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Animal models are invaluable resources in research concerning the neurobiology of
anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None
of the existing models can capture all aspects of AN but they are able to mirror
the core features of the disorder e.g., elective starvation, emaciation and premature
death. The anorectic anx/anx mouse is of particular value for the understanding
of the abnormal response to negative energy balance seen in AN. These mice
appear normal at birth but gradually develops starvation and emaciation despite full
access to food, and die prematurely around three weeks of age. Several changes in
hypothalamic neuropeptidergic and -transmitter systems involved in regulating food
intake and metabolism have been documented in the anx/anx mouse. These changes
are accompanied by signs of inflammation and degeneration in the same hypothalamic
regions; including activation of microglia cells and expression of major histocompatibility
complex I by microglia and selective neuronal populations. These aberrances are likely
related to the dysfunction of complex I (CI) in the oxidative phosphorylation system
of the mitochondria, and subsequent increased oxidative stress, which also has been
revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has
been shown in leukocytes from patients with AN. In addition, a higher expression of
the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx
hypothalamus. This agrees with AN being associated with specific variants of the genes
for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The
anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related
to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An
increased incidence of eating disorders has been reported for young diabetic women,
and as well has increased levels of circulating FFAs in AN. Also similar to individuals with
AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum.
Thus, the anx/anx mouse shares several characteristics with patients with AN, including
emaciation, starvation, premature death, diabetic features, increased FFA and low leptin,
and is therefore a unique resource in research on the (neuro)biology of AN.

Keywords: hypothalamus, anorexia, inflammation, neurodegeneration, neuropeptide, AGRP, microglia

Frontiers in Neuroscience | www.frontiersin.org 1 February 2019 | Volume 13 | Article 59

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00059
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00059&domain=pdf&date_stamp=2019-02-05
https://www.frontiersin.org/articles/10.3389/fnins.2019.00059/full
http://loop.frontiersin.org/people/546878/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00059 February 2, 2019 Time: 18:20 # 2

Nilsson The Anorectic anx/anx Mouse

INTRODUCTION – ANOREXIA NERVOSA

Anorexia nervosa (AN) is a complex psychiatric disorder
affecting around 1% of females and 0.1% of males, of which as
many as 10% die as a result of the disorder (Bulik et al., 2006;
Keski-Rahkonen et al., 2007; Papadopoulos et al., 2009). The
diagnostic criteria, according to the Diagnostic and statistical
manual of mental disorders (DSMV), include persistent food
intake restriction leading to significantly low body weight,
combined with persistent behaviors that interfere with weight
gain, and body image distortion (Schaumberg et al., 2017). One
central and yet unexplained part of AN is the contradictory
response to negative energy balance and the inability to ingest
adequate energy, leading to severe underweight. It is indeed
paradoxical that while most individuals quickly regain the weight
lost from dieting (Pietilainen et al., 2012), individuals with AN
stay in an emaciated state commonly for many years, some
even until death. It has been speculated that hunger signals
are diminished or even absent in individuals with AN, and
that satiety signals on the other hand are exaggerated (DeBoer,
2011; Oberndorfer et al., 2013). Supporting this hypothesis,
a genome wide association study (GWAS), as well as genetic
correlation data, indicate that individuals with AN are genetically
predisposed to a lower body weight set point (Duncan et al.,
2017; Hinney et al., 2017). However, in order to understand
the complex biology of AN, in particular the illogical response
to starvation and underweight, we need to learn more about
the neurobiological pathways and molecular mechanisms that
are associated with severe dysregulation of food intake. This
is something that is technically difficult and to some extent
impossible to do in humans, since post-mortem tissues rarely are
available. On the other hand, animal models cannot capture all
aspects of AN but they are able to mirror the core features of the
disorder e.g., elective starvation, emaciation and premature death
(Siegfried et al., 2003). Animal models have therefore proved to be
invaluable resources for researchers in the field. One such model
is the anx/anx mouse.

THE ANX/ANX MOUSE

The homozygous anx-mouse appears normal at birth, meaning
that it is indistinguishable from their homozygous and
heterozygous wildtype (wt) siblings. However, during the
first postnatal weeks they gradually develop the core symptoms
of AN; starvation and emaciation (Figure 1). The anx/anx
mouse dies prematurely around 3 weeks of age, and by then
weigh around half as much as their siblings. They are able
to eat, but despite full access to milk from the mother, eat
significantly less already from postnatal day (P) 5. Worth to
note is that the diurnal patterns in food intake seen in their
healthy siblings are mirrored in the anx/anx mouse, even
though the amount ingested is significantly smaller (Maltais
et al., 1984). Neurological/behavioral deviations such as head
weaving, hyperactivity, body tremors and uncoordinated gait,
were described in the original paper by Maltais et al. (1984).
When corrected for body weight, brain and thymus weights are

increased compared to their healthy siblings, both at P5 and P15,
while the weight of spleen is reduced (Maltais et al., 1984). See
Table 1 for a summary of the aberrances in the anx/anx mouse
discussed here and below.

