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Abstract

Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of
neural crest cells. The Reduced folate carrier (RFC) is a membrane-bound receptor for facilitating transfer of reduced folate
into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies.
Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by
specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest
marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In
animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of
the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC
mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.
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Introduction

Neural crest (NC) is a multipotent cell population which

originates at the border between the neural plate and epidermis

during vertebrate development. Later on, these cells migrate to

various places throughout the body and give rise to various tissues,

including craniofacial bones and cartilages, melanocytes, cardiac

structures and peripheral nervous system [1]. Defective neural

crest development leads to a broad spectrum of congenital

malformations, collectively called neurocristopathies, which in-

cludes defects in pigmentation, and abnormal craniofacial and

heart development. Several neurocristopathies have been docu-

mented, including frontonasal dysplasia, Waardenburg-Shah

syndrome, DiGeorge syndrome, CHARGE syndrome, congenital

nevi, and Hirchsprung disease [2,3].

Induction, specification, migration, and differentiation of the

NC cells are tightly regulated by a carefully orchestrated multi-step

gene regulatory network (GRN) [1,4–6]. Neural crest formation

occurs in a series of tightly regulated steps. First, the presumptive

neural crest territory is induced at the dorsal neural plate border

through the interplay of different signaling pathways including

BMPs, Wnts and FGFs. These signals control the broad expression

of a set of transcription factors at the neural plate border region,

including Pax3, Msx1 and Zic1. These neural plate border

specifiers further turn on the expression of a group of genes in the

emerging neural crest cells, including Snail1, Snail2, FoxD3,

Sox10, Sox9, and Twist1. These neural crest genes are extensively

cross-regulated and many of them have been shown to be

necessary and/or sufficient for the expression of many other genes.

The neural crest specifier genes further control the expression of

several downstream mediators of neural crest migration. Terminal

differentiation of the neural crest cells is regulated by different

networks.

Folate deficiency has long been known to contribute to

developmental neural defects, especially neural tube defects and

neurocristopathies [7–10]. In humans, it has been documentated

folic acid prevents the development of neural tube defects,

craniofacial malformation, and heart defects [11–13]. In addition,

in vivo and in vitro experiments suggest that altering levels of folic

acid leads to aberrant cardiac NC cell migration and differenti-

ation in chick [14,15]. Folate is a cofactor in one-carbon

metabolism and is a crucial regulator of nucleotide synthesis and

methylation reactions. 5-methyltetrahydrofolate (5-MTHF) is

involved in the remethylation of homocysteine to methionine,

which is the precursor of S-adenosylmethionine (SAM), the

primary methyl group donor for most biological methylation

reactions [8]. In humans, folate metabolism and folate status has

been shown to affect the global methylation of DNA [16].

As a water-soluble B class vitamin, the uptake of folate by cells is

mediated by specific carriers or receptors, including folic acid

receptors (FRs), proton-coupled folic acid transporter (PCFT), and

reduced folic acid carrier (RFC). RFC, a 12 transmembrane

protein, is believed to be the major transporter for 5-MTHF,

which is the major form of folate in circulation [17]. RFC has a

low affinity for folic acid and a high affinity for reduced folate and

methotrexate (MTX), an antifolic acid chemotherapeutic drug

[18]. RFC is widely expressed in various human tissues and mouse

embryos [19,20]. RFC1 knockout mice die shortly after implan-
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tation. Supplementation of high dose of maternal folate prolongs

the survival of RFC1 null embryos until mid-gestation, but these

embryos develop multiple malformations, including defects in the

neural tube, craniofacial and cardiac malformations [21]. Such

malformations, including the craniofacial and heart defects,

coincide with neurocristopathies [3], suggesting that RFC might

be required for normal neural crest development [7].

Here we show in Xenopus embryos that RFC was involved in

neural crest development and knockdown of XRFC by specific

morpholino led to severe neurocristopathies as observed in mice.

We also provide evidence that the folate-mediated metabolism

regulates neural crest gene expression is likely through epigenetic

mechanisms.

