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ABSTRACT

Genome-wide profiling of long-range interactions
has revealed that the CCCTC-Binding factor (CTCF)
often anchors chromatin loops and is enriched at
boundaries of the so-called Topologically Associat-
ing Domains, which suggests that CTCF is essen-
tial in the 3D organization of chromatin. However,
the systematic topological classification of pairwise
CTCF–CTCF interactions has not been yet explored.
Here, we developed a computational pipeline able to
classify all CTCF–CTCF pairs according to their chro-
matin interactions from Hi-C experiments. The inter-
action profiles of all CTCF–CTCF pairs were further
structurally clustered using self-organizing feature
maps and their functionality characterized by their
epigenetic states. The resulting clusters were then
input to a convolutional neural network aiming at the
de novo detecting chromatin loops from Hi-C inter-
action matrices. Our new method, called LOOPbit, is
able to automatically detect significant interactions
with a higher proportion of enhancer-promoter loops
compared to other callers. Our highly specific loop
caller adds a new layer of detail to the link between
chromatin structure and function.

INTRODUCTION

The human genome consists of 2 m of DNA and its folding
in the cell nucleus is not random (1). During the last decade,
the three-dimensional (3D) organization of the genome
has been associated with the regulation of multiple nu-
clear functions like DNA replication, repair, rearrangement
and recombination, RNA processing and transcription (1–
4). From chromosome territories (5) to chromatin com-
partments (6), topologically associating domains (TADs)
(7,8) and finally loops (9), the hierarchical organization of

the genome has been gaining in details with the outcome
and further improvement of the high-throughput Chromo-
some Conformation Capture (3C) technologies (6). This
detailed characterization of the chromatin structure also
helped us to characterize the roles of specific proteins, with
perhaps being the CCCTC-binding factor (CTCF) protein
as the most striking example.

CTCF is a transcription factor formed by 11 DNA-
binding Zinc finger (ZF) found enriched in TAD borders
and facilitates mammalian enhancer-promoter loops (10).
Its functionality is dependent on the location and the rel-
ative orientation of its binding sites. Interacting CTCF
pairs tend to be organized in a convergent orientation,
with the binding motifs facing each other (9). The distri-
bution and organization of CTCF leading to TAD forma-
tion has been explained by the loop extrusion model that in-
volves CTCF but also other protein complexes like cohesin
(11,12). Briefly, the cohesin complex, which forms a ring-
shaped structure upon loading onto chromatin, extrudes
chromatin resulting in a growing loop of DNA. The ex-
trusion is blocked on both sides when cohesin encounters
two CTCF in a convergent orientation. Various experiments
have described the relevance of the binding motif orienta-
tion for loop formation by inverting or deleting CTCF bind-
ing sites using CRISPR/Cas9 experiments (12,13). More-
over, a number of studies revealed the effect of CTCF de-
pletion, resulting in a fainting of TADs and loop structures,
while maintaining compartment organization. It suggests
that CTCF and cohesin play a role in TAD and loop for-
mation, but not necessarily in genome compartmentaliza-
tion (14,15).

Recently, several studies have applied Aggregate Peak
Analysis (APA) (9), or pile-up methods (16) to analyze Hi-
C datasets using mean signals from selected regions of in-
terest (17–22), such as CTCF loops. At the level of single
chromatin loops, their biological relevance in gene regu-
lation, has led to the development of several loop callers.
However, most of the methods present low reproducibility
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between biological replicates and a low correlation with dif-
ferent biological markers (23). Here, we propose to use self-
organizing feature maps (SOFM) (24), an artificial neural
network, to classify the signal from pairs of CTCF with-
out any prior information about their topological organi-
zation. This approach allows us to obtain sub-populations
of CTCF–CTCF interacting structures and to identify their
epigenetic signature in an unsupervised manner. We then
hypothesize if this link between structure and epigenetic sig-
nature could be used to identify regions with specific activ-
ity from their structural features only. As a proof of con-
cept, we developed LOOPbit, a loop caller that takes as in-
put a Hi-C interaction matrix and predicts the localization
of loops. LOOPbit is based on a convolutional neural net-
work (CNN) model trained on the loops defined in selected
SOFM clusters with an epigenetic signature corresponding
to active chromatin. An input Hi-C interaction matrix is
then scanned with the CNN model, and LOOPbit outputs
the probability that a given region matches the CNN model.
Although CNN model can be trained on any Hi-C interac-
tion matrix, provided CTCF binding data, in this work we
used only the model generated in GM12878. We show that
LOOPbit is able to identify chromatin loops at similar lev-
els as other loop callers, but with enrichment in enhancer-
promoter contacts.

