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Mini-Review

Computational imaging in cell biology

Roland Eils and Chaitanya Athale

Intelligent Bioinformatics Systems Division, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

Microscopy of cells has changed dramatically since its
early days in the mid-seventeenth century. Image analysis
has concurrently evolved from measurements of hand
drawings and still photographs to computational methods
that (semi-) automatically quantify objects, distances,
concentrations, and velocities of cells and subcellular
structures. Today’s imaging technologies generate a wealth
of data that requires visualization and multi-dimensional
and quantitative image analysis as prerequisites to turning
qualitative data into quantitative values. Such quantitative
data provide the basis for mathematical modeling of protein
kinetics and biochemical signaling networks that, in turn,
open the way toward a quantitative view of cell biology.
Here, we will review technologies for analyzing and recon-
structing dynamic structures and processes in the living
cell. We will present live-cell studies that would have been
impossible without computational imaging. These applica-
tions illustrate the potential of computational imaging to
enhance our knowledge of the dynamics of cellular struc-
tures and processes.

Dynamic processes are at the very basis of cellular function.
In an attempt to understand these processes, cellular structures
have been studied in fixed and living specimens by various
microscopic techniques including phase contrast, differential
interference contrast, and confocal microscopy. Fluorescent
dyes such as fluorescein and rhodamine, together with recombi-
nant fluorescent protein technology (Chalfie et al., 1994)
and voltage- (Loew, 1992) and pH-sensitive dyes (Adie et
al., 2002) allow virtually any cellular structure to be tagged.
In combination with techniques in live cells like FRAP (Axelrod
et al., 1976) and fluorescence resonance energy transfer
(Sekar and Periasamy, 2003), it is now possible to obtain
spatio-temporal, biochemical, and biophysical information
about the cell in a manner not imaginable before.

Evolution of quantitative live-cell microscopy

Live-cell image analysis started with the earliest microscopists.
Although most of these measurements were based on manual
inspection and intervention, with the advent of fluorescence
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microscopy, many studies also involved quantitative imaging
of living cells either using video or CCD cameras (Inoue,
1981; Allen and Allen, 1983). In the early years of live-cell
microscopy, methods for segmentation and tracking of cells
(Berg and Brown, 1972; Berns and Berns, 1982) were rapidly
developed and adapted from other areas. Nowadays, tech-
niques for fully automated analysis and time—space visualization
of time series from living cells involve either segmentation
and tracking of individual structures, or continuous motion
estimation (for an overview, see Fig. 1). For tracking a large
number of small particles that move individually and indepen-
dently from each other, single particle tracking approaches
are most appropriate (Qian et al., 1991).

For the determination of more complex movement, two
independent approaches were initially developed, but recenty
have been merged. Optical flow (Mitiche and Bouthemy,
1996) methods estimate the local motion directly from local
gray value changes in image sequences. Image registration
(Terzopoulos et al., 1991; Lavallee and Szeliski, 1995) aims
at identifying and allocating certain objects in the real world
as they appear in an internal computer model. The main
application of image registration in cell biology is the auto-
mated correction of rotational and translational movements
over time (rigid transformation). This allows the identification
of local dynamics, in particular when the movement is a result
of the superposition of two or more independent dynamics.
Registration also helps to identify global movements when
local changes are artifacts and should be neglected.