Results

Xenoups RFC is expressed in the neural crest territories
We examined the temporal and spatial expression pattern of

XRFC during early Xenopus embryogenesis by RT-PCR and whole-

mount in situ hybridization. XRFC was expressed in Xenopus

embryos throughout the stages examined from St.0 to St.32

(Fig. 1A). Maternal XRFC transcripts were localized to the animal

pole at 2-cell stage (Fig. 1B). At stage 18, XRFC was expressed at

the anterior neural plate and its border (Fig. 1C). At late neurula

stages (Fig. 1D, E), the expression of XRFC was detected in the

prospective brain, optic vesicles, and the developing branchial

arches. During the tailbud stages, XRFC expression remained high

in the branchial arches, eyes, head mesenchyme and the somite

regions (Fig. 1F). The expression pattern of XRFC overlaps with

the neural crest territories, including the neural plate border,

branchial arches, somites and the head mescenchyme. This

suggests RFC may play a role in neural crest development.

XRFC is required for neural crest development
We further examined whether XRFC knockdown would affect

neural crest development. XRFC-MO, together with lacZ mRNA

as a lineage tracer, were injected into one blastomere of the

embryos at four cell stage, such that the contralateral uninjected

sides serve as an internal control. At the neurula stage, expression

of neural crest maker genes Zic1, Snail2, and FoxD3 were clearly

down-regulated in the injected side (Fig. 2 A–C, P) compared to

the control side. This effect could be largely rescued by co-

injection of a morpholino resistant XRFC mRNA (Fig. 2 D–F, P).

Interestingly, over-expression of XRFC mRNA alone could

promote the expression of Zic1 (92%, n = 37), Snail2 (96%,

n = 47), and FoxD3 (95%, n = 41; Fig. 2 G–I). In contrast, the

expression of Msx1 and Pax3 was not affected by XRFC-MO or

XRFC mRNA injections (Fig. 2 J, K, P and data not shown).

We also tested whether XRFC is required for neural crest

induction in animal cap assays. Neural crest cells can be induced in

animal caps by coinjection of Wnts and neuralizing factors [22].

Animal caps were dissected at stage 9 from embryos injected with

XWnt7b and tBR mRNA, with or without XRFC-MO. We first

confirmed that XRFC was expressed in control and induced animal

caps (data not shown). As in whole embryos, suppression of XRFC

significantly reduced the expression of Zic1, Snail2 and FoxD3

without significantly affecting Msx1 and Pax3 expressions (Fig. 2 Q).

We checked whether RFC knockdown also affects neural crest

migration using Twist1 as a marker. At the taibud stage, Twist1

labeled NC cells migrate ventrally in several streams into the hyoid

and branchial arches. In the XRFC-MO injected embryos,

however, Twist1 positive NC cells failed to migrate ventrally into

separate streams, but were clustered and retained in a dorsal

position (Fig. 2 L, M, P). This effect could be rescued by co-injection

of the XRFC mRNA (Fig. 2 N, O, P). We next examined the effects

of XRFC-MO on neural crest migration using a transplantation

experiment ([23], Fig. 2 R). When the presumptive neural crest

tissue from an embryo injected with EGFP mRNA is transplanted

into similar place of a normal embryo at the neurula stage, these

cells will migrate ventrally into the branchial arch regions at tailbud

stage. When tissues from the XRFC-MO injected embryos were

transplanted, however, these cells stayed at the transplanted position

and failed to migrate ventrally (100%, n = 14, Fig. 2 S). This defect

could be rescued by co-injection of RFC mRNA (100%, n = 15,

Fig. 2 T). We can not rule out the possibility that the failure of neural

crest migration in XRFC-MO injected embryos might be a

secondary effect of the defected neural crest differentiation.

RFC knockdown leads to neurocristopathic
malformations in Xenopus embryos

We checked whether knockdown of XRFC could induce

neurocristopathic phenotypes at later stages. At tadpole stages, the

XRFC-MO injected embryos develop craniofacial malformation

with curled trunks (91%, n = 93; Fig. 3 A). The cranial cartilages

were atrophied (Fig. 3 B). Also the embryos were hypopigmented

and developed heart defects (as indicated by the enlarged pericardial

cavity) and gut coiling malformations (Fig. 3 C, G, H, I). These

defects could be rescued by co-injection of XRFC mRNA (94%,

n = 86; Fig. 3 D, E, F, J, K, L). Thus knockdown of XRFC in

Xenopus embryos reproduces the neurocristopathic phenotypes as

observed in mice with deleted RFC [21], further confirming that

RFC is required for neural crest development in Xenopus.

