 4262 nuclei in c7_3 were from the control (overall OR = 5.9, 
Wilcoxon P = 0.0041) (Fig. 4F), suggesting the reduction of typical 
DA neuronal types (c6_2 and c7_3) in PD. We further showed dis-
tinct marker genes for c6_2 and c7_3 DA neuron subtypes (Fig. 4G 
and fig. S8A). Similar classifications of DA neurons were observed 
by the alignment of the DA neuron subtypes from a published 
mouse midbrain cell atlas using snRNA-seq (fig. S9) (10).

Multiple studies have demonstrated the classification of DA neu-
rons in the mouse midbrain based on molecular profiling associated 
with the expression of distinct transcription factors (TFs) confined 
in specific subtypes of DA neurons (25). The TFs are critical for DA 
neuron specification or differentiation during development (26). We 
found that, however, most TFs were expressed in small fractions 
from all cell clusters (including the c6_2, c7_3, and c9) in the aged 
human SN (both the control and PD). MYT1L was an exception—it 
was expressed in large fractions of the main neuron clusters (fig. S10). 
c6_2 subtype of DA neurons showed much higher SOX6 cell fractions 
(22.25%) than that of c7_3 (6.22%) or c9 (5%) subtypes.

To validate the DA neuron subtypes, we compared c6_2 and c7_3 
with the clusters we identified in midbrain organoids (Fig.  4H, 
fig. S7E, and table S4). We found that the markers of c6_2 are very 
similar to those of Oc1 (adjusted P value = 1.7 × 10−16) (Oc3 to a 
lesser degree, adjusted P value = 5.1 × 10−3), in which TH was high-
ly expressed (Fig. 3B). In contrast, the markers of c7_3 are similar to 
those of Oc0 (adjusted P value = 7.9 × 10−5), which showed high 
TH expression (Fig. 3B), and other minor clusters from organoids 
(Fig.  4H, fig.  S7E, and table  S4). Thus, our analysis of midbrain 
organoids supports the finding of the molecularly distinct DA neu-
ron subtypes in c6_2 and c7_3 from the human SN.

Altered landscape of cell type–specific transcriptomics in 
the SN of PD
Aside from the identification of diverse neuron types associated 
with PD vulnerability, we next sought to survey the global transcrip-
tomic changes by examining differentially expressed genes (DEGs) 
between PD and the controls in each cell cluster. c9 (RIT2+TH−) and 
c7_2 (glutamatergic) presented with the highest numbers of DEGs, 
followed by c4 (endothelial cells) and c8 (pericytes) (Fig. 5A and 
table S5). Functional enrichment analyses revealed up-regulation 
of ribosomal genes and protein translation-related pathways in 
nearly all cell types (Fig. 5B and table S6). A broad increase of 
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metallothionein family genes, such as MT2A, MT1E, and MT3, was 
also found in neuronal and non-neuronal clusters in the SN of PD 
(Fig. 5C). The metallothionein proteins are cysteine-rich and of 
low molecular weight. They bind heavy metals, and some appear to 
play a role in detoxification and cytoprotection (27). In addition, 
up-regulation of several heat shock protein family members (e.g., 
HSPB1, HSPH1, HSPA1, and HSP90AA1) and CRYAB was observed 
in many cell types (including neuronal and non-neuronal clusters) 
in PD (Fig. 5C). CRYAB, encoding the alpha B subunit of cystallin 

and a small chaperone protein associated with α-synuclein inclusion 
formation, was reported previously up-regulated in the SN of PD 
(28, 29). In contrast, vesicle trafficking, synaptic transmission, and 
synapse-related genes were significantly down-regulated in the neu-
ronal clusters of PD brains (Fig. 5, B and C).

We noticed distinct patterns of the DEGs among the two DA 
neuron subtypes and RIT2+TH− neurons (c9) in PD. c9 had the 
greatest number of DEGs (1203), far more than c7_3 (200) and c6_2 
(66), though c9 (4200) had fewer cells than c7_3 (4262). The most 

Fig. 3. scRNA-seq and immunostaining analysis of human midbrain organoids. (A) UMAP visualization of the single-cell clustering from the hiPSC-derived midbrain 
organoid (day 40). (B and C) UMAP visualization of the TH and RIT2 gene expression. (D) Comparison between the cluster markers between the human organoids and the 
SN of the control samples. The minimum adjusted P value was set at 1E-20 for visualization purpose. (E and F) IF staining of midbrain organoid with anti-RIT2 and anti-TH 
antibodies. White arrows indicate a RIT2+TH+ cell population, and white arrowheads indicate a RIT2+TH− cell population. Scale bars, 100 μm (E) and 10 μm (F).
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significant DEGs in c9 were associated with the down-regulation of 
synaptic protein interactions. In contrast, the DEGs of c7_3 showed 
the up-regulation of translation elongation and ribosomal proteins 
(Fig.  5B). Moreover, c7_3 had decreased expression of SLC18A2, 
ALDH1A1, SLC6A3, and TH, which are important for the regulation 
of dopamine release and DA neurogenesis (Fig. 5B). A few genes 

sharing similar directions of changes (either up or down) among c9, 
c7_3, and c6_2 were also identified, which were involved in various 
cellular functions (fig.  S8, B and C). Genes involved in single-
stranded DNA sensing process such as SSBP3 were commonly 
down-regulated, while PLCL1 and MTRNR2L1 were enhanced in all 
three neuron clusters (fig. S8, B and C).

Fig. 4. Subclustering analysis of clusters c6 and c7 and identification of subtypes of DA neurons. (A to F) Subclustering analysis of clusters c6 [(A) to (C)] and c7 [(D) 
to (F)]. [(A) and (D)] UMAP plot for subclusters. [(B) and (E)] Expression pattern of known brain cell–type marker genes. [(C) and (F)] Cell fraction distribution represented 
by disease status in each subcluster. (G) UMAP plots for the expression of selected marker genes in the neuron clusters c6, c7, and c9. (H) Comparison of cluster markers 
between the organoids and DA neuron subclusters of human SN (control). The minimum adjusted P value was set at 1 × 10−20 for visualization purpose.
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Last, we observed an impaired TYROBP-centered causal net-
work in the microglia (c1), indicating the immunosuppression in 
PD brains (Fig. 5B). These cluster-specific PD DEGs were largely 
consistent with those identified in our previous bulk tissue–based 
meta-analysis (30), with the down-regulated bulk tissue–based 
DEGs enriched in neuronal clusters, while others were found ubiq-
uitously up-regulated across various cell types (Fig. 5D).