The anx Mutation
The anx mutation arose spontaneously at the Jackson laboratory
in Bar Harbor, Maine, already in 1976 in the F2 generation
of a cross between DW/J and an inbred strain, the latter was
derived from a cross between M.m.poschiavinus and an inbred
Swiss strain. The male anx carrier was crossed to a female
B6C3H-a/a F1 mouse, and the mutation has since then been
conserved on this background (Maltais et al., 1984). We have
mapped the mutation to a 0.2 cM interval residing between
the markers D2Mit133 and Jojo5 chromosome 2 (Chr 2: bp
118, 889, 896–120, 175, 1081) (Lindfors et al., 2011). So far,
no sequencing attempts have been able to show any unique
sequence alteration. However, one needs to keep in mind that
the background of the anx/anx mouse includes five different
strains (see above) which makes de novo assembly difficult.
The lack of unique finding could also mean that the mutation
is located in a regulatory element outside the interval. The
NADH dehydrogenase (ubiquinone) 1a-subcomplex (Ndufaf1)
gene, shown to be closely associated with several of the anx/anx
phenotypes, is however, located in the short interval of the
mutation (see section on mitochondrial dysfunction below)
(Lindfors et al., 2011). Ndufaf1 is an assembly factor for
complex I (CI) in the mitochondrial oxidative phosphorylation
system (OXPHOS) (Vogel et al., 2005). In addition, work
by Kim et al. (2017) identified a point mutation in Tyro3
which they conclude is not the anx-mutation but a strain
specific modifier of anx-phenotypes (Kim et al., 2017). Thus,
despite that the anx/anx mouse model recently turned 40 years,
the mutation is still unknown. Hopefully modern techniques
within e.g., sequencing will be able to shed light on this
mystery.

Neurochemistry of the anx/anx Mouse
Several changes in neuropeptidergic and -transmitter systems,
in particular systems in the hypothalamus known to regulate
food intake and metabolism (energy homeostasis), have been
documented in the anx/anx brain (Broberger et al., 1997,
1999; Johansen et al., 2000, 2003; Nilsson et al., 2013).
A part of the hypothalamus, called the Arcuate nucleus (Arc),
is of particular importance concerning energy homeostasis.
The Arc harbors among others a neuronal population co-
expressing two orexigenic neuropeptides; agouti-gene related
protein (AGRP) and neuropeptide Y (NPY), and a neuronal
population co-expressing the anorexigenic peptide/precursor;
pro-opiomelanocortin (POMC) and cocaine and amphetamine-
regulated transcript (CART) (Chronwall, 1985; Cone et al.,
2001; Schwartz, 2001). Aberrances have been documented
in both these neuronal populations in the anx/anx mouse.
Immunohistochemistry revealed increased number of NPY and
AGRP immunopositive cell bodies within the Arc, combined
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FIGURE 1 | An anx/anx mouse and wildtype (+/+) littermate, age 17 days.

with a reduction in AGRP/NPY immunopositive projections in
the hypothalamic and extra-hypothalamic target areas of these
neurons (Broberger et al., 1997, 1998; Fetissov et al., 2005;
Nilsson et al., 2008). In situ hybridization studies have with
regard to these neuropeptides been inconsistent, which most
likely is attributed to overexposure of the labeled glass slides
in the earlier studies. Thus, while initial studies documented
no change in mRNA levels of NPY in the Arc of the anx/anx
mouse (Broberger et al., 1997; Jahng et al., 1998), a later
study showed increased mRNA for both NPY and AGRP in
the anx/anx Arc (Fetissov et al., 2005). With regard to the
POMC/CART population, significantly decreased levels of CART
mRNA, as well as CART immunopositive cell bodies and fibers
in Arc have been shown in the anx/anx hypothalamus. Also,
a lower number of detectable CART-expressing cells in the
dorsomedial hypothalamic nucleus/lateral hypothalamic area is
seen (Johansen et al., 2000). In situ hybridization demonstrated
decreased numbers of POMC-expressing neurons in the anx/anx
Arc (Broberger et al., 1999). Using the neuropeptide Y receptor
1 (Y1) which outlines the soma and dendrites of POMC/CART
neurons (Zhang et al., 1994; Kopp et al., 2002), markedly reduced
immunoreactivity in Arc and the paraventricular nucleus of
hypothalamus was revealed (Broberger et al., 1999; Nilsson et al.,
2011). Clinically, genetic variants of AGRP have been associated
with AN (Dardennes et al., 2007) or with lowest BMI during AN
illness (Yilmaz et al., 2014). Increased plasma levels of the peptide
have been documented in AN (Moriya et al., 2006), but it is so
far unknown if this change remains after weight recovery. The
changed cerebrospinal fluid levels of NPY seen in AN is however,
known to be secondary to the illness (Gendall et al., 1999).