RFC is involved in the neural crest regulatory network
Our knockdown data suggest that RFC is required for the

proper expression of a series of neural crest genes and

Figure 1. Temporal and spatial expression pattern of XRFC. (A)
XRFC is expressed maternally and throughout the stages examined (St.0
to St.32) as detected by RT-PCR. –RT, negative control without reverse
transcriptase in the RT reaction. (B–F) Expression of XRFC at the
indicated stages revealed by in situ hybridization. (B) The maternal XRFC
expression is detected at the animal pole at 2-cell stage. (C) At stage 18,
XFRC is expressed at the anterior neural plate and its border. (D–E) At
the late neurula stages, the expression of XRFC is detected in the
prospective eye and forming branchial arches. (F) At tailbud stage, XRFC
is strongly expressed in the branchial arches, eyes, head mesenchyme
and the somites. Br, branchial arch.
doi:10.1371/journal.pone.0027198.g001
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overexpression of RFC promotes their expression. To test whether

XRFC could be fit into the NC GRN linearly, we carried out a

series of knockdown and rescue experiments. The neural border

specifiers Pax3, Msx1 and Zic1 are at an upstream position of the

NC GRN hierarchy. Interfering with their function using

dominant negative constructs inhibited neural crest induction

(Fig. 4 A–C, T, and Fig. S1). When XRFC was co-expressed,

however, the dominant negative effects of all these three constructs

Figure 2. XRFC is required for neural crest induction and migration. (A–K) XRFC-MO and tracing lacZ mRNA were injected into one cell of
four-cell stage embryos, the expression of neural crest makers were examined at stages 15–17. (A–C) Knockdown of XRFC by morphoino inhibits the
expression of Zic1, Snail2 and FoxD3 in the injected sides (labeled red by staining of the tracing lacZ). (D–F) Co-injection of XRFC mRNA (800 pg)
rescues the expression of Zic1, Snail2 and FoxD3. (G–I) Overexpression of XRFC expands the expression domains of Zic1, Snail2 and FoxD3. (J, K) XRFC
morpholino injection does not affect the expression of Msx1 and Pax3. (L–O) Twist1 staining of neural crest cells at stage 32 of embryos injected on
one side with XRFC-MO or XRFC-MO plus rescue mRNA. In XRFC-MO injected side, the neural crest cells are retained in a dorsal position (arrowhead in
L). (P) Quantification of the effect of XRFC-MO on the expression of neural crest markers and the rescue by RFC mRNA. (Q) RT-PCR analysis in animal
cap assay to show the effect of XRFC-MO on the expression of the indicated neural crest genes induced by co-injection of tBR and XWnt7b. (R–T)
Transplantation experiment to show the effect of XRFC-MO on neural crest migration. (R) Schematic drawing showing the transplantation procedure.
(S) The EGFP-labeled XRFC-MO injected neural crest tissue fails to migrate at tailbud stage after transplantation. (T) Co-injection of XRFC mRNA
restores the migration ability of the neural crest cells. inj. side, injected side; con. side, control side.
doi:10.1371/journal.pone.0027198.g002
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were rescued (Fig. 4 D–F, T). On the other hand, Pax3, Msx1 and

Zic1 could also rescue the neural crest defects in the XRFC-MO

injected embryos (Fig. 4 M–P, T, and Fig. S1). Similar situation

holds true for more downstream genes Snail1 and Snail2. XRFC

rescued the inhibitory effect of the dominant negative Snail1 and

Snail2 constructs on neural crest gene expression (Fig. 4 G–I, T

and Fig. S1). Furthermore Snail1 and Snail2 also rescued the

expression of the neural crest markers in the XRFC morphants

(Fig. 4Q–S, T and Fig. S1). Since RFC has no direct effect on Pax3

and Msx1 expression, these data suggest that RFC might have a

general role in potentiating the expression of Zic1 and downstream

genes.

In addition to its involvement in early induction stage, Wnt

signaling is also required for the activation of neural crest genes by

Pax3 and Zic1 [6]. Blocking of Wnt signaling by dominant

negative Dishevelled (Xdd1)[24] or GSK3b abolished neural crest

induction (88%, n = 44 and 85%, n = 55 respecitvely, Fig. 4 U, V).