To identify potential temporal changes of gene expression dur-
ing disease progression, we separated the cells into three groups ac-
cording to the Braak Staging of the donors: control (Braak = 0), 
early stage (Braak 1 to 3), and late stage (Braak 4 to 6) (table S7). 
The genes were grouped into three major categories based on their 
expression patterns (details described in Materials and Methods): 
(i) Early and sustained responding genes (ESRGs); (ii) “U-shaped” 

Fig. 5. Cell type–specific DEGs between PD and the control. (A) Number count of up- (UP) and down-regulated (DN) DEGs in each cluster. (B) Heatmap of top canonical 
pathways enriched for up- and down-regulated genes in each cluster. (C) Top DEGs involved in the indicated pathways in each cluster. (D) Comparison of DEGs identified 
in bulk tissue–based meta-analysis and snRNA-seq. FC, fold change.
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responding genes (URGs), whose early response diminished over 
time; (iii) late responding genes (LRGs). Each category was further 
divided into positive and negative responders. The positive ESRGs 
were primarily involved in HSF1 activation in non-neuron clusters 
(c0 to c3, c5, and c8) and a small set of neuron clusters (c6_0 and 
c7_0), while in DA neuron subclusters c7_3 and c9, DA neurogen-
esis and synaptic homeostasis, respectively, were disrupted at the 
early stage and then suppressed over the disease course (fig. S11A 
and table S8). Most positive URGs were enriched in metal ion regu-
lation and metabolism in non-neuronal clusters, while a transient 
inactivation of N-methyl-​d-aspartate–AMPK signaling and mem-
brane trafficking was found in oligodendrocyte (c0) and microglia 
(c1) clusters (fig. S11B). Various cellular pathways were activated in 
all cell clusters as LRGs, including the two vulnerable neuron sub-
types (c7_3 and c9), where translation elongation, chaperone activity, 
and GTPase cycle were altered (fig.  S11C). Moreover, TYROBP-
centered causal network and microglial pathogen phagocytosis 
pathway were disrupted at the late stage (fig. S11C). These results 
demonstrate divergent cellular stress responses in different cell 
types during disease progression.

Cell type–specific gene expression enrichment and 
deregulation of PD-associated genes in the human SN
We next examined the expression of PD-linked genes and GWAS 
risk alleles using our dataset. We were able to detect the expres-
sion of 22 PD-linked genes (4, 31), of which half (11 of 22) were 
enriched in neuron clusters, such as GABAergic (c7_1, adjusted 
P = 0.019, OR = 17.9), glutamatergic (c7_2, adjusted P = 1.5 × 
10−04, OR = 23.0), and DA neurons (c7_3, adjusted P = 9.1 × 10−05, 
OR = 25.5). Numerous genes—such as UCHL1 (PARK5), SNCA 
(PARK1/4), ATP13A2 (PARK9), VPS35 (PARK17), SYNJ1 (PARK 
20), CHCHD2 (PARK 22), and TMEM230—showed strong expres-
sions in both glutamatergic (c7_2) and DA (c7_3) subcluster neu-
rons, while PINK1 (PARK6), EIF4G1 (PARK18), and GBA were 
particularly enriched in DA neuron subcluster (c7_3) (Fig. 6A, 
left). Unlike neuron-enriched PD genes, LRRK2 (PARK8) was 
highly expressed in microglia (c1), endothelial cells (c4), and 
OPCs (c5). PRKN (PARK 2) was enriched in astrocytes (c2), mi-
croglia (c1), oligodendrocytes (c3), and OPCs (c5). Furthermore, 
VPS13C (PARK 23) and DNAJC13 (PARK 21) were enriched in 
microglia (c1) (Fig. 6A, left).

The differential regulation of PD genes was heterogeneous across 
cell types. Nearly 30% of the PD genes (6 of 22) were down-regulated 
in neuronal clusters in PD. For examples, we found that DNAJC6, 
CHCHD2, and SNCA were down-regulated in DA neuron subclus-
ters c7_3 or c9. In contrast, DNAJC6, UCHL1, and PRKN were 
up-regulated particularly in DA subcluster c9, whereas SNCA was 
up-regulated in microglia and oligodendrocytes in PD. In contrast, 
PRKN was down-regulated in pericytes (c8) and endothelial cells 
(c4) in PD (Fig. 6A, right).

We next extended our studies to the genes mapped to the known 
PD GWAS loci curated by GWAS catalog (www.ebi.ac.uk/gwas/; see 
Materials and Methods). Among 278 PD GWAS loci alleles, 90 
genes showed cluster-specific expression as evidenced by the sig-
nificant enrichment in neuron cluster (c9, adjusted P  =  0.037, 
OR = 3.8), while DA neuron cluster (c7_3) was enriched with genes 
linked to the genetic forms of PD. Fifty-two GWAS-associated genes 
were differentially expressed between PD and control (Fig. 6B). By 
categorizing these genes by cell type, we found that many PD GWAS 

loci genes were preferentially expressed in neurons (Fig. 6C) and 
more frequently deregulated in neurons than in other cell types 
(Fig. 6D). For example, SV2C was highly expressed in both c6_2 and 
c7_3 DA neuron clusters and down-regulated in c7_3 in PD (Fig. 6, 
C and D). SV2C encodes a synaptic vesicle glycoprotein 2C, which 
plays a role in the control of regulated secretion in neurons (32). 
KTN1, encoding an integral membrane protein belonging to the 
kinectin family, was highly expressed in endothelial cells (c4) 
(Fig. 6C) but up-regulated in c9 neurons (Fig. 6D). We found a sig-
nificant down-regulation of the RIT2 gene in c9 (Fig. 6D). The above 
results demonstrate the heterogeneity of expression enrichment for 
PD-associated genes in different cell types of the SN, suggesting the 
complexity of pathogenic mechanisms of PD.

