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Abstract: The manufacturing of inserts for micro injection moulding made of mortar material is
presented in this work. The fabrication of the mortar insert described in this publication relied on a
versatile and relatively fast rapid prototyping process based on soft tooling. The mortar insert has a
QR code with micro features on its surface, which was replicated in acrylonitrile butadiene styrene
(ABS) polymer by the micro injection moulding process. With this approach, it is possible to fabricate
hard inserts for micro injection moulding purposes that are able to compete with conventional-made
inserts made of tool steel.

Keywords: micro injection moulding; soft tooling; hard tooling; tool steel; mortar; concrete; alumina;
QR code; wear; thermal conductivity

1. Introduction and Motivation

The use of replication technologies for micro manufacturing has evolved over the
last 10–15 years [1,2]. One of the main components of the replication process chain is the
tool, which contains the negative geometry of the part, i.e., cavities on the final part are
protrusions in the tool. The process chains available to create tools for micro injection
moulding can be based on either a direct or indirect approach [3]. In the direct approach, the
final tool geometry is fabricated directly—for example, by means of machining processes.
In the indirect approach, a number of steps is employed whereby the geometry is mirrored
(see Figure 1).
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Additive manufacturing opens up new possibilities for creating geometries in the
indirect tooling process chain. The concept of soft tooling using additive manufacturing has
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been reported in [4–6]. Soft tool inserts made by additive manufacturing are characterised
by lower hardness, lower tensile strength, and a considerably lower modulus of elasticity
than conventional metal tools. In addition, the thermomechanical loading during injection
moulding stresses polymer tool inserts significantly, resulting in a shorter lifetime. On the
contrary, the lead time of soft tools may be significantly reduced, and the flexibility of the
additive manufacturing process chain can result in economic benefits [7].

Concrete and mortar are wildly used as materials for construction purposes world-
wide [8]. Although this technology has been extensively investigated for decades, no
published scientific work exists on the application of concrete or mortar for the fabrication
of tools for injection moulding purposes, according to the best of the authors’ knowledge.
This paper describes how mortar can be applied as a tool material in a soft tooling process
chain for micro injection moulding. The experimental work was focused on documenting
the ability of mortar to replicate micro features of a master geometry. It was also demon-
strated how a soft master geometry, for example made by additive manufacturing, can
form the starting point of the soft tooling process chain.

The test geometry for this study was a micro-milled QR code, which had been trans-
ferred to the surface of the mortar insert by casting in a soft mould. Then, the surface of the
mortar insert was transferred to acrylonitrile butadiene styrene (ABS) polymer by micro
injection moulding.

2. Mortar as a Tool Material

Mortar and concrete consist of a binder (often Portland cement clinker), water, and
aggregates (often sand and gravel). A freshly mixed batch hardens over time because the
binder and water react and form a solid. Additives may be used in small fractions to adjust
the properties of the fresh or hardened material [8].

With the biggest aggregate grains smaller than 4 mm in diameter, the term mortar is
usually used, while the term concrete is commonly used if aggregate grains bigger than
4 mm in diameter are incorporated in the mixture [9,10]. Since finely grinded aggregates
were used in the study, the term mortar was employed in this article.

The mechanical properties of hardened mortar have several similarities to tool steel
and fulfil some of the requirements addressed to tool steel for the fabrication of micro
injection moulds: high strength and elastic modulus as well as high wear resistance and
hardness. On the other hand, there may be some disadvantages of hardened mortar:
poor ductility (brittleness) and thus poor toughness, bad machinability, and low thermal
conductivity. However, making injection tools of mortar material in a fast and relatively
cheap process may have cost benefits over conventional injection mould making [11,12].

The soft tooling process chain employed in this work consists of the following steps
(Figure 2):

(a) Manufacturing the QR code geometry in steel by micro milling;
(b) Replication of QR code geometry by polyurethane (PU) casting;
(c) Casting of mortar in the soft polyurethane replica obtained in step (b);
(d) Separation of mortar from soft polyurethane replica (upon solidification of mortar);
(e) Fit and finishing of mortar insert to modular tool for injection moulding;
(f) Injection moulding of polymer component using mortar tool insert.

Process step (a) resulted in a metal insert, which acted as the benchmark insert. The
mortar insert generated in process step (e) was compared against the metal (benchmark) insert.

However, it is not generally necessary to start with a metal insert. Alternatively, the
casting form for the mortar insert, which was manufactured in process step (b), may be
fabricated directly by additive manufacturing. This would open the opportunity for a
process chain for the manufacturing of (micro) injection moulding inserts that relies neither
on conventional tool making nor on employment of tool steel.
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Figure 2. Soft tooling process chain.