MATERIALS AND METHODS

ChIP-seq and Hi-C data

CTCF ChIP-seq experiments of Human B-lymphocyte
cell line (GM12878) were downloaded from the ENCODE
database (https://www.encodeproject.org/; dataset ids:
ENCSR000DRZ, ENCSR000AKB and ENCSR000DZN)
(25). After processing the peaks following the ENCODE
pipelines available at https://github.com/ENCODE-DCC,
only common peaks from all three experiments were kept
resulting in a total of 52 844 CTCF peaks. Next, the
orientation of the CTCF binding motifs was assessed by
means of the MEME and FIMO motif-based sequence
analysis tools (26,27). Only peaks with a statistically
significant CTCF motif were kept (P-value < 0.05), which
resulted in a total of 41 816 ChIP-seq + motif peaks.
This filter discarded ∼21% of the original detected CTCF
ChIP-seq peaks that were missing the canonical CTCF
binding motif in the predicted peak region. Additionally,
we downloaded ChIP-seq experiments against RAD21
and SMC3 for GM12878 from the encode project (dataset
ids: ENCSR000BMY and ENCSR000DZP for RAD21
and SMC3, respectively). Peaks for those datasets where
processed following ENCODE pipeline with no further
filtering.

In situ Hi-C datasets for GM12878 cell line (9) were
downloaded from the GEO database (Supplementary Table
S1) and its replicates merged and parsed using the TADbit
as previously described (28). Two resolution matrices (i.e. at
100 kb and at 5 kb) were obtained and normalized using
OneD (29) with default parameters. The 100 kb Hi-C matri-
ces were next used to calculate chromosome compartmen-
talization (6,30) using TADbit (28).

To generate the submatrices, we followed the steps of an
APA (9) without aggregating the peaks. The 5 kb resolu-

tion matrices were further parsed to subtract 45 kb squared
submatrices. Each submatrix was centered in both axes on
a pair of the 15 597 isolated CTCF ChIP-seq + motif peaks
(i.e. ∼38% of all selected peaks above). Isolated, or non-
overlapping, peaks were defined as those ChIP-seq + motif
peaks with no other peak within a 50 kb window span from
the center of the peak. This additional filter ensured that the
observed signal in a Hi-C submatrix was due to a particu-
lar pair of CTCF–CTCF peaks and not multiple pairs. Fi-
nally, we subtracted a total of 130 655 submatrices between
any pair of isolated CTCF–CTCF peaks spanning any dis-
tance between 45 kb and 1.5 Mb, which ensured to select
most pairs within the size of a typical TAD in the human
genome (∼900 kb). These steps leading to aggregate CTCF
peaks were performed using Meta-Waffle and available in
GitHub (https://github.com/3DGenomes/metawaffle).

Submatrix analysis, deconvolution, classification and cluster-
ing

Next, and also using Meta-Waffle, we analyzed, decon-
volved and classified the submatrices into micro-clusters, or
neurons, using a Self-Organizing Feature Map (SOFM) ap-
proach (24) available in http://neupy.com. Briefly, and for
this application, Meta-Waffle extracted the previously men-
tioned 45 kb submatrices (9 × 9 submatrices at 5 kb res-
olution) from an input full Hi-C interaction matrix. The
130 655 submatrices were next sigmoid transformed to scale
their values between 0 and 1. These re-scaled submatrices
were then input to the SOFM and classified in clusters or,
following the SOFM terminology, neurons. To obtain the
most pertinent SOFM clustering, we tested several combi-
nations of parameters (examples of output in Supplemen-
tary Figure S1). We tried: 10 × 10, 20 × 20, 30 × 30, 40 × 40,
45 × 45 and 50 × 50), learning radius (i.e. 1, 2 and 5), stan-
dard deviation (i.e. 0.5, 0.1 and 0.01), steps (i.e. 1, 0.5, 0.1
and 0.01) and Epochs (i.e. 30, 90, 130 and 200). Combi-
nation of the tested parameters resulted in a total of 1152
generated SOFMs. Assessing which set of parameters re-
sults in the best submatrices classification is not trivial as
there is no gold standard for the classification of CTCF–
CTCF interaction submatrices. Therefore, we devised three
evaluation metrics to select the SOFM optimal parameters.
First, a percentage of classified submatrices in order to min-
imize the number of singletons SOFM neurons (with only
one CTCF–CTCF submatrix). Second, the variability be-
tween neurons (the more distinct the better). And third,
a compartment segregation score to maximize the segre-
gation of the two main genome compartments within the
SOFM grid. Compartments were measured using the first
eigenvector of a transformation of a chromosome Hi-C in-
teraction matrix (6). Each value in this eigenvector repre-
sented the belonging to a compartment type of a given ge-
nomic bin. We used positive values for A compartments and
negative values for B compartments. We defined the com-
partment segregation score as the absolute of the average
eigenvector value of all genomic regions in a given neu-
ron. The SOFM optimal parameters, that maximized all the
three evaluation metrics proposed, were: grid size: 30 × 30;
learning radius: 5; standard deviation: 0.5; step: 0.01 and
epochs: 30.