Co-injection of XRFC mRNA failed to rescue the neural crest

defects (94%, n = 41 and 95%, n = 51 respectively, Fig. 4 W, X),

suggesting a stringent requirement of Wnt signaling in neural crest

development.

XRFC regulates neural crest development epigenetically
We tested whether the role of XRFC in neural crest

development is associated with its function as a folate carrier.

We used two loss-of-function hRFC (R133C and R373C) mutants

[25], which were known to be defective in folate transportation.

Co-injection of wild type hRFC rescued the effect of XRFC-MO

on neural crest gene expression (Fig. 5A–H, U ) and over-

expression of hRFC promoted neural crest gene expression (Fig. 5

I–L, Fig. S2). The two hRFC mutants, however, failed to rescue

the XRFC knockdown phenotype (Fig. 5 M–T, U) or to promote

the expression of neural crest markers (Fig. S2).

5-methyltetrahydrofolate (5-MTHF) is the major form of folate

transported by RFC. We tested whether 5-MTHF itself could

rescue the XRFC knockdown phenotype. Indeed, co-injection of

5-MTHF clearly rescued XRFC-MO-induced neural crest

defects (Fig. 6 A–H, Q). Injection of 5-MTHF also promoted

Figure 3. Knockdown of XRFC leads to multiple malformations at tadpole stages. (A) Knockdown of XRFC caused craniofacial
malformations (arrowheads) with curled trunks. (B) XRFC-MO inhibited the formation of cranial cartilage. Cartilages in late tadpoles were stained with
alcian blue. Cartilage on the RFC-MO injected side was often malformed and reduced. M, meckel’s cartilage; CH, ceratohyal cartilage; CB,
ceratobranchial cartilage. (C) The XRFC-MO injected embryos were hypopigmented at tadpole stage. (G) The XRFC morphants showed enlarged
pericardial cavity (arrowhead), indicative of heart defects. (H–I) The gut coiling in XRFC was malformed at tailbud (H) and tadpole (I) stages compared
to the rescued group (K, L). (D, E, F, G, K, L) Co-injection of XRFC mRNA rescued the above mentioned malformations.
doi:10.1371/journal.pone.0027198.g003
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neural crest development as indicated by the expansion of

the neural crest markers (Fig. S2). On the other hand, MTX,

an antagonist of folic acid, disrupted neural crest induction

on the injected side, which can further be rescued by 5-MTHF

(Fig. S3).

We then tested whether RFC regulated neural crest develop-

ment by promoting the methylation cycle. In the cell, the methyl

group of 5-MTHF is transferred to homocysteine, via vitamin B12,

to generate methionine, which is the substrate for the synthesis of

S-adenosylmethionine (SAM). SAM is a direct donor of the methyl

group in methylation of protein and DNA. Co-injection of SAM

or vitamin B12 with XRFC-MO both rescued the expression of

Zic1, Snail2, FoxD3, and Twist1 (Fig. 6 I–Q). Furthermore,

injection of SAM or vitamin B12 also promoted the expression

of the neural crest markers (Zic1, Snail2, FoxD3 and Twist1) (Fig.

S2). These results suggest that RFC likely promotes neural crest

development through the methylation cycle.

The methylation cycle may regulate gene expression via

epigenetic regulations, i.e., promoting DNA and histone methyl-

ation. As DNA methylation mainly results in gene inactivation and

silencing [26], we checked whether knockdown of RFC affected

histone methylation levels. High levels of H3K4 trimethylation

have been shown to be associated with the 59 regions active genes

[27]. We failed to detect apparent changes of H3K4 methylation

levels in whole embryos injected with XRFC-MO or mRNA (data

not shown), probably due to the restricted expression of

endogenous XRFC and high levels of background histone

methylation. We then tested the H3K4 methylation levels in the

neural crest induction assay in animal caps injected with XWnt7b

and tBR with or without XRFC-MO. In this system, knockdown of

XRFC clearly reduced the mono- and trimethyl-H3-K4 levels

(Fig. 7A) which was restored by co-injection of XRFC mRNA.