Single particle tracking

The basic principle of single particle tracking is to find for
each object in a given time frame its corresponding object
in the next frame. The correspondence is based on object fea-
tures, nearest neighbor information, or other inter-object
relationships. Object features can be dynamic criteria such
as displacement and acceleration of an object as well as area/
volume or mean gray value of the object. Optical flow has
been defined as the motion flow (i.e., the motion vector
field) that is derived from two consecutive images in a time
series (Jihne, 2002). If optical flow is continuous, corre-
sponding objects in subsequent images should be similar.
However, due to high levels of noise, this assumption is
usually distorted, and standard region-based matching tech-
niques give unsatisfactory results (Anandan, 1989). A more
reliable tracking approach involves fuzzy logic-based analysis
of the tracking parameters (Tvarusko et al., 1999).
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Figure 1. The typical workflow in computational imaging is presented. Once the images have been acquired by microscopy and preprocessed
to improve the signal-to-noise ratio, they can be directly visualized by methods like volume rendering. For multiple objects in motion, single
particle tracking, in which a particle is tracked over different time-steps, is the most direct method used. It provides access to parameters such
as velocity, acceleration, and diffusion coefficients. Segmentation is the basis for both surface rendering and kinetic measurements. Surface
rendering is obtained after segmentation of contours in each individual section and gives rise to volumetric measurements such as volume
and surface area. Measurements of concentration changes for segmented areas in FRAP or fluorescence loss in photobleaching experiments
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Image registration

Image registration enables a computer to “register” (appre-
hend and allocate) certain objects in the real world as they
appear in an internal computer model. Initially, only rigid
transformations were used to superimpose the images,
whereas nowadays, research is focused on the integration of
local deformations.

A parametric image registration algorithm specifies the pa-
rameters of a transformation in a way that physically corre-
sponding points at two consecutive time steps are brought to-
gether as close as possible. Such algorithms have been broadly
studied in medical imaging and cell biology (Maintz and
Viergever, 1998; Bornfleth et al., 1999). Although one class
of algorithms operates on previously extracted surface points
(Lavallee and Szeliski, 1995), other algorithms register the
images directly based on the gray-value changes. Nonrigid
deformations, i.e., transformations others than rotation and
translation, present an active body of research in computer
vision. Nonrigid approaches differ with respect to the under-
lying motion model (Terzopoulos et al., 1991; Szeliski,
1996). Most commonly, a cost or error function is defined
and an optimization method is chosen that iteratively adjusts
the parameters until an optimum has been achieved. Other
approaches extract specific features (e.g., correspondence be-
tween points) that serve as a basis for directly calculating the
model parameters (Arun et al., 1987; Rohr, 1997).

Computer vision

Computer vision is a discipline that focuses on information
extraction from the output of optical sensors, and on the
representation of this information in an internal computer
model (Faugeras, 1993). A computer vision framework for
detecting and tracking diffraction images of linear structures
in differential interference contrast microscopy was devel-
oped for measuring deflections of clamped microtubules
with a freely moving second end (Danuser et al., 2000).
Based on measurements of thermal fluctuations, it was pos-
sible to derive the elasticity of the microtubule. Further,
prior knowledge based on geometric and dynamic models of
the scene can lead to restoration of information beyond the
resolution limit of an imaging system (Danuser, 2001). This
super-resolution concept was illustrated by the stereo recon-
struction of a micropipette moving in close proximity to a
stationary target object.

Visualization
Complex dynamic processes in cells should ideally be stud-
ied in three spatial dimensions over time. Thereby, large and
complex data sets typically consisting of 5,000-10,000 sin-
gle images are generated. Such data are virtually impossible
to interpret without computational tools for visual inspec-
tion in space and time.

Typically, 3-D images have been represented as stereo-
scopic pairs or as anaglyphs by pixel shift method (White,
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1995). Displaying time series as movies is still a widely used
method for visual interpretation. For fast-moving objects
such as trafficking vesicles imaged with high time resolution,
time-lapse movies are very informative. However, for much
slower nuclear processes or for processes with mixed kinetics
that need to be observed over a longer period of time, the to-
tal number of time points for imaging are limited due to the
photo toxicity of the light exposure during in vivo observa-
tion (Konig et al., 1996). Therefore, an interpolation be-
tween consecutive time steps is required to reconstruct inter-
mediate time steps. As a “side effect,” additional information
about the continuous development of the observed processes
between the imaged time steps (subpixel resolution in time)
is achieved, and quantitative information can be derived (see
next section).