In addition, an increased expression of the neurotrophic
receptor kinase 3 (Ntrk3) gene has been shown in the anx/anx
hypothalamus (Mercader et al., 2008b). This agrees with AN
being associated with specific variants of the genes for brain
derived neurotrophic factor (BDNF) and neurotrophic receptor
tyrosine kinase 2 (NTRK2) (Ribases et al., 2003, 2005).

Changes have been documented also in other brain regions
than the hypothalamus. Increased apoptosis and proliferation
in the dentate gyrus of the hippocampus (Kim et al., 2001),
serotonergic hyperinnervation in hippocampus, cortex, olfactory

TABLE 1 | Main characteristics of the anx/anx mouse.

Aberrances of the anx/anx mouse Reference

Major phenotypes: reduced food intake, emaciation
and premature death.

Maltais et al., 1984

Organ changes: increased weight of thymus and
brain, and reduced weight of spleen.

Maltais et al., 1984

Behavioral/Neurological phenotypes: head
weaving, tremor, hyperactivity and uncoordinated gait.

Maltais et al., 1984

Hypothalamic neuropeptidergic/-transmitter and
molecular aberrances: - AGRP/NPY : increased
number of AGRP/NPY-immunopositive cell bodies in
Arc, reduced number of immunopositive projections.
N.C /reduced mRNA expression of AGRP and NPY in
Arc. - POMC/CART: Reduced number of
CART-immunopositive cell bodies in Arc, DMH, LHA,
reduced number of immunopositive projections in Arc.
Reduced number of Y1-immunopositive cell bodies and
projections. Reduced POMC mRNA in Arc. - Increased
hypothalamic expression of Ntrk3.

Broberger et al.,
1998; Nilsson et al.,
2008 Jahng et al.,
1998; Fetissov
et al., 2005
Johansen et al.,
2000 Broberger
et al., 1999; Nilsson
et al., 2011
Mercader et al.,
2008b

Hypothalamic inflammation, e.g., microglia
activation and expression of MHC class I by
hypothalamic microglia.

Lachuer et al.,
2005; Mercader
et al., 2008a;
Nilsson et al., 2008

Hypothalamic degeneration, e.g., expression of
MHC class I by Arc neurons, microglia-associated cell
death, increased TUNEL labeling in Arc.

Nilsson et al., 2011

Mitochondrial dysfunction, e.g., down regulation of
Ndufaf1 and reduced capacity of CI.

Lindfors et al., 2011

Neurotransmitter changes in other parts of the
brain: - Increased apoptosis and proliferation in
hippocampus. - Serotonergic hyperinnervation of
hippocampus, striatum, cortex and cerebellum.
- Altered dopaminergic neurotransmission.

Kim et al., 2001
Son et al., 1994
Johansen et al.,
2001

Pancreatic aberrances, e.g., glucose intolerance,
reduced insulin release and inflammation.

Lindfors et al., 2015

Reduced hypothalamic metabolism, e.g., reduced
glucose uptake, lactate and activation of AMPK, and
increased PCr.

Bergstrom et al.,
2017

Changes in serum metabolites, i.e., reduced leptin
and increased FFA.

Johansen et al.,
2000; Lindfors
et al., 2015

AGRP, agouti-gene related protein; AMPK, AMP-activated kinase; Arc, the Arcuate
nucleus; CI, complex I of the oxidative phosphorylation system; CART, cocaine and
amphetamine-regulated transcript; DMH, the dorsomedial hypothalamic nucleus;
FFA, free fatty acids; LHA, the lateral hypothalamic area; MHC class I, major
histocompatibility complex I; N.C, no change; Ndufaf1, The NADH dehydrogenase
(ubiquinone) 1a-subcomplex gene; NPY, neuropeptide Y; Ntrk3, neurotrophic
receptor kinase 3 gene; PCr, phosphocreatine; POMC, pro-opiomelanocortin;
TUNEL, terminal dUTP nick end labeling; Y1, neuropeptide Y receptor 1.

bulb and cerebellum (Son et al., 1994), as well as altered
dopaminergic transmission in the striatum (Johansen et al.,
2001), have been demonstrated. Genetic variants as well as
deviant levels of metabolites and receptors related to dopamine
and serotonin have been linked to the AN pathology (Kaye et al.,
1999, 2005; Kaye, 2008).