Altered cell-cell communication networks in the SN of PD
We next predicted altered cell-cell communications by using an R 
package, CellChat, where cell communications are characterized by 
ligand-receptor (LR) interactions between the source and target cells 
(details in Materials and Methods) (33). First, by comparing the dif-
ferential number and strength of LR interactions among major cell 
types between control and PD, we observed a global decrease of cell 
communications for neuronal cells but increased communications 
for microglia, pericytes, endothelial cells, and fibroblasts (Fig. 7A). 
Second, we assessed how individual cell clusters were affected by PD, 
according to the total outgoing and incoming signals. A number of 
neuron and oligodendrocyte-related cell clusters showed a loss of 
incoming and/or outgoing cell communications in PD, including c9 
(Neu), c5 (OPC), c2 (Ast), c3 (Oli), c7 (Neu), c0 (Oli), and c6 (Neu), 
while the other cell types showed no obvious change in incoming or 
outgoing interaction strength (Fig. 7B).

By aggregating the LR pairs into major signaling pathways, we 
found that GRN, EPHB, GAS, PERIOSTIN, EDN, OCLN, interleukin-
16, major histocompatibility complex–II (MHC-II), WNT, PACAP, 
and CXCL pathways were inactivated in PD (Fig. 7C and table S9). 
The β-amyloid precursor protein pathway was enhanced, while the 
Angiopoietin-like protein (ANGPTL) pathway was activated in 
PD. Multiple signaling pathways also showed cell cluster–specific 
regulation in PD. For example, two neuronal clusters c7 and c9, both 
containing subtypes of DA neurons, lost Cadherin (CDH) signaling 
in PD (Fig. 7, C and D). Disruption of the CDH pathways was also 
seen in pericytes (c8). CDH2, which encodes N-cadherin, is the pri-
mary member of CDH. Because N-cadherin exerted a neuroprotec-
tive effect on DA neurons (34), the loss of CDH interactions in DA 
neurons may disrupt the functions of DA neurons. Ephrins and 
Eph receptors are multifunctional in various biological conditions, 
including axon guidance and regeneration (35). Aside from the loss 
of EPHB signaling in PD, we noticed that the Ephrin type-A recep-
tors (EPHA) input from neuron clusters c6 and c9 into neuron clus-
ter c7, oligodendrocyte cluster c0, and pericytes cluster c8 were lost 
in PD (Fig. 7D). Together, our analysis suggests that multiple path-
ways are altered in PD. Specifically, we found extensive disruptions 
and rearrangements of CDH and EPHA/EPHB signaling pathways 
in the SN of PD.

DISCUSSION
Emerging scRNA-seq approaches have become instrumental in de-
ciphering the intricate heterogeneity and composition of cell types 
of complex human diseases including Alzheimer’s disease (36). In 

http://www.ebi.ac.uk/gwas/
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Fig. 6. Cell type–specific expression and DEG of PD-associated genes and risk loci. (A) Heatmap for cell type–specific expression (left) and DEG (right) of PARK family 
genes in PD. (B) Number of GWAS loci related genes enriched (top) and differentially expressed (bottom) in each cell type. Dark gray indicated genes unique to each cell 
type, and light gray indicated genes shared among cell clusters. (C) Expression patterns of selected PD GWAS loci-related genes in different cell clusters. (D) Heatmap for 
the log2 fold change of differential expression of selected PD GWAS loci genes in each cluster.
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Fig. 7. Altered cell communication networks in PD. (A) Differential LR interactions between PD and the controls. Blue lines and red lines indicated decreased and in-
creased interactions, respectively. The line width was proportional to the difference. (B) Distribution of cell cluster based on their relative changes in the incoming and 
outgoing signaling strengths between PD and control. (C) Information flow changes of major signaling pathways between PD and control in each cell cluster. Dashed 
boxes highlighted gain (red) or loss (blue) of signaling in specific cell clusters. (D) Chord diagram of EPHA and CDH signaling in control and PD.
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this study, we profiled a large number of nuclei in the human SN 
from both PD and controls with an average age of 81. We developed 
a comprehensive single-cell transcriptomic atlas of the human SN. Our 
data revealed cell type–specific molecular alterations and disruption 
of cell-cell communication networks in the SN of PD. Our results 
highlight the cell heterogeneity and molecular basis for the complexity 
underlying disease mechanism.

The profiling of human SN has led to the identification of a RIT2-
enriched neuron subpopulation, a fraction of which expressed little 
TH (RIT2+TH−) and showed a distinct transcriptomic signature from 
other neuron types including DA neurons (TH+SLC18A2+SLC6A3+). 
RIT2+ neurons have never been previously characterized. The RIT2+ 
neurons (including RIT2+TH− and RIT2+/TH+) showed remarkable 
vulnerability in PD. We validated the presence of RIT2+TH− neurons 
in two previously published datasets from the human SN, human 
organoids, and the mouse SN, although a potentially different distri-
bution of the specific neuron population was noted between mouse 
(Fig. 2G) and human (Fig. 2C). Our study also indicated that NM 
are found in RIT2+TH− and RIT2+TH+ subtypes. A previous study 
found differential rate of degeneration between NM+ and TH+ neu-
rons in the SN of PD, suggesting the heterogeneity of NM+ neurons—
not all NM+ neurons express TH (18). It remains possible that some 
RIT2+TH− cells account for those NM+ neurons.

While the emergence and significance of RIT2+TH− neurons 
remain to be elucidated, RIT2 was previously identified as a PD 
risk gene (3, 22). We found RIT2 expression was down-regulated 
in the c9 in PD with advanced Braak stages (0.8-fold, adjusted P 
value = 0.047), consistent with a previous report of reduced expres-
sion of RIT2 in the SN of PD brain (37). The RIT2 protein belongs 
to the RAS superfamily of small GTPases, which interact with and 
regulate DAT levels in a sex-dependent manner in mice (38). One 
question is whether the loss of RIT2+TH− neurons is linked to any 
symptom of PD. Our study suggests RIT2 as a potential molecular 
marker for age-related pathological alterations in PD due to the loss 
of RIT2+ (TH+ and TH−) neurons in the SN and the link of RIT2 
variants to PD risk.