https://www.encodeproject.org/;
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With the dataset of submatrices projected onto the 2D
SOFM map, we used the coordinates of each SOFM neuron
to infer groups of CTCF–CTCF interaction patterns. At
this stage SOFM neurons represent groups of topologically
similar pairs of CTCF–CTCF ChIP-seq peaks; each neu-
ron can be represented as an average structure by averaging
all submatrices it contains. From the generated 2D SOFM
map, we next clustered the neurons using their average sub-
matrix (a representation of the 3D structure of the chro-
matin observed between pairs of CTCF ChIP-seq peaks).
To perform the clustering, we first generated a 2D embed-
ding using the Uniform Manifold Approximation and Pro-
jection (UMAP) (31). In contrast with other embedding
methodologies like t-SNE (32), UMAP can be used as an
effective pre-processing step to enhance the performance of
density-based clustering. The UMAP was computed using a
local neighboring size of 6 for the manifold approximation,
an effective minimum distance between embedded points
of 0.3 and a number of epochs of 100 to increase its accu-
racy. The final 10 clusters of Hi-C CTCF–CTCF neurons
were obtained with HDBSCAN (33) with default parame-
ters, considering a minimum of six for the cluster size and
a minimum of six neighbors for a point to be considered a
core point.

Chromatin states integration

The chromatin 15-states model for the GM12878 cell
line was downloaded from the Roadmap Epigenomics
Consortium (34). Following a similar previously published
protocol (23), all 15 states were merged into four major
classes: promoter (Active TSS, Flanking Active TSS,
Bivalent/poised TSS Flanking bivalent TSS), enhancer
(enhancers, genic enhancers, bivalent enhancers), repressed
polycomb (repressed polycomb, weak repressed polycomb)
and heterochromatin (heterochromatin, quiescent/low).
Next, and also following the methodology in (23), the
genome was segmented into 5 kb bins, and each bin was
classified based on the overlap (>50 bp) with any of the
four major chromatin states. A bin could be assigned to one
or more categories. Finally, interactions between bins were
classified as ‘not expected’ (interacting promoter/enhancer
bin with heterochromatin bin), ‘promoter–enhancer’
(interacting promoter bin with an enhancer bin) and
‘heterochromatin–heterochromatin’ (interacting hete-
rochromatin bins). Note that submatrix annotation is
not exclusive and the same CTCF pair can be classified
into more than one category (e.g. a ‘promoter–enhancer’
submatrix can also be ‘heterochromatin–heterochromatin’).

The LOOPbit CNN

LOOPbit is a Convolutional Neural Network (CNN)
trained to predict the localization of loops from Hi-C inter-
action matrices. LOOPbit was trained using the TensorFlow
platform (https://www.tensorflow.org) with the following
standard workflow: input matrix flattening––dense layer of
1024 neurons (with ReLu activation function)––dropout
(set to 0.2 to overcome overfitting)––dense layer of 4 neu-
rons (with Softmax activation function). As an input, the
CNN takes tensors of shape (9, 9) that will be flattened

in the first layer. The dense layers were used to perform
the classification of input Hi-C submatrices into two dif-
ferent classes: loop and no-loop. In order to avoid poten-
tial genomic context overfitting (35) the dropout ratio was
set to 0.2 (36) even-though the total number of free param-
eters (88,064) is relatively low. Higher dropout ratios may
be set for more complex designs. The LOOPbit CNN was
trained by a 20% leave-out of the data used as test and 80%
of the data for training. The training dataset obtained by
sub-sampling a total of 6,000 randomly selected CTCF–
CTCF submatrices from the SOFM neurons with clear sig-
nal of looping (loops) and another 6000 randomly selected
CTCF–CTCF submatrices from the SOFM neurons with
no signal of looping (no-loop). In particular, loop subma-
trices were extracted from the HDBSCAN clusters 1, 2, 3,
4 and 5, and no-loop submatrices from HDBSCAN clus-
ters 7, 8, 9 and 10 (Results). The trained model resulted in a
classification accuracy of 85.9% and 89.6% for the loop and
no-loop class, respectively.