Neuroinflammation and Degeneration in
the anx/anx Hypothalamus
The hypothalamic neurochemical aberrances of the anx/anx
mouse are accompanied by signs of inflammation and
degeneration (Lachuer et al., 2005; Mercader et al., 2008a;
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Nilsson et al., 2008, 2011). Microglia cells are immunocompetent
cells that are activated in the central nervous system in response
to e.g., inflammation, neurodegeneration or injury (Nakajima
and Kohsaka, 2004; Streit et al., 2005). In the anx/anx brain,
microglia are activated selectively in the hypothalamic regions
where the neurons, both cell bodies and projections, expressing
the orexigenic neuropeptide AGRP are located (Nilsson et al.,
2008). The first appearance of activated microglia overlaps in
time with the loss of AGRP immunoreactive projections, i.e.,
P12–15 (Nilsson et al., 2008). Similarly, chemical ablation of
the AGRP neurons results in starvation in both normal weight
and obese mice, and results in glia (microglia and astroglia)
activation in the target areas (Wu et al., 2008, 2012). Major
histocompatibility complex I is expressed by the activated
microglia, but also by the AGRP and POMC expressing neurons
in the anx/anx brain (Nilsson et al., 2011). This latter finding
combined with increased hypothalamic terminal dUTP nick end
labeling (TUNEL) labeling and so called microglia-associated cell
death (Ribak et al., 2009), made us conclude that hypothalamic
degeneration is associated with the anorexia of the anx/anx
mouse (Nilsson et al., 2011). In addition, two microarray studies
of the anx/anx hypothalamus revealed changed expression of an
enrichment of genes involved in inflammation and cell death
(Lachuer et al., 2005; Mercader et al., 2008a). While it is unknown
if hypothalamic inflammation occurs in AN, it has been linked to
cachexia, the anorexia that often accompanies chronic illnesses
such as cancer and HIV (Durham et al., 2009; Dwarkasing et al.,
2016).

Mitochondrial CI Dysfunction and
Reduced Hypothalamic Metabolism
A dysfunction selective of CI in OXPHOS, and subsequent
increased oxidative stress, have been revealed in the
hypothalamus of the anx/anx mouse (Lindfors et al., 2011).
This CI dysfunction is connected to down regulation of the
gene Ndufaf1 which in fact is located in the anx interval (see
section on the anx mutation above). The down regulation has
been confirmed at the protein level at P21 (Lindfors et al., 2011).
Ndufaf1 encodes one of several proteins crucial for the correct
assembly of the 44–46 proteins that build up CI (Smeitink et al.,
2001; Ugalde et al., 2004a,b; Guerrero-Castillo et al., 2017).
Selective neuronal damage and glia activation, as shown in the
anx/anx mouse (Nilsson et al., 2008, 2011), has been shown in
another animal model with CI deficiencies, i.e., the Ndufs4-KO
mouse (Quintana et al., 2010). The NDUFAF1 gene, as well as
other players in CI biogenesis, have been implicated in human
pathology; resulting in e.g., leukodystrophy and failure to thrive
in young children (Vogel et al., 2005, 2007; Dunning et al., 2007;
Distelmaier et al., 2009). In fact, CI dysfunction has been shown
in leukocytes from patients with AN (Victor et al., 2014), but it
remains to be explored if this is a cause or consequence of the
disorder. This far, the NDUFAF1 gene has not been associated
with AN, but it would be worth exploring genetics variants
related to OXPHOS function and a potential association with
AN, similar to what has been shown in other psychiatric disorders
e.g., autism spectrum disorder (Giulivi et al., 2010). With this

saying the anx/anx model is a model of value for research on all
human conditions with loss of appetite i.e., anorexia, including
the anorexia seen in cachexia and failure to thrive, as well as
AN. The anx/anx mouse is unique in the sense that few other
models exist were the mice, similarly to the human conditions
just mentioned, eat insufficient despite having full access to food.
This in contrast to models were the researcher in one way or
another limits the access of food (Siegfried et al., 2003).