The mirroring of the geometry throughout these process steps is explained based on a
single micro-milled structure (ripple) of the QR code (Figure 3): QR code in steel (negative)—
PU replica (positive)—mortar (negative)—polymer (positive). Due to the characteristics of
the QR code/ripple geometry, the mirroring effect is not critical. However, should other
geometries be considered for this soft tooling process chain, attention must be made to
ensure that the desired geometry is achieved with the injection moulding process step.
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3. Materials and Methods
3.1. Metal Insert with QR Code

The experiment was based on an existing metal insert (length: 20 mm, width: 20 mm,
thickness: 11 mm) with micro-milled features on the moulding side, forming the imprint of
a QR code. The metal insert was made of tool steel (Orvar Supreme, Uddeholm/voestalpine
HPM Denmark A/S, Kolding, Denmark). Fabrication of the metal insert and the QR code
had been described in detail in [13]. Each of the 10 × 10 pixels of the QR code (Figure 4a)
consists of several micro-milled ripples (Figure 4b).
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3.2. Fabrication of Mortar Insert

The metal insert was replicated in polyurethane resin (Neukadur 8015, shore-hardness
A80, Altropol Kunststoff GmbH, Stockelsdorf, Germany). This polyurethane replica acted
as a casting form for freshly mixed mortar.

First, 150 g of Portland cement (PortlandWhite, Aalborg Portland A/S, Aalborg,
Denmark) and 50 g of microsilica (Microsilica 971, Elkem ASA, Oslo, Norway) were mixed
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with 44.7 g of tap water and 14.7 g of superplasticiser (MasterGlenium ACE 460, Master
Builders Solutions Deutschland GmbH, Trostberg, Germany in a vacuum mixer (Reitel
Retomix Mini/400 mL bowl, Reitel Feinwerktechnik GmbH, Bad Essen, Germany) at
400 rpm for 2 min. Then, 250 g of Tabular Alumina (Tabular Alumina T 60/64, 0–0.5 mm,
Almatis B.V., Rotterdam, The Netherlands) was added to the mixture, which was mixed for
another 3 min.

The mixture was filled in the polyurethane casting form and hardened in a closed box
at 100% relative humidity over 3 days at 20 ◦C and 1 day at 75 ◦C. The hardened mortar
cast was peeled off the polyurethane casting form and externally adjusted using abrasive
paper to fit in the injection mould cavity.

3.3. Micro Injection Moulding Experiment

The used micro injection mould had four equal part cavities for inserts. The first cavity
was fitted with the mortar insert, the second cavity was equipped with the original metal
insert, and the other cavities were filled with dummy inserts, as shown in Figure 5.
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A micro injection moulding series of 1010 shots was performed on an injection mould-
ing machine (Arburg A-370, 18 mm screw, Arburg GmbH + Co KG, Loßburg, Germany)
with ABS polymer (Terluran GP-35, INEOS Styrolution Group GmbH, Frankfurt am Main,
Germany), which was pre-dried with hot air at 80 ◦C for 4 h.

Process parameters were adapted from previous experiments with metal inserts only:
the melt temperature of ABS was 230 ◦C (nominal value) and the mould was temperature-
controlled to 50 ◦C (nominal value). Switch-over from the filling phase to the packing
phase was triggered by the position of the screw, which was chosen such that each of the
four cavities was approximately 98% full in the moment of switch-over. The screw injection
speed was set to a constant of 100 mm/s. Packing pressure was set to constant 500 bar and
packing time was set to 1.5 s. Cooling time was 10 s and the overall cycle time was 16.2 s.

3.4. Characterisation of Specimens and Data Analysis

The three-dimensional height map of the micro ripples was observed by laser scanning
digital microscopy (Olympus LEXT OLS4100, Olympus Corporation, Shinjuku City, Tokyo,
Japan). The specimens were inspected at 20 times magnification with an inspection area of
643 µm by 643 µm and a resolution of 1024 by 1024 pixels.

Data analysis of microscopy images was performed with SPIP—Analytical Software
for Microscopy, Image Metrology A/S, Hørsholm, Denmark. Each three-dimensional
height map was corrected for the tilting error (levelled by plane). No other corrections
were applied to the raw data underlying a microcopy image.
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The measurand under investigation was the tilting angle α. It was estimated based on
a two-dimensional height profile, which had been extracted as the mean of the corrected
and aligned three-dimensional height map.

This procedure secured that estimated tilting angle α:

• Was robust against noisy height data.
• Was robust against a potential offset error of measured height.
• Could be calculated easily based on the two-dimensional height profile.
• Did not depend on hard-to-measure single points (such as ripple height and rip-

ple width).