The PD samples used in our snRNA-seq study are from advanced 
stage of PD (~80 years), by which point most of DA neurons are lost. 
Therefore, our data are unlikely to provide an insight into the causes 
of neurodegeneration. However, the study of the remaining DA neu-
rons at advanced stages may reveal a clue for how they are adapted 
and survive, while others are lost. Kordower et al. (18) reported a 
rapid decline of DA neuron number in the SN of PD at an early stage 
of the symptoms, while a subpopulation of DA neurons remained un-
changed in number for at least a decade and at advanced stages of the 
disease. At present, it remains to be further determined what could 
render the remaining DA neuron resistant to the death at late PD. By 
comparing transcriptomic profiles of the DA neurons between PD 
and control cohorts, our study may provide an opportunity to deci-
pher potential mechanisms for their resilience.

Our study gains an insight into the cell type–specific gene ex-
pression for the PD-linked genes and GWAS risk alleles. Our results 
demonstrated the cell heterogeneity of expression enrichment for 
PD-associated genes in the SN. The DEG analysis suggested com-
mon and distinct cellular pathways that are affected in various cell 
types of the SN of PD. Our result revealed that most of the DEGs in 
PD are associated with neurons. It is worth noting that LRRK2 
was produced primarily in microglia and OPCs, but little change 
was observed in any cell type in PD. Furthermore, SNCA expression 

was reduced in subpopulations of DA and glutamatergic neurons 
but was enhanced in microglia and oligodendrocytes in PD. The 
transcriptional elevation of SNCA has not been previously reported 
in glia in the SN of PD, and the significance of this observation 
should be investigated in the future. The above observations high-
light the diversity of the molecular mechanisms underlying DA neu-
ron degeneration.

Many studies have indicated activation of microglia or astro-
cytes in PD. Several groups reported the appearance of amoeboid 
microglia producing MHC class II, intercellular adhesion molecule–1 
(ICAM-1), and LFA-1, the markers for activated microglia, and re-
active astrocytes expressing ICAM-1 in the SN and the putamen of 
PD brain (39–43). Previous studies also detected increased binding 
of a radiotracer, 11C-(R)-PK11195, in PD brains compared to con-
trols. This tracer is known to bind to the 18-kDa translocator protein 
(TSPO) expressed mainly by microglia (44). However, other groups 
failed to observe activated microglia or astrocytes in human PD 
brains (45, 46). In our study, we found little evidence supporting the 
extensive activation of inflammation-related molecules or disease-
associated microglia signature in glial clusters, although we detected 
the up-regulation of multiple genes, such as AKT-PIP3, FOXO1/3, 
and ERBIN, as well as NGR3, which are known to regulate macro-
phage/microglia activation, migration, proliferation, and inflam-
mation (47–51). The discrepancy of the results could be due to 
many factors such as sample sources and analytic procedures. It 
remains possible that glia become less active at advanced stage of 
PD as shown in our study. Furthermore, accumulated evidence also 
suggests the increase of senescent/dystrophic microglia in human 
aged brains (52, 53).

Despite the large number of nuclei analyzed by snRNA-seq in 
our study, the sample size used in the investigation is still relatively 
small, considering the variations among postmortem samples such 
as postmortem interval (PMI) and pathological differences. The ob-
servation of altered gene expression in PD could be biased and 
should be rigorously validated with large sample sizes from inde-
pendent cohorts. Moreover, the development and physiological 
function of RIT2-enriched neurons in the human SN has yet to be 
elucidated. Nonetheless, our study has established a transcriptomic 
atlas of the human SN at the single-cell resolution and delineated 
the landscape of molecular and cellular alterations in PD. Our study 
not only provides a valuable resource for dissecting molecular and 
cellular compositions and structures of the human SN but also 
presents an unprecedented opportunity to understand in-depth 
pathogenic mechanisms, identify key therapeutic targets, and de-
velop novel clinical biomarkers for PD.

MATERIALS AND METHODS
Postmortem brain sample collection
The postmortem brain samples were requested from National Insti-
tutes of Health (NIH) Neurobiobank (www.neurobiobank.nih.gov) 
and fulfilled by Brain Endowment Bank at Miller School of Medi-
cine, University of Miami. The samples were pretested for known 
genetic mutations linked to familial PD, including SNCA, LRRK2, 
and GBA. The samples did not harbor any of the abovementioned 
mutations.

The information of the sample demographics was summarized 
in Table 1 and table S1. Specifically, frozen punches of SN were ob-
tained and then pulverized in a liquid-nitrogen–chilled mortar and 
aliquoted. Approximately 50 mg of tissues was used for snRNA-seq.

http://www.neurobiobank.nih.gov
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Midbrain organoid differentiation
The midbrain organoids were generated from the male human em-
bryonic stem cell line, WA01 TH #2, containing the TH-TdTomato 
reporter for DA neurons, as previously described (24, 54). Briefly, 
the hPSCs were seeded into a 125-ml disposable spinner flask 
(Corning, #3152) in StemFlex supplemented with 10 μM Y-27632 
ROCK inhibitor (Tocris, #1254) and Pen/Strep (Gibco, #15140122) 
in a total volume of 120 ml. The flask was placed on a ninth position 
stir plate (Dura-Mag, #CLS-4100-09) at a speed of 65 rpm in the in-
cubator. On day 2 after seeding, half of the culture medium (60 ml) 
was changed. Midbrain patterning was initiated on day 4 after seed-
ing. The base medium throughout the differentiation consisted of 
DMEM/F12 + GlutaMAX (Gibco, #10565018) supplemented with 
1× B27 supplement, minus vitamin A (Gibco, #12587010) and 1× 
N-2 supplement (Gibco, #17502048). Half of the media (60 ml) was 
changed daily throughout the patterning stage with the exception of 
80 ml of media changes on day 8 (D8) and D12. The D0 to D1 medi-
um contained the transforming growth factor–β inhibitor, SB431542 
(10 μM; Stemgent, #04-0010), and the bone morphogenetic protein 
inhibitor, LDN193189 (100 nM; Tocris, #6053). Purmorphamine 
(2 μM; STEMCELL Technologies, #72202) and 3-chloro-N-[trans-4-
(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-
benzo[b]thiophene-2-carboxamide (SAG) (1 μM; Cayman Chemical, 
#11914) were added to the D2 to D3 medium. The WNT activator, 
CHIR99021 (1.5 μM; Tocris, #99021), was also added to the D4 to 
D7 medium. The D8 to D11 medium only contained LDN193189 
and CHIR99021. On D12, the medium was switched to the terminal 
differentiation medium consisting of brain-derived neurotrophic 
factor (20 ng/ml; R&D Systems, #248-BD), glial cell line–derived 
neurotrophic factor (20 ng/ml; R&D Systems, #212-GD), N-[2S-
(3 ,5- di f luorophenyl)acety l]- L- a lanyl- 2- phenyl- g lycine, 
1,1-dimethylethyl ester (DAPT) (10 μM; Cayman Chemical, #13197), 
ascorbic acid (0.2 mM; Fisher BioReagents, #BP351), and Dibutyryl-
cAMP,N⁶,2'-O-Dibutyryladenosine-3',5'-cyclic monophosphate 
(dcAMP) (0.1 mM; BioLog, #D009). Samples were collected on 
D30 for immunofluorescence (IF) staining and on D40 for scRNA-
seq analysis.