Although early studies explored 4-D data sets by simply
browsing through an image gallery and highlighting inter-
actively selected structures (Thomas et al., 1996), better
4-D imaging data are achieved by computer graphics. Two
commonly used rendering algorithms for displaying 3-D
structures are volume rendering and surface rendering
(Chen etal., 1995; Fig. 1). Volume rendering is a technique
for visualizing complex 3-D data sets without explicit
definition of surface geometry. Volume visualization is
achieved in three steps: classification, shading, and projec-
tion. The classification step assigns a level of opacity, con-
trast, and color to each voxel in the 3-D volume (e.g.,
Wright et al., 1993). Then, shading techniques are used to
simulate both the object surface characteristics and the posi-
tion and orientation of surfaces with respect to light sources
and the observer. The colored, semitransparent volume is
then projected onto a plane perpendicular to the observer’s
direction. A ray is cast into the volume through each grid
point on the projection plane. As the ray progresses through
the volume, it computes the color and opacity at evenly
spaced sample locations, and finally yields a single pixel
color. Although volume rendering techniques provide a sat-
isfactory display of biological structures, this method is lim-
ited to pure visualization and does not deliver quantitative
information. In addition, the high anisotropy typical for
live-cell imaging with low z-resolution limits the quality of
this visualization technique.

These limitations are overcome by surface-rendering tech-
niques, where the object surface is represented by polygons.
The polygonal surface is displayed by projecting all the poly-
gons onto a plane that is perpendicular to a selected viewing
direction. The user can examine the displayed structure by
changing the viewing direction interactively. The most com-
monly used method to triangulate the 3-D surface is the
Marching Cube algorithm (Cline et al., 1988). The 3-D
structure is defined by a threshold value throughout the data
set, constructing an isosurface. The drawback of this method
is that the surface of many biological structures cannot be
defined using a single intensity value, resulting in loss of rel-
evant information.

give rise to estimates of kinetic parameters such as diffusion and binding coefficients. Image registration is used to measure elastic or rigid
changes of form. It is also often used to correct for global movement before further quantitative analysis. The estimation of flow of gray values
is an approach to quantify mobility in continuous space. All these processes lead to accurate estimates of quantitative parameters.
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Quantitative image analysis

A great advantage of the combination of segmentation and
surface reconstruction is the immediate access to quantitative
information that corresponds to visual data (Eils et al., 1996;
Gerlich et al., 2001; Gebhard et al., 2002). These approaches
were designed to deal particularly with the high degree of
anisotropy typical for 4-D live-cell recordings and to directly
estimate quantitative parameters, e.g., the gray values in the
segmented area of corresponding images can be measured to
determine the amount and concentration of fluorescently la-
beled proteins in the segmented cellular compartments.

Measuring concentration changes by FRAP and fluores-
cence loss in photobleaching have become standard methods
to evaluate diffusion, binding, and trafficking in live cells (for
review see Phair and Misteli, 2001). These methods give di-
rect access to kinetic parameters such as the diffusion coeffi-
cient of molecules (Axelrod et al., 1976; Edidin et al., 1976;
Siggia et al., 2000) or exchange rates of molecules between
different compartments (Hirschberg et al., 1998; Phair and
Misteli, 2001). In combination with motion estimation tech-
niques, parameters such as the velocity of the mass center for
individual objects or for each point on the object surface can
be readily accessed. Further, local parameters such as acceler-
ation, tension, or bending (Bookstein, 1989) can be esti-
mated. During motion estimation, global quantities are esti-
mated such as the parameters of rotation and translation
(Germain et al., 1999). The evolution of these eigenvalues
can be used to characterize and analyze the observed motion.