Diseases associated with mitochondrial dysfunction are
commonly associated with a stressed metabolic profile, and
hypermetabolism (Wredenberg et al., 2006; Jeppesen et al., 2007;
Milone and Wong, 2013). Supposedly such metabolic responses
occur in order to safeguard adequate levels of ATP. In some cases,
conversely, mitochondrial dysfunction is associated with reduced
glucose uptake and hypometabolism, e.g., in Alzheimer’s disease
and epilepsy (Chandrasekaran et al., 1996; Tenney et al., 2014).
This resembles what we saw in the anx/anx hypothalamus, i.e.,
lower glucose uptake rate, decreased lactate content, as well as
elevated phosphocreatine (PCr) content and reduced activation
of AMP-activated kinase (AMPK) in the basal state (Bergstrom
et al., 2017). This is similar to the hypometabolic state seen in
hibernation (Healy et al., 2011) and could be reflecting lower
neuronal activity (Cunnane et al., 2011). Different neuronal
populations respond differently to this type of metabolic stress
(Schreiber and Baudry, 1995), which has been ascribed to
the subtype of ATP-sensitive potassium channel (K-ATP) they
express. A specific subtype of K-ATP channel that consists of Kir
6.2 and SUR1 subunits becomes activated by mitochondrial CI
dysfunction, i.e., by increased ROS levels and/or reduced levels
of ATP. This leads to ceased electrical activity, hyperpolarization
and reduced firing, in a means of protecting the cell from the
energy deficiency and increased oxidative stress (Liss et al., 1999).
Kir6.2/SUR1 K-ATP channels are expressed by the hypothalamic
POMC/CART and AGRP/NPY neurons, and by a limited
number of other cell populations including the pancreatic beta-
cells and dopaminergic neurons in Substantia Nigra (Miki et al.,
2001; Ibrahim et al., 2003; van den Top and Spanswick, 2006;
van den Top et al., 2007). Firing of action potentials and release
of neurotransmitters are processes that require high amounts of
energy. Therefore, inhibition of these processes would conserve
energy during conditions when energy is scarce (Attwell and
Laughlin, 2001; Sengupta et al., 2010). In addition, uncontrolled
generation of ROS, commonly accompanying CI dysfunction,
can also cause diminished firing of the AGRP/NPY neurons, thus
resulting in a reduced orexigenic drive (Andrews et al., 2008;
Horvath et al., 2009).

Pancreatic Dysfunction and Aberrant
Levels of Fat Derived Molecules
The anx/anx mouse also displays a pancreatic dysfunction
(Lindfors et al., 2015). More specifically, they are markedly
glucose intolerant, and show reduced insulin release upon
glucose tolerance test. This is associated with elevated serum
concentrations of free fatty acids (FFAs) in the anx/anx
mouse and increased macrophage infiltration [indicative of
inflammation (Imai et al., 1996; Ka et al., 2015)] of anx/anx
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islets. Increased levels of FFAs have been connected to inhibition
of glucose-induced insulin secretion (Eguchi et al., 2012).
Interestingly, isolated anx/anx islets cultured in the absence of
FFAs show increased insulin release upon glucose stimulation
and show no signs of inflammation. Thus, the diabetic phenotype
of the anx/anx mouse seems to be related to the elevated FFAs
and inflammation in pancreatic islets. This finding is interesting
in the light of the increased incidence of eating disorders that
has been reported in young women with diabetes (Hudson et al.,
1985; Meltzer et al., 2001), and documented increased levels of
circulating FFAs in AN (Pinter et al., 1975; Curatola et al., 2004).
Also similar to individuals with AN, the anx/anx mouse has low
levels of the fat derived and food intake regulating hormone
leptin, and high levels of cholesterol in serum (Maltais et al., 1984;
Schorr and Miller, 2017).

CONCLUSION AND FUTURE
PERSPECTIVE

The anx/anx mouse shares several characteristics with patients
with AN, including emaciation, starvation, premature death,
diabetic features, increased FFA and low leptin, and is therefore
a unique and very valuable resource in order to explore and

understand the (neuro)biology of AN. Future research should
explore if hypothalamic inflammation and/or degeneration, as
seen in the anx/anx mouse, are mechanisms involved also in
AN. Further studies are also needed in order to clarify if the
mitochondrial dysfunction seen in AN (Victor et al., 2014) is a
cause or consequence of the disorder. Finally, it would be of value
to be able to define the anx-mutation, as well as explore other
brain areas related to food intake regulation, e.g., nucleus tractus
solitarius and the parabrachial nucleus in the anx/anx mouse.
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