Nuclei isolation and sequencing
Single-nucleus gene expression sequencing was performed on the 
samples using the Chromium platform (10x Genomics, Pleasanton, 
CA) with the Next GEM Single cell 3’GEX Reagent Kit and an input 
of ~10,000 nuclei from a debris-free suspension. Briefly, nuclei were 
isolated from frozen tissue, as per 10x Genomics’ recommendations, 
using chilled, 0.1% NP-40 lysis buffer with gentle homogenization 
and washed. Gel-bead in emulsions (GEMs) were generated on the 
sample chip in the Chromium controller. Barcoded cDNA was ex-
tracted from the GEMs by Post-GEM RT-cleanup and amplified for 
12 cycles. Amplified cDNA was fragmented and subjected to end 
repair, polyadenylate tailing, adapter ligation, and 10x-specific sample 
indexing following the manufacturer’s protocol. Libraries were quanti-
fied using Bioanalyzer (Agilent) and QuBit (Thermo Fisher Scientific) 
analysis. Libraries were sequenced using a 2 × 100PE configuration on 
a NovaSeq instrument (Illumina, San Diego, CA), targeting a depth of 
50,000 to 100,000 reads per nucleus.

Sequencing data were aligned and quantified using the Cell Rang-
er Single-Cell Software Suite (version 3.1.0, 10x Genomics) against 
the provided GRCh38 reference genome using default parameters, 
including introns. Before sequencing all samples, three samples were 

randomly selected for sequencing in a pilot run. Then, all 31 samples 
were processed and sequenced in one batch. For the three samples 
with replicated libraries, we observed similar data quality between 
the pilot and final sequencing run. Therefore, we combined libraries 
from both the pilot and final sequencing, resulting in a total number 
of 457,453 nuclei (on average, 13,455 nuclei and median 12,188 per 
library) before quality control (QC).

snRNA-seq data preprocessing and preclustering analysis
Starting from Cell Ranger–derived unique molecular identifier (UMI) 
count matrices from all sequencing libraries, we performed QC by 
removing low-quality nuclei with either too few genes (<200) or an 
excessive number (>2500) of genes detected, retaining 355,157 nu-
clei after filtering. Then, we removed insufficiently detected genes 
by keeping 30,038 genes expressed in more than one nucleus. Mito-
chondrial reads (mean fraction of 18.5%, median fraction of 13.4%) 
were discarded to avoid biases introduced during the nuclei isolation 
because they are not expressed inside nucleus (55–57). After QC, 
there were, on average, 9290 (median of 9010) nuclei per sequencing 
library sample. We obtained, on average, 817 (median of 686) 
unique genes per nucleus per individual and 1536 (median of 1080) 
UMI per nucleus. We performed a preclustering analysis using a 
well-established scRNA-seq data integration workflow based on R 
packages Harmony (20) and Seurat (v3) (19). Briefly, the UMI data 
were first normalized by sequencing depth and log-transformed 
using the LogNormalize method implemented in Seurat. A total of 
2000 most variable gene features were identified, scaled, and centered 
after regression out covariates sex, age, and PMI. Next, dimensional 
reduction was performed using principal components analysis (PCA) 
based on the 2000 most variable genes. The top 30 principal compo-
nents (collectively explaining more than 90% of the variance) as 
determined by an elbow approach were selected for integration of 
snRNA-seq data across all sequencing libraries with Harmony (20). 
Top 20 embeddings in the Harmony space were used for calculating 
two-dimensional (2D) reductions by t-distributed stochastic neigh-
bor embedding (58) and Uniform Manifold Approximation and 
Projection for Dimension Reduction (UMAP) (59). The same top 20 
Harmony embeddings were also used to compute the nearest neigh-
bor graph and the subsequent cell preclusters with the Louvain algo-
rithm implemented in Seurat (19). This initial preclustering analysis 
resulted in 14 preclusters at a resolution of 0.2. Two smallest pre-
clusters c12 and c13, dominated by nuclei from one or two donors, 
overlapped with precluster c0 on the UMAP space (fig. S1, A and B).

Cluster stability analysis
To assess the stability and robustness of the preclusters, we performed 
repeated subsampling analysis by making use of software tool scclus-
teval (60). In each subsample, we sampled without replacement a sub-
set of 80% of the nuclei in the full QCed dataset and then repeated 
the data normalization, scaling, PCA, Harmony data integration, 
and clustering procedure on this subset of data as above described. 
We repeated subsampling 100 times. For each subsample, we com-
pared its clusters with those preclusters from the full data by Jaccard 
index analysis and returned a maximum Jaccard index coefficient 
for each of the original preclusters. We found that precluster c12 
had almost close to 0 Jaccard index coefficients in all subsamples, 
indicating that it was an unstable cluster dissolved in the subsam-
ples. Precluster c13 was also dissolved in 13 of the subsamples, sug-
gesting that it was a potentially unstable cluster. For the remaining 
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preclusters, they all showed Jaccard index coefficients larger than 
0.50, except for c9 where one subsample had a Jaccard index coeffi-
cient of less than 0.25. Next, for each cell i in precluster c12 or c13, 
we assessed the coclustering probability between i and all the pre-
clusters as the mean fraction of cells in the preclusters that clustered 
together with i in the repeated subsamples by using equation

where m denotes the number of subsamples that included cell i, c 
denotes a precluster, xc denotes the set of cells in precluster c, xr 
denotes the set of cells in subsample r, and xr,i denotes the set of cell 
subcluster that contains cell i in xr. The distribution of pc,i stratified 
by c is shown in fig. S1D. Cells in precluster c12 tended to cocluster 
with cells in precluster c0, followed by cells in c3 and c13, while cells 
in precluster c13 tended to cocluster with cells in precluster c12, 
followed by cells in c0. Together with the spatial distribution of the 
cells in the UMAP space, we decided to merge the two unstable pre-
clusters c12 and c13 into their adjacent bigger neighbor precluster 
c0, leading to 12 clusters (c0 to c11) for further analysis.