Statistical analysis of velocity histograms can be applied to
compute peak velocities corresponding to the most fre-
quently occurring velocity values (Uttenweiler et al., 2000).
Additionally, the dynamics of different objects can be com-
pared by their velocity histograms. An alternative technique
for statistical analysis is the confinement tree analysis of the
intensity image (Macttes et al., 2001). For different threshold
levels, objects (confiners) are segmented in the image. Calcu-
lated for different levels, the confiners define a confinement
tree. Besides the estimation of global quantitative values
(e.g., the global homogeneity of the motion), this approach
allows the analysis and comparison of movements.

A challenge for future work is to better understand the
biomechanical behavior of cellular structures, e.g., cellular
membranes, by fitting a biophysical model to the data—an
approach already successfully implemented in various fields
of medical image analysis (Ferrant et al., 2001).

Applications
In vivo images of GFP-tagged proteins combined with com-
putational imaging has revealed the dynamic organization of
various nuclear subcompartments in the interphase nucleus.
One example is the dynamics of nuclear speckles. Live-cell
microscopy images of labeled pre-mRNA splicing factors
were examined for evidence of regulated dynamics by compu-
tational segmentation and tracking (Eils et al., 2000). It was
shown that the velocity and morphology of speckles, as well as
budding events, were related to transcriptional activity.
Studies on nuclear architecture have revealed that chroma-
tin (Marshall et al., 1997) undergoes slow diffusional mo-
tion, and that this movement is confined to relatively small

regions in the nucleus. Importantly, the constraint on diffu-
sional motion is regulated throughout the cell cycle (Heun
etal., 2001; Vazquez et al., 2001). A long-standing question
has been whether nuclear compartments can also undergo
directed, energy-dependent movements, thereby providing a
potential mechanism of regulated gene expression. Compu-
tational imaging revealed that several nuclear subcompart-
ments do undergo directional transport dependent on meta-
bolic energy (Calapez et al., 2002; Muratani et al., 2002;
Platani et al., 2002).

The role of dynamic tension in actin polymerization in
motile cells was investigated by analyzing polarized light im-
ages of the flow of the actin network and the motion of actin
bundles and filopodia in crawling neurons (Oldenbourg et
al., 2000). In a study on nuclear envelope breakdown, quan-
tification and visualization of four-channel images with la-
beled chromatin, lamin-B receptor, nucleoporin, and tubulin
(Beaudouin et al., 2002) revealed that piercing of the nuclear
envelope by spindle microtubules was the mechanism re-
sponsible for forming the initial hole during nuclear envelope
breakdown. To further investigate stresses on the nuclear
envelope during breakdown, a crosswise grid pattern was
bleached onto the nuclear envelope before breakdown.
Stresses detected during hole formation were compared for
the different grid vertices with respect to the positions of the
hole, thus providing information about localized stresses dur-
ing the tearing process (Mattes et al., 2001). Conversely, the
effect of stress on the morphology of cells has been measured
using an experimental approach of imposing known stresses
on cells in solid-state culture. Changes in height, width, vol-
ume, and surface area of the cell are measured from 3-D con-
focal microscopy images, helping to understand the mech-
ano-transduction response (Guilak, 1995).

The positioning of chromosomes during the cell cycle was
investigated in live mammalian cells with a combined experi-
mental and computational approach. In contrast to the ran-
dom behavior predicted by a computer model of chromosome
dynamics, a striking order of chromosomes was observed
throughout mitosis (Gerlich et al., 2003). Further, strong sim-
ilarities between daughter and mother cells were found for mi-
totic single chromosome positioning. These results support
the existence of an active mechanism that transmits chromo-
somal positions from one cell generation to the next.

Summary

Computational imaging has been proven to be a powerful
and integral part of cell biology. Computational imaging
provides an important building block for the description of
biological phenomena on a quantitative level, which is a pre-
requisite for mathematical models of dynamic structures and
processes in the cell. In combination with models of bio-
chemical processes and regulatory networks, computational
imaging as part of the emerging field of systems biology (Ki-
tano, 2002) will lead to the identification of novel principles
of cellular regulation derived from the huge amount of ex-
perimental data that are currently generated.
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