LOOPbit benchmark

The CNN model trained on the cell line GM12878, was
then used to predict loop localization in the benchmark
dataset proposed by Forcato et al. (23) that consists of 36
previously published Hi-C datasets from different cell lines
and organisms (Supplementary Table S2). The Forcato’s
benchmark dataset was selected as it represents the most
exhaustive dataset proposed to date to benchmark loop-
caller accuracy. Moreover, Forcato’s benchmark provides
the results of previously benchmarked six loop-callers and
compiles a set of metrics measured at different resolutions.
To avoid biases derived from the data processing pipelines,
all 36 datasets were processed using the same protocol as
the training datasets from GM12878 cell line (see1 above).
Then, the Hi-C experiments were analyzed with LOOPbit,
scanning chromosome-wise using a window of 9 × 9 bins
and a step of 1 bin, to predict loops at two different reso-
lutions (5 kb and 40 kb). The 5 and 40 kb resolutions were
chosen to match the previously executed benchmarks using
exactly their same accuracy metrics on our set of predicted
loops (23). First, the Jaccard Index to assess reproducibility
between replicates of the same experiment. Two predicted
loops were considered to be identical when they shared
exactly the same anchoring bins in both replicates. Sec-
ond, to characterize the possible biological relevance of the
predictions, the enrichment of diverse chromatin marks at
loop anchors was calculated. For the benchmarking, the 15-
states chromatin models for GM12878, IMR90 and h1-ESC
cell lines were downloaded from the Roadmap Epigenomics
Consortium (34) and analyzed as previously described (23).
For the fly late embryos dataset, the 16-chromatin states
model was downloaded from modENCODE (37). As pre-
viously, the states were also merged into four major classes:
promoter (promoter), enhancer (enhancer 1, enhancer 2),
repressed polycomb (PC repressed 1, PC repressed 2), and
heterochromatin/low (heterochromatin1, heterochromatin
2, low signal 1, low signal 2, low signal 3). Similarly, the
enrichment analysis of the chromatin states at the loop an-
chors was done as described above. Additionally, the pres-
ence of CTCF binding sites and their orientation in pre-

https://www.tensorflow.org
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dicted loops was assessed only for cis interactions identi-
fied in the Hi-C maps at 5 kb resolution. Briefly, CTCF
ChIP-seq experiments were downloaded (Supplementary
Table S3) and peaks processed using HOMER Motif Anal-
ysis with default parameters. The cis interactions conserved
in at least two replicates within each dataset (with exception
of Jin H1-hESC with one replicate) were intersected with
the list of motifs of the CTCF peaks. Then, an interaction
was considered convergent if the upstream interacting bin
contained one CTCF motif on the forward strand (+ orien-
tation), and the downstream interacting bin contained one
CTCF motif on the reverse strand (− orientation) (23).

RESULTS

Classifying CTCF–CTCF interactions using Self-Organizing
Feature Maps (SOFMs) and Uniform Manifold Approxima-
tion and Projection (UMAP)

SOFMs are dependent on several parameters, such as the
grid size (number of neurons or clusters), the learning ra-
dius, the step size, the standard deviation and the number of
iterations or epochs (24). To unveil the best combination of
SOFM parameters in the context of CTCF–CTCF subma-
trices classification, we first extracted the Hi-C submatrices
of all possible cis pairs of CTCF peaks linearly separated by
between 45 kb and 1.5 Mb (Figure 1A; Supplementary File
1). These submatrices, here referred to as ‘CTCF–CTCF
submatrices’, spanned over 45 kb in both axes. Each axis
representing 20 kb upstream and 20 kb downstream with
the central 5 kb bin containing a CTCF peak. Next, all ex-
tracted CTCF–CTCF submatrices were input to a SOFM.
In total we generated 1152 SOFMs, each with different com-
binations of parameters (Materials and Methods). To se-
lect the optimal parameters, we assessed three measures:
(i) the percentage of classified submatrices, considering sin-
gletons (SOFM neurons with only one submatrix) as non-
classified; (ii) variability between neurons and (iii) average
compartment-type segregation across neurons. These three
quality measures aimed at identifying the ‘best’ classifica-
tion that maximized the number of CTCF–CTCF submatri-
ces classified, the separation between neurons (i.e. increased
variability inter-neuron), and the homogeneous compart-
ment type within each neuron. Of all varied parameters, the
SOFM grid size and the SOFM step size were the most sen-
sitive to the final classification (Figure 1B, Supplementary
Figures S1 and S2). The three measures mentioned above
were optimal for grid size of 30, learning radius of 5, stan-
dard deviation of 0.5, step of 0.01 and number of epochs
of 30. Such optimal SOFM map was represented as a grid
map where each cell (neuron) is composed by a set of sim-
ilar CTCF–CTCF submatrices represented by its medoid
submatrix (Figure 1C). The SOFM map clearly reflects a
variety of CTCF–CTCF submatrices from loop forming
pairs (lower-left corner) to non-interacting pairs (upper-
right corner). Next, the resulting 900 SOFM neurons were
further classified by computing the Euclidean distance be-
tween the medoid submatrices of each pair of SOFM neu-
rons and projecting it into a two-dimensional UMAP, a
non-linear manifold dimension reduction (31). We finally
applied, on the UMAP coordinates of each SOFM neuron,
a density-based clustering algorithm (HDBSCAN) (33).