Doublet prediction analysis
After finalizing the cell clusters, we predicted doublets by making use 
of the scDblFinder package (61, 62). scDblFinder first simulates dou-
blets from the provided cell clusters and then computes a doublet 
prediction score for each cell by combining the fraction of simulated 
doublets in its neighborhood with another score based on coexpres-
sion of mutually exclusive gene pairs (19). The doublet prediction 
scores are iteratively refined, and a classification model is trained to 
best characterize the putative doublets by integrating a number of 
discriminating metrics (61, 62). Figure S1E shows the final doublet 
prediction score and classification. A total of 39,290 predicted dou-
blets were removed, resulting in 315,867 singlets of the final clusters 
for all downstream analyses. The number of high-quality nuclei and 
the number of detected genes across all nuclei of each sample are 
listed in table  S1. Overall, there are, on average, 9290 (median of 
9010) singlets per sequencing library sample.

Cluster cell-type annotation
For each major cluster or subcluster, we first interrogated the expres-
sion patterns of known gene markers to annotate clusters into major 
cell types: neurons (RBFOX3, GAD1, and NRGN), astrocytes (AQP4 
and GFAP), oligodendrocytes (MOG), microglia (C3, CSF1R, CD74, 
and TYROBP), oligodendrocyte progenitor cells (VCAN), endothe-
lial cells (FLT1), and pericytes (PDGFRB). Next, we calculated de 
novo cluster signatures by comparing the cells in this cluster against 
the cells of the rest clusters using Wilcox rank sum test in Seurat. We 
defined cluster up-regulated genes as those up-regulated by at least 
1.2-fold and with Bonferroni adjusted P value less than 0.05, from 
which we further defined cluster-enriched de novo signatures (i.e., 
marker genes) as those up-regulated by at least twofold. To assist the 
annotation of cell type of each cluster, we overlapped the de novo 
cluster signatures with a large-scale collection of cell-type markers 
curated from more than 1054 single-cell experiments (21), with P 
value significance of the overlaps computed by a hypergeometric 
test. Because cell type marker expression may change in PD cells, 
only the control cells were used for investigating the marker gene 
expression pattern and calculating the cluster signatures.

Subclustering analysis
To perform subclustering analysis for a given cluster, we first ex-
tracted the normalized and covariates adjusted data for the cluster. 
As in the preclustering analysis, we computed dimensional reduc-
tion using PCA. Because the number of cells contributed from each 
individual donor ranged from 18 to 2170 (cluster 6), and 19 to 2069 
(cluster 7), we did not conduct Harmony analysis to avoid biased 
data integration due to small and uneven cell numbers. The top 10 
principal components as determined by an elbow approach were se-
lected to compute UMAP, the nearest neighbor graph, and the sub-
sequent cell subclusters with the Louvain algorithm. Subcluster 
marker signatures were defined by comparing each subcluster with 
all other cells, including other subclusters and major clusters, using 
Wilcox rank sum test in Seurat as above.

Cell cluster proportion change
To test if there was a significant change in the proportion of a cell clus-
ter between PD and controls, we first calculated the OR of proportion 
difference using formula: OR =

(

Nc,Control

Nc,PD

)

∕
(

Nc,Control

Nc,PD

)

 , where Nc,PD 
(Nc,Control) denotes the total number of cells in cluster c in all PD 
(control) samples, while Nc,PD ( Nc,Control ) denotes the total number 
of cells in the remaining clusters in all PD (control) samples. To 
compute the P value significance, we computed the odds of cells 
assigned to cluster c in individual i as oddsc,i = fc,i ∕ fc,i , where fc,i 
denotes the fraction of cluster c cells in the i-th individual and fc,i 
denotes the fraction of cells in all the other clusters in the i-th indi-
vidual. Then, a one-tailed Wilcox rank sum test was conducted to 
compare the difference in odds between PD and controls.

Replication of cell clusters in two independent non-PD 
SN samples
To replicate the present cell clusters, we compared our data with two 
published snRNA-seq datasets from non-PD SN samples. We first 
reprocessed the snRNA-seq data reported by Agarwal and colleagues 
from non-PD SN samples. By using the pipeline described in the 
precluster analysis section, we identified clusters of major brain cell 
types from the Agarwal data (13), including astrocytes, endothelial 
cells, microglia, neurons, oligodendrocytes, and oligodendrocyte 
progenitor cells (fig. S5, A and C). We further performed a subclus-
tering analysis on the neuronal cluster c6 and identified three sub-
clusters, c6_0 (RIT2 and RBFOX3 enriched), c6_1 (TH enriched), 
and c6_2 (GAD1 and GAD2 enriched) (fig. S5, B and D). To compare 
the cluster similarity between our data and the Agarwal data, we as-
sessed the significance of intersection of cluster signatures between 
ours and the Agarwal dataset using hypergeometric test (fig. S5E). 
Similarly, we reprocessed another snRNA-seq data from non-PD SN 
samples reported by Welch et al. (14) and identified clusters of major 
brain cell types (fig.  S6, A and C). We performed a subclustering 
analysis on the neuronal cluster c4 and identified seven subclusters, 
among which c4_3 is enriched for TH/SLC6A3/SLC18A2 and c4_5 is 
uniquely enriched for both RIT2 and RBFOX3 (fig.  S6, B and D). 
Then, we compared the cluster signature similarity between our data 
and the Welch data using hypergeometric test (fig. S6E).