4. Results and Discussion

In Figure 6, all products of the soft tooling process chain of the mortar insert are shown.
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Figure 6. Products of mortar insert rapid prototyping process chain. The polyurethane (PU) replica
is transparent. The acrylonitrile butadiene styrene (ABS) plastic component made with both inserts
and by micro injection moulding is also shown.

The injection moulding process parameters relating to the melt were selected based
on the material data sheet provided by the material manufacturer. Other parameters were
selected based on the requirements by the specific injection moulding tool. The packing
time was defined by gate freezing, which could be attributed to design of the injection
mould. Cooling time was defined by bending of the sprue, which was the part of the ABS
component that cooled down the slowest.

Figure 7 shows the corrected height map of the area in focus as obtained with the
confocal microscope. The identification of the analysed ridges is indicated in Figure 7b.
The exact position of the region of interest is indicated by the coordinate system. With this
identification, it is possible to find the same region of interest on all physical parts of the
soft tooling process chain. On specimens with negative geometry (metal insert, mortar
insert), the y-axis points to the left-hand side, whereas it points to the right-hand side on
specimens with positive geometry (PU replica, ABS parts). This is due to the mirror effect,
which comes along with each replication step.

Figure 8 shows the selected region of interest from Figure 7. The ridges are clearly
identifiable, and a certain degree of homogeneity is visible. It can be observed that there
is a certain height variation of the ripples, and therefore, it was decided to calculate the
tilting angle α of ripples 5 to 12, respectively (Figure 9).

The evaluation of the corresponding ripple angles had been performed for every
element under investigation: The steel insert, the PU cast, the mortar insert, and the
resulting ABS part. Figure 10 shows the comparison of tilting angle of ripples 5 to 12 for
each element, respectively. It can be observed that the angle of one specific ridge typically
is within 1–1.5◦ between the four process steps. Ripple 10 is an exception to this. The PU
cast generally seems to have steeper angles than the metal insert. Tilting angle seems to
decrease from PU cast to the mortar insert, with the exception of ripples 7 and 10. From
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independent analysis of the functionality of the QR codes, we have seen that any variations
of ridge angle above 5◦ will influence the functionality [14].
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The numbers 1 to 12 refer to different ripples.
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Figure 10. Tilting angle α for ripples 5 to 12 measured on metal insert, polyurethane cast (PU cast),
and mortar insert, respectively, before injection moulding experiments had been performed. In
addition and for comparison, the tilting angle measured on ABS part no. 1001 (moulded on mortar
insert) is also included.

The injection moulding experiment had been conducted. The system was allowed
100 injection shots to stabilise. Figure 11 shows the comparison of ABS component no. 101
with ABS component no. 1001. In general, the change in the tilting angle for both metal
and mortar inserts is typically below 1◦. There seems to be an exception at ridge no 5. It
has not been possible to conclude why the metal insert exhibits an increase in tilting angle.
The experienced deviations could be a result of a measurement outlier, which may be due
to contaminants on a particular ripple.
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Figure 11. Tilting angles α measured on ABS parts micro injection moulded either with metal or a
with mortar insert. The ABS components under investigation were shot no. 101 and no. 1001.

If wear occurs, it would be natural to expect a decrease in the tilting angle. Therefore,
the tilting angle of the ripples on the mortar insert before injection moulding and after 1010
shots was considered (Figure 12).

The mortar insert after 1010 injection moulding experiments was used in order to
quantify the repeatability of measurement: The height map was measured six times, and the
tilting angle for each of the eight ripples and each of the six measurements was calculated.
The confidence interval for repeatability of measurement was estimated for each of the
eight ripples under the assumption of normal distribution of measurement results, for a
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confidence level of 95%, based on a degree of freedom of ν = 6 − 1 = 5 and thus with a
coverage factor of k = 2.57. The 95% confidence interval of repeatability is in the range of
0.2–0.8◦, depending on the ripple assessed.
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Figure 12. Tilting angle measured on mortar insert before injection moulding and after 1010 injection-
moulded parts. The 95% confidence interval for repeatability of measurement is indicated individu-
ally by a black line for each ripple.

We assume that—for a given ripple—the confidence interval for repeatability of tilting
angle measurement does not vary from investigated sample to investigated sample (mortar
insert before injection moulding/after 1010 shots), since it characterises the method under
the influence of the operator rather than the specimen under observation. Based on this
assumption, we could explain the difference in tilting angle with repeatability of tilting
angle measurement only (overlapping confidence intervals). This means wear (if there was
any) was sufficiently small compared to the repeatability of tilting angle measurement.

Therefore, it may be speculated here that the wear (rate) of mortar inserts used for
injection moulding might be very low. The number of shots should be increased by one
order of magnitude (10,000 shots) or even two orders of magnitudes (100,000 shots) for
effective wear to occur. More studies and in-depth analysis have to be conducted in order
to assess the lifetime of mortar inserts. Thorough and strict statistical tests will have to be
applied on repeated experiments/measurements with numerous mortar inserts in order
to detect and quantify wear (rate) of mortar material. Additionally, other contributions to
measurement uncertainty have to be considered in order to evaluate wear in detail.