Injection of 5-MTHF also increased both the mono- and

trimethyl-H3-K4 levels, but not dimethyl-H3-K4 level. These

Figure 4. RFC is involved in the neural crest gene regulatory network. (A–F) The inhibition of Snail2 expression by dominant negative Msx1,
Pax3 and Zic1 was rescued by co-injection of XRFC. (G–L) Snail1 N, Snail2 N and Snail2 Znf inhibited the migration of neural crest (as indicated by the
distribution of the Twist1 positive neural crest cells, G–I), which was rescued by co-injection of XRFC (J–L). (M–P) The inhibition of Snail2 expression by
XRFC-MO was rescued by Msx1, Pax3 and Zic1 co-expression. (Q–S) The neural crest migration defects in XRFC morphants were rescued by co-
injection of Snail1 or Snail2. (T) Quantification of the rescue effect of RFC on the expression of neural crest markers inhibited by dominant negative
Msx1, Pax3, Msx1, Snail1, and Snail2 (left panel) and the rescue of the XRFC-MO effect by Msx1, Pax3, Zic1, Snail1, and Snail2 (right panel). (U–X)
Dominant negative dishevelled (Xdd1) and GSK3b blocked the expression of Snail2 (U, V), which could not be rescued by XRFC (W, X).
doi:10.1371/journal.pone.0027198.g004
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data suggest that endogenous RFC is required for proper histone

methylation regulation in vivo.

The expression of neural crest genes are subjected to
epigenetic regulation

As a marker for gene activation, the methylated H3K4 (especially

H3K4me3) is predominantly enriched surrounding transcriptional

start sites [27]. We checked whether the neural crest genes are

potentially regulated by histone3 methylation using published

H3K4me3 chromatin immunoprecipitation data. Based on bioin-

formatics analyses of published genome-wide H3K4me3 pattern of

Xenopus [28], zebrafish embryos, and human and mouse embryonic

stem cells, H3K4me3 modification were highly enriched in the

flanking and coding regions of FoxD3, Zic1, and Twist1 in all species

and sporadically enriched in Snail2 (data not shown), indicating

functional constraints of epigenetic regulation of these genes.

The H3K4 methylation is mediated by a group of lysine

methyltransferases [29]. Among them, the MLL subfamily genes

appear to play important roles in early development. Deletion of

MLL1-3 genes in mouse are all lethal [30–32]. MLL1 knockout

mice also show defects in neural crest derivatives, e.g., branchial

arches[33]. We tested whether MLL1 could rescue the neural crest

defects in XRFC-MO injected embryos. We used hMLL1 [34]

plasmid injection in our rescue experiments. Interestingly,

overexpression of hMLL1 was sufficient to rescue the expression

of Zic1 and FoxD3 in XRFC-MO injected embryos (Fig. 7F–I). In

contrast, the expression of Snail2 and Twist1 were only partially

rescued (Fig. 7F–I, N), even using higher doses of hMLL1 (data not

shown). In addition, overexpression of hMLL1 alone promoted the

expression of Zic1 and FoxD3 (81%, n = 44 and 93%, n = 45

respectively, Fig. 7 K, M), but not Snail2 and Twist1 (0%, n = 39

and 0%, n = 27 respectively, Fig. 7J, L). These data suggest that

Figure 5. The effects of different hRFC constructs on neural crest gene expression. (A–H) XRFC-MO injection blocked neural crest maker
expression which was rescued by the wild type hRFC. (I–L) Overexpression of hRFC promoted of the expression of neural crest genes. (M–T) The two
mutated form of hRFC (R133C, R373C) failed to rescue the neural crest gene expression in the XRFC morphants. The arrowheads indicate the injected
sides. (U) Quantification of the rescue of the XRFC-MO effect by the wild type and mutated hRFC constructs.
doi:10.1371/journal.pone.0027198.g005

RFC and Neural Crest Development
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the neural crest genes are differentially regulated by histone3

methylation.

Discussion

Neurocristopathies are a group of diverse disorders resulting

from defective growth, differentiation, and migration of the neural

crest cells. Folate deficiency has long known to be related to

developmental neural defects, especially neural tube defects and

neurocristopathies [7–9,35,36]. In mouse the folate receptor Folr1

is expressed at high levels in the dorsal neural tube during neural

crest formation [37]. The migration of cardiac neural crest cells

are affected in the Folr1 mutant embryos [38]. In chick embryos,

interference with Folr1 expression also reduced the formation and

migration of cardiac neural crest cells [39]. We showed here in

Xenopus embryos that inhibition of RFC blocked the expression of

a series of neural crest marker genes including Zic1, Snail1, Snail2,

FoxD3 and Twist1, but had no clear effects on Pax3 and Msx1

(Fig. 2). At tadpole stages, the XRFC-MO injected embryos

developed characteristic neurocristopathies including craniofacial

malformation, hypopigmention, heart defects, and gut coiling

malformations (Fig. 3).