Midbrain organoid processing for scRNA-seq
The midbrain organoids were dissociated as previously described 
(24). Briefly, up to 20 organoids were washed with 5 ml of phosphate-
buffered saline (PBS)−/− in a well of a six-well plate and incubated in 

pc,i =
1

m

m
∑

r=1

∣xc ∩ xr,i ∣ ∕ ∣c ∩ xr ∣
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5 ml of papain (Worthington, #LK003176) in Hanks’ balanced salt 
solution–H (STEMCELL Technologies, #37150) supplemented with 
deoxyribonuclease (DNase; Worthington, #LK003170) and 10 μM 
Y-27632 ROCK inhibitor for 20 to 40 min (depending on organoid 
size) on a shaker in the incubator. The organoids were gently tritu-
rated using fire-polished glass pipets of decreasing tip sizes. The cell 
suspension was filtered through a 70-μm strainer (Fisherbrand, 
#22-363-548) into a 50-ml tube containing 10 ml of fluorescence-
activated cell sorting (FACS) buffer [hibernate-A medium (BrainBits 
#HA) supplemented with 1× B27 (minus vitamin A), 1% bovine 
serum albumin solution, DNase, and 10 μM Y-27632 ROCK inhibi-
tor]. The cells were centrifuged at 800g for 5 min, the pellet was re-
suspended in 1 ml of FACS buffer, and the suspension was filtered 
through a 35-μm strainer (STEMCELL Technologies, #100-0087) 
into a FACS tube. The samples were stored on ice for FACS. The BD 
FACSAria Cell Sorter (BD Biosciences) was used to enrich for the 
TH-TdTomato+ cells for the scRNA-seq experiment. The FACS 
gates consisted of the P1 gate to exclude cell debris, singlets to ex-
clude doublets, and % live to exclude dead cells. The TH-TdTomato 
gate was set on the basis of a negative control. The FSC Express 7 
Software was used to analyze the results.

Single-cell transcriptomics analysis of midbrain organoids
scRNA-seq analysis of midbrain organoids was performed using 
the Chromium platform (10x Genomics, Pleasanton, CA). The raw 
sequencing data were first processed by the standard 10x Genomics 
cell ranger pipeline to derive UMI count matrix. Then, cells with 
less than 200 genes, more than 6000 genes, or with more than 5% 
mitochondrial reads were discarded, and genes detected in less than 
two cells were removed. After filtering, the UMI count matrix was 
normalized by sequencing depth and log-transformed using the 
LogNormalize method implemented in Seurat (19). A total of 2000 
most variable gene features were identified, scaled, and centered af-
ter regression out percentage of mitochondrial reads. Next, dimen-
sional reduction was performed using PCA based on the 2000 most 
variable genes. The top principal components collectively explain-
ing more than 90% of the variance were selected for calculating 
2D reductions by UMAP (59). The same top principal components 
were also used to compute the nearest neighbor graph and the sub-
sequent cell preclusters with the Louvain algorithm at a clustering 
resolution of 0.5. This clustering analysis resulted in 18 initial clus-
ters. Doublets were predicted using the scDblFinder package (61, 
62) and removed from further analysis. The smallest cluster was 
dominated by doublets (90 of 93 cells) and thus removed. De novo 
cell cluster markers were computed for each of the remaining 17 
clusters (named Oc0 to Oc16 for simplicity). To compare the clus-
ter similarity between human SN data and the organoid data, we 
assessed the significance of intersection of cluster markers using 
hypergeometric test.

Cluster-specific differential gene expression and functional 
enrichment analysis
DEGs between PD and control and DEGs between different Braak 
stages and control in each cluster/subcluster were identified using 
the R package MAST (19, 63) implemented in Seurat, with correc-
tion for PMI, age, and sex. DEGs were identified at the cutoff of 
Bonferroni corrected P value ≤0.05 and fold change ≥20%. For 
Braak stage–dependent differential expression analysis, we sepa-
rated the cells into three groups by the Braak stage of the donors: 

control (Braak = 0), early stage (Braak 1 to 3), and late stage (Braak 
4 to 6). Genes significantly increased/decreased in the early versus 
control and late versus control contrasts were considered as posi-
tive/negative early and sustained responders. Genes significantly 
increased in the early versus control contrast but decreased in the 
late versus early contrast and vice versa were defined as positive and 
negative U-shaped responders, respectively. Genes significantly up-
regulated/down-regulated only in the late versus control or also in 
the late versus early contrast were late responders. Functional en-
richment of DEGs with MSigDB gene annotation collections was 
examined by Fisher’s exact test (FET) with Benjamini-Hochberg 
(BH) correction. Results with BH adjusted P value <0.05 were con-
sidered statistically significant. When comparing cluster-specific 
DEGs among three or more clusters, R package SuperExactTest 
(64) was used to visualize and compute the P value significance of 
the overlap.

Comparisons between cluster-specific with bulk 
tissue–based DEGs
Bulk tissue–based DEGs were defined by a meta-analysis described 
in our previous work (30). The intersection between the present cell 
cluster–specific DEGs and the bulk tissue–based DEGs was examined 
by FET followed by BH correction using the common genes identi-
fied in both bulk and snRNA-seq as the background. Results with BH 
adjusted P value <0.05 were considered statistically significant.

PD-associated gene expression and regulation patterns in 
the snRNA-seq
PD-linked genes were defined as genes whose mutations were di-
rectly linked to familial PD as reviewed in (3, 31). PD GWAS genes 
were downloaded from GWAS catalog (www.ebi.ac.uk/gwas/) and 
defined based on the mapped genes closest to the risk loci. Both PD-
linked genes and PD GWAS genes were considered as PD-associated 
genes. We first examined whether PD-associated genes were prefer-
entially expressed in certain cell types by overlapping them with top 
10% up-regulated genes ranked by fold change in each cell cluster 
compared to the rest using control cells only. The overlap was tested by 
FET using GeneOverlap package in R and the results with Bonferroni 
adjusted P value <0.05 were considered statistically significant. We 
then examined whether PD-associated genes were differentially 
regulated in PD by overlapping them with cluster-specific PD versus 
control DEGs. The total number of PD-associated genes that showed 
cell type–specific enrichment and differential regulation were sum-
marized, and they were further separated into single cell-type en-
riched or shared across multiple cell types.