These observations with respect to wear may be assigned to the high content of
hard and thus wear-resistant Tabular Alumina filler in particular. Cutting mortar inserts
with corundum blades and even diamond blades was hardly possible, which strengthens
this interpretation.

There was no observation of cracking of the mortar insert during the injection mould-
ing experiment. ABS did not stick to the surface of the mortar insert, and the demoulding
of ABS did not cause any problems. All three replication steps (metal insert to polyurethane
cast to mortar insert to ABS component) combined did not lead to any significant surface
defects with respect to the measurand under observation and the methods used.

Based on the evaluation of the tilting angle of micro features moulded from tool steel
and mortar inserts, it can be concluded that the cycle time of 16.2 s was sufficient in both
cases, although there is a notable difference in thermal conductivity between mortar and
tool steel. For Orvar Supreme, the thermal conductivity at 20 ◦C is 25 W

m·K [15], whereas it is
typically 3 W

m·K for dry concrete with improved thermal conductivity [16].
On the one hand, the lower the thermal conductivity of the mould material, the longer

the cooling time. This effect tends to prolong the overall cycle time, which would affect the
(cost) efficiency of production negatively. In this study, the cooling time/cycle time was
defined by bending of the sprue such that this hypothesis could not be investigated.

It may be speculated here that replication fidelity on the micro-range and sub-micro-
range might even improve due to the lower thermal conductivity of mortar. The lower
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the thermal conductivity of the (mortar) insert, the longer the time to solidification, which
might allow the polymer melt to mimic even deep inner edges and high-aspect-ratio holes
before it solidifies.

However, it may be assumed that the thermal conductivity of mortar will increase if a
filler material with higher thermal conductivity is selected. This assumption is supported
by the fact that concrete mixtures with improved thermal conductivity due to filling with
an additive with high thermal conductivity have been described in [16]. The thermal
conductivity of alumina at 20 ◦C is 31.8 W

m·K , which is even higher than the thermal con-
ductivity of Orvar Supreme tool steel, and extensive numeric studies have been carried
out to predict the effective thermal conductivity of alumina-containing refractories [17].
The effective thermal conductivity of refractories is influenced by various factors such
as grain boundaries, shape of grains and pores and their size distributions, defects such
as vacancies, impurities, and isotopes, crystal imperfections such as stacking faults and
dislocations, and micro cracks [18].

Consequently, the alumina-containing mortar mixture described in this article might
be comparable to Orvar Supreme tool steel rather than to concrete in terms of its effective
thermal conductivity. Further investigations need to be carried out in order to reveal the
interdependencies between wear rate, replication fidelity, production efficiency (cooling
time), effective thermal conductivity, and alumina content.

Part quality is another critical issue that needs to be addressed: (micro) injection
moulded polymer parts with constantly high quality require the (mortar) inserts to be
temperature-controlled. For small mortar inserts, this may be done by ensuring good
contact between the mortar inserts and the temperature-controlled cavity in which they
have been fitted. For big mortar inserts, it may be necessary to equip them with cooling
channels, which would allow temperature control of the mortar inserts.

One approach may be to use additively manufactured wax channels that would be
sunk in the fresh mortar paste upon casting of the mortar insert. After hardening of the
mortar paste, the wax could be melted, leaving cooling channels in the mortar insert. This
approach might allow incorporating other features in the mortar inserts, for example holes
for temperature sensors with inner threads for mounting of these temperature sensors.
Additionally, load sensors could be directly incorporated in the mortar paste, which would
allow a measurement of internal forces acting in the mortar inserts.

5. Conclusions

This paper describes a soft tooling process chain where mortar is used as the final tool
insert material. The soft casting template for the mortar can be obtained also by replication
or by additive manufacturing. In this paper, a PU cast replica of a milled steel sample
was used.

Casting mortar is a completely new rapid tooling approach for micro injection mould-
ing inserts, which we have developed starting from well-known existing concrete/mortar
technology. It is possible to cast mortar in soft moulds in order to fabricate hard tools.
Therefore, we have found an easy and cheap solution to convert soft moulds or tools into
hard moulds or tools.

It has been demonstrated that hard mortar tools can be used as inserts for micro
injection moulding purposes. There have not been observed any drawbacks motivated by
the brittleness of the material, its lower thermal conductivity, or any wear. Therefore, mortar
might be a suitable material, and casting it might be a reliable process for fabrication of
injection moulding cavities and inserts for medium to high volume production of polymer
(micro) components.
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