Folate levels affect DNA synthesis, amino acid metabolism, and

methylation reactions via S-adenosylmethionine (SAM) mediated

one-carbon transfer reactions. Folate promotes the remethylation

of homocysteine, which is cytotoxic and can induce DNA strand

breakage, oxidative stress and apoptosis. Low folate induced

hyperhomocysteinemia has been suggested to be involved in the

developmental defects of the cardiac neural crest in chick embryos

[14,15]. In the XRFC-MO injected embryos, however, no clear

Figure 6. XRFC regulates neural crest gene expression through the one-carbon metabolism pathway. Co-injection of 5-MTHF (20 ng/
embryo, E–H), SAM (10 ng/embryo, I–L) or Vitamin B12 (50 ng/embryo, M–P) with XRFC-MO rescued the expression of the neural crest maker genes
(compare with A–D). (Q) Quantification of the rescue of the XRFC-MO effect by 5-MTHF, SAM, and Vitamin B12.
doi:10.1371/journal.pone.0027198.g006

RFC and Neural Crest Development
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Figure 7. RFC regulated neural crest early development through histone modification. (A) Levels of different methylation forms of histone
3 in animal caps injected with XWnt7b and tBR with or without XRFC-MO. Knockdown of XRFC by injection XRFC-MO decreased both the mono- and
trimethyl-H3-K4 levels but not dimethyl-H3-K4 level (left panel), which was restored by co-injection of XRFC mRNA (middle panel). Injection of 5-MTHF
increased the mono- and trimethyl-H3-K4 levels but not dimethyl-H3-K4 level (right panel). (B–I) hMLL1 plasmid co-injection rescued the effect of
XRFC-MO on the expression of Zic1 and FoxD3, and weakly on Snail2 and Twist1. (J-M) Overexpression of hMLL1 alone promoted the expression of
Zic1 and FoxD3, but had no clear effects on Snail2 and Twist1. (N) Number of embryos showed reduced expression of Zic1, FoxD3, Snail2 and Twist1
injected with XRFC-MO with or without hMLL1 plasmid (50 pg/embryo).
doi:10.1371/journal.pone.0027198.g007

RFC and Neural Crest Development
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change in cell apoptosis or cell proliferation were observed as

compared to the control embryos (data not shown). We suggest

that a basic level of folate absorption might be maintained by other

folate receptors to support the proliferation of the neural crest

precursors. Indeed, the classical folate receptor Folbp1 is widely

expressed in the neural plate during neurula stages (data not

shown). Instead, our data supported a role of RFC in the

epigenetic regulation of neural crest development. First, neural

crest development is sensitive to levels of folate and related

molecules. Overexpression of RFC or injection of 5-MTHF, VB12

or SAM all induced expansion of the expression domains of neural

crest genes, while injection of the folate antagonist MTX had an

opposite effect (Figs. S2, S3). Second, the neural crest defects in

XRFC morphants were largely rescued by co-injection of 5-

MTHF, VB12 or SAM. And the function of RFC depended on its

activity in folate transportation (Fig. 5). Third, modulating folate

levels by knockdown of XRFC or addition of 5-MTHF clearly

affected histone methylation levels in Xenopus animal caps (Fig. 7),

supporting the idea that endogenous folate regulates neural crest

gene expression via an epigenetic mechanism. Indeed, bioinfor-

matic analyses suggested that many of the neural crest genes are

subjected to epigenetic regulations. Moreover, the neural crest

defects in XRFC morphants could be partially rescued by

overexpression of the lysine methyltransferases hMLL1 (Fig. 7).

Collectively, our data strongly suggest that RFC mediated folate

metabolism regulates neural crest gene expression through

epigenetic mechanisms.