Cell communication analysis
Cell communication analysis and visualization were performed 
using the default setting in CellChat package (33). In CellChat, the 
differential number of LR pairs between two conditions was deter-
mined by differential gene analysis. If either or both components of 
a LR pair disappeared in the disease status, then such a LR pair 
between source and target cells was considered lost. The signaling 
strength, or communication probability, of a LR pair is modeled by 
the law of mass action. The communication probability of a signal-
ing pathway summarizes the probabilities of its associated LR pairs. 
A weighted-directed network is used to demonstrate the information 
flow among various cell groups, where the directed edges represent 
the summarized communication strength of all possible signaling 

http://www.ebi.ac.uk/gwas/
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pathways between source and target cells. Therefore, the incoming 
and outgoing signals for a given cell type can be reflected by the 
thickness of the inward edges and outward edges, respectively. All LR 
pairs in cell-cell contact, extracellular matrix receptors, and secreted 
signaling were included. Specifically, we focused on the gain or loss 
of interactions in general cell types, the shift of the outgoing and in-
coming interactions, and the top signaling pathways altered among 
cell clusters between PD and control.

IHC staining for the human brain
Formalin-fixed paraffin-embedded (FFPE) blocks were sectioned 
into 5-μm slices, deparaffinized with xylene for 10  min for three 
times, and rehydrated with gradient EtOH (100%, 100%, 75%, 50%, 
and water). Antigen retrieval was performed using Antigen Unmask-
ing Solution, Citric Acid Based (Vector Laboratories, H-3300) with a 
pressure cooker (Presto Electronic, WI) for 15 min. For immunofluo-
rescence staining, after blocking with 1% goat serum (Vector labora-
tory, CA, S-1012-50), brain slices were incubated with RIT2 antibody 
(1:100; Thermo Fisher Scientific, CF501757, clone OTI3F4) and TH 
antibody (1:100; Millipore, AB152) followed by secondary antibodies 
conjugated with Alexa-fluorescein. After masking autofluorescence 
background with TrueBlack Lipofuscin Autofluorescence Quencher 
(Biotium, #23007), brain slices were mounted with ProLong Gold 
Antifade Mountant (Thermo Fisher Scientific, #23007). For chro-
mogenic method, endogenous peroxidase activity was quenched 
with 3% hydrogen peroxide for 30 min in MeOH. After blocking, 
brain slices were incubated with RIT2 antibody or TH antibody and 
the signals were developed through ImmPRESS-AP Horse Anti-
Mouse IgG Polymer Kit (alkaline phosphatase; Vector laboratory, 
CA, MP5402) with Vector Blue (alkaline phosphatase substrate) or 
ImmPRESS HRP Horse Anti-Mouse IgG PLUS Polymer Kit (peroxi-
dase; Vector laboratory, CA, MP7452) with ImmPACT VIP (peroxi-
dase substrate, SK-4605) according to the manufacturer’s instructions. 
After staining, brain slices were dehydrated by 100% EtOH followed 
by HistoChoice Clearing Agent (H2779, Sigma-Aldrich, a substitute 
of xylene) and mounted with VectaMount Permanent Mounting 
Medium (Vector laboratory, CA, H-5000-60). Images were taken by 
All-in-One Fluorescence Microscope (KEYENCE, IL).

IF staining for midbrain organoids
The midbrain organoids were washed with PBS−/− and fixed in 
fresh 4% paraformaldehyde at room temperature for 30 to 60 min. 
(depending on organoid size) on a shaker. The samples were then 
washed with PBS−/−, transferred to 30% sucrose, and stored at 4°C 
overnight. On the following day, the organoids were transferred to 
optimal cutting temperature compound and placed in cryomolds. 
The cryomolds were flash-frozen on dry ice and stored at −80°C 
until sectioning. The blocks were sectioned using a cryostat, and 
sections (30 μm) were prepared and mounted on positively charged 
slides. IF staining was performed on the cryosections by first oven 
drying at 56°C for 30 min to adhere organoids to slide. Sections 
were washed twice with PBS for 5 min, and antigen retrieval was 
performed using Antigen Unmasking Solution, Citric Acid Based 
(Vector Laboratories, H-3300) with a pressure cooker (Presto Elec-
tronic, WI) for 15 min. Endogenous peroxidase activity was blocked 
using 3% H2O2 in methanol for 30 min. Sections were subsequently 
washed twice with 0.1% PBS-T for 5 min and blocked using 2.5% 
normal goal serum (Vector Laboratories, S-1012) for 30 min and 
incubated with RIT2 antibody (1:100; OriGene, CF501757) and TH 

antibody (1:250; Millipore, AB152) overnight. Sections were then 
washed twice with 0.1% PBS-T for 5 min and incubated with sec-
ondary antibodies conjugated to Alexa fluorescein (1:500) for 1 hour 
followed by 0.1% PBS-T washes twice for 5 min. Autofluorescence 
was quenched with addition of TrueBlack Lipofuscin Autofluores-
cence Quencher (Biotium, 23007) and washed with PBS. Sections 
were allowed to dry and mounted with ProLong Diamond Antifade 
Mountant with DAPI (P36962, Thermo Fisher Scientific). Samples 
were imaged using Zeiss LSM780.

RNAscope in situ hybridization
Mouse brains were fixed overnight at 4°C in 4% paraformaldehyde. 
Fixed brains were stored at 4°C in a 30% sucrose solution until they 
sank. A series of coronal sections (15 μm) were obtained with a cryo-
stat (Leica, Wetzlar, Germany). Probes for Rit2 (catalog no. 589041), 
Cadps2 (catalog no. 529361), and Th (catalog no. 317621, Advanced 
Cell Diagnostics, CA) were applied and visualized according to the 
manual for RNAscope Multiplex Fluorescent V2 Assay (catalog 
no. 323100). FFPE human brain sections (7 μm) were stained with 
probes for RIT2 (catalog no. 534358), CADPS2 (catalog no. 592718), 
and TH (catalog no. 441658) using RNAscope LS (Leica Biosystems) 
Multiplex assay kit (catalog no. 322800) and Leica Bond RX auto-
stainer (Leica, IL). Autofluorescence signals were briefly masked 
with TrueBlack Lipofuscin Autofluorescence Quencher (Biotum, 
CA, #23007) for 30 s.

Statistical analysis
The data analyses were performed using R/4.0.3 and GraphPad 
Prism 9 (GraphPad Software, CA, USA). For demographic informa-
tion, the results were represented as mean ± SD for continuous and 
N(%) for discrete variables, respectively. For IHC, the results were 
reported as means ± SEM. The statistical significance of differences 
between two groups was determined using the unpaired two-tailed 
Student’s t test. P value <0.05 was considered statistically significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S11
Legends for tables S1 to S9

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S9
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