Among the neural crest genes sensitive to folate levels, Zic1 is the

most upstream gene in our analysis. Zic1 is also down regulated in

the RFC knockout mouse as shown by microarray analysis [40].

Intriguingly, overexpression of RFC also rescued the effect of the

dominant negative constructs of several downstream genes. One

possibility is that the epigenetic regulation promoted by RFC is

involved directly in the regulation of a panel of the neural crest

GRN genes. Thus RFC might work in parallel with the canonical

neural crest GRN, although we can not rule out the possibility that

this phenomenon is resulted from the cross-regulation between the

neural crest genes. Interestingly, overexpression of hMLL1

promoted the expression of Zic1 and FoxD3, but not Snail2 and

Twist1, suggesting differential epigenetic regulations of the neural

crest genes. Epigenetic mechanisms have also been implicated in

folate deficiency-related neural tube defect mouse model Splotch,

which carries a loss of function mutation in Pax3. In cells from

caudal neural tubes of Pax3 mutant embryos, the expression of the

histone demethylases KDM6B decreases and the cells exhibit

increased H3K27 methylation [41]. Interestingly, these pheno-

types could also be rescued by addition of exogenous folic acid

[41]. Pax3 is a key regulator in neural crest development and the

H3K4 level of Pax3 transcript region is also developmentally

regulated [28]. However, the expression of Pax3 itself was not

sensitive to folate levels in our study. These data suggest that

different mechanisms are likely involved in the epigenetic

regulation of the neural crest genes. There is increasing evidence

that chromatin modification plays important roles in vertebrate

neural crest development. For example, the CHD (chromodomain

helicase DNA-binding domain) member CHD7, an ATP

dependent chromatin remodeller, is shown to be essential for

neural crest specification and migration [42]. Recently, the histone

demethylase JmjD2A has been shown to be required for neural

crest induction, which is recruited to the regulatory regions of

neural crest genes and thus poises neural crest differentiation [43].

Supplementary folate has been shown to have relatively specific

protective effects on neural tube and neural crest cells, suggesting

that these cells might be more sensitively regulated by folate-

related pathways. In addition to folate, microinjection of SAM or

VB12 also affects neural crest development in Xenopus embryos

(Fig. S2), possibly through promoting methylation reactions and

thus epigenetic regulations. These data also manifests the role of

nutrients in gene transcriptional regulation through epigenetic

modification, highlighting the association of dietary intake with

epigenetic modification, as well as diseases.

Materials and Methods

Ethics Statement
The care of Xenopus laevis (Nasco), in vitro fertilization procedure

and embryos study were performed according to protocols

approved by the Ethics Committee of Kunming Institute of

Zoology, Chinese Academy of Sciences (permit number: SYDW-

2006-006).

Microinjection and in situ hybridization
In vitro fertilization, embryo culture, whole mount in situ

hybridization,preparation of mRNA, and microinjection were

carried out as described [44]. The sequence of the antisense

morpholino oligo (MO) for XRFC used was: 59-ATTCTGTGT-

CATCTCGGCAGCAACT-39, which was obtained from Gene

Tools (OR). Two XRFC alleles were found in the EST database

and the targeted sequence is 100% conserved between them. For

in situ hybridization, the probes for Msx1, Pax3, Zic1, Snail2, FoxD3

and Twist1 were used as described [6,45–47].

Plasmids construction
Full-length Xenopus laevis RFC coding region was obtained by

PCR according to sequence in GenBank (accession no. BC073675)

and cloned into pCS2+ vector. An EST clone (IMAGE: 3509422)

containing full length hRFC was obtained from Open Biosystems

and was subcloned into pCS2+ vector. To prepare the pCS-hRFC

R133C and R373C mutation constructs, site-directed mutations

were carried out by PCR driven overlap extension [48] using Pfu

DNA polymerase (Fermentas). The GR fusion constructs for

inducible expression of XSnail1, XSnail2, Snail1 N, Snail1 Znf,

Snail2 N and Snail2 Znf were prepared as described [45].

Reverse transcription and polymerase chain reaction
(RT-PCR) and animal cap assay

To analyze the temporal expression of XRFC during develop-

ment, RT-PCR was carried out using whole embryos at different

developmental stages. The primers used were: XRFC: 59- CTG-

GTTCCCATAGCCATCTT-39 and 59- TTTGGAGGGATTT-

GAGGTTT-39. H4 was used as a loading control. For animal cap

assay to analyze the effect of XRFC in neural crest induction, the

embryos were injected with XWnt7b and tBR mRNA with or

without XRFC-MO or RFC mRNA at 2-cell stage. The animal

caps were cut at stage 9 and cultured till control embryos reached

stage 15–17, and processed for RT-PCR. The primers used for

PCR were: Pax3: 59-CAGCCGAATTTTGAGGAGCAAAT-39

and 59-GGGCAGGTCTGGTTCGGAG TC-39; Snail2: 59 -TCC-

CGCACTGAAAATGCCACGATC -39 and 59- CCGTCCTAA-

AGATGAAGGGTATCCTG -39. The primers for Msx1, Zic1,

FoxD3 and Snail1 were used as described [49–51].

Neural crest graft experiment and cartilage staining
The donor embryos were injected with EGFP mRNA in both

blastomeres at 2-cell stage and the EGFP-labeled neural crest

explants were separated at stages 14–17 and implanted into the

corresponding regions of host embryos as described [23]. Cartilage

RFC and Neural Crest Development

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27198



staining was carried out using Alcian blue 8GX according to

protocol of Dr. Richard Harland’s lab (http://tropicalis.berkeley.

edu/home/gene_expression/cartilage-stain/alcian.html).

Western blot analysis
Embryos were injected with XRFC-MO, XRFC-MO+mRNA,

or 5-MTHF in all blasomeres at 2-cell stage and animal caps were

cut at stage 9 and cultured till control embryos reached St.15–17.

The injected and control animal caps were then harvested and

lysed in modified TNE lysis buffer (50 mM Tris-HCl [pH 7.4],

150 mM NaCl, 0.5 mM EDTA, and 0.5% Triton X-100)

containing protease inhibitor cocktail (Roche) and processed for

Western blot. The antibodies used for monomethyl-, dimethyl-

and trimethyl-H3-K4 were from Millipore.

Supporting Information

Figure S1 RFC is involved in the neural crest gene
regulatory network. (A, B) The inhibition of Zic1 expression by

dominant negative Msx1 can be rescued by XRFC. (C, D) Msx1

rescues the inhibition of Zic1 expression by XRFC-MO. (E–H)

The inhibition of Snail2 expression by XRFC-MO can be rescued

by Msx1, Pax3 and Zic1 co-expression. (I–N) The inhibition of

FoxD3 expression by dominant negative Msx1, Pax3 and Zic1 can

be rescued by co-injection of XRFC. (O, P) The inhibition effect

on neural crest migration (as indicated by the distribution of the

Twist1 positive neural crest cells) of Snail1-Znf can be rescued by

co-injection of XRFC. The injected sides are indicated by the red

staining of tracing lacZ. (Q) Quantification of the rescue effect of

RFC on the expression of Zic1, FoxD3 or Twist1 inhibited by

dominant negative Msx1, Pax3, Zic1 and Snail1 and the rescue of

the XRFC-MO effect by Msx1, Pax3, and Zic1.

(TIF)

Figure S2 Components of the folate metabolism path-
way regulate neural crest gene expression in Xenopus
embryos. (A–H) Both folate transportation deficient forms of

hRFC (R133C/R373C) failed to promote neural crest makers

expression (Twist1, FoxD3, Snail2 and Zic1). (I–T) Injection of 5-

MTHF (20ng/embryo, I–L), Vitamin B12 (50ng/embryo, M–P)

or SAM (10ng/embryo, Q–T) promoted neural crest maker genes

expression (Twist1, FoxD3, Snail2 and Zic1). (U) Quantification of

the promoting effect on the expression of neural crest genes by

hRFC, hRFC-R133C, hRFC-R373C and 5-MTHF, SAM, and

Vitamin B12.

(TIF)

Figure S3 The folate antagonist MTX blocks neural
crest induction. (A–C) Injection of MTX (10ng/embryo)

inhibits the expression of Twist1, Snail2 and Zic1 in the injected

sides. (D–F) Co-injection 5-MTHF (20ng/embryo) with MTX

rescues the effects of MTX on neural crest gene expression. (G)

Quantification of the inhibitory effect of MTX on the expression

of neural crest genes and its rescue by 5-MTHF.

(TIF)
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