This methodology resulted in 10 clusters of SOFM neu-
rons, each representing unique CTCF–CTCF pairing pat-
terns. Clusters go from the most structured with the canoni-
cal cross pattern (cluster 1 including 11 SOFM neurons with
a total of 2685 CTCF–CTCF submatrices) to a completely
flat pattern with no interaction (cluster 10 with 7 SOFM
neurons and 1565 CTCF–CTCF submatrices) (Figure 1D).
Our results suggest that, beyond the expected contact/no-
contact between CTCF–CTCF pairs, we observe a variety
of intermediate, well-defined, topological signatures. Next,
we set ourselves to functionally characterize each of the de-
tected signatures.

Functional characterization of the CTCF–CTCF clusters

As described before, segregation of A/B compartment types
between neurons was used as a metric to select the opti-
mal set of parameters for the SOFM classifier. However,
this measure was agnostic to the medoid submatrix topol-
ogy used to cluster neurons. Our results confirm that clus-
ters with clear loop topology (clusters 1 to 5) are enriched
in A-type compartments at the anchor points of the loops.
Conversely, less structured clusters, with non-interacting
CTCF–CTCF (clusters 6–10), are enriched in B-type com-
partments (Figure 2A). The separation between clusters
1–5 and 6–10 is also observed when revealing enrichment
in CTCF pairs with different directionality (9), CTCF–
CTCF clusters with clear interaction patterns are enriched
in convergent-oriented CTCFs (clusters 1–4, Figure 2B),
while non-interacting patterns are enriched in divergent-
oriented CTCFs (clusters 7 to 10, Figure 2c), and parallel-
oriented CTCFs are slightly enriched in mid-interacting sig-
nal clusters (clusters 5 and 6, Figure 2D). Note that in
these CTCF–CTCF orientation categories, significant en-
richment in a category is usually accompanied by signifi-
cant depletion in the others. Next, we observed that CTCF–
CTCF clusters with clear loop topology (clusters 1–3) have
a mean genomic distance between CTCF peaks of between
634 and 680 kb (Figure 2E), while clusters 7–10, more en-
riched in B compartment and divergent orientation, present
shorter mean genomic distances spanning from ∼510 to
∼629 kb (Figure 2E). Note that this measure may be af-
fected by our strict pre-selection of non-overlapping CTCF
sites (Materials and Methods) resulting in a relatively sparse
dataset, and, on average, more separated anchors.

To assess whether chromatin states correlate with the
CTCF–CTCF clusters, we next measured chromatin state
enrichment at CTCF sites for each cluster (Materials and
Methods). Interestingly, pairs of CTCFs that form loop-
like structures (clusters 1–4) are enriched with enhancer-
promoter interactions (with one anchor point labeled as ‘en-
hancer’ and the other as ‘promoter’, Materials and Meth-
ods) (Figure 2F). Anchors falling in the ‘heterochromatin’
state have an almost opposite distribution: enriched in clus-
ters 6–8 (Figure 2G). Interestingly, CTCF–CTCF cluster
10, which corresponds to the most B compartment cluster,
present less heterochromatic anchors than expected but, in
turn, is enriched in polycomb-promoter pairs (Figure 2H).
CTCF–CTCF pairs with polycomb in both anchors are
strongly enriched in mid-interacting clusters (clusters 4–6)
and depleted in non-interacting pairs (clusters 7–10) (Fig-
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Figure 1. General overview of signal structure deconvolution. (A) Schematic workflow to obtain CTCF clusters. (B) SOFM parameters selected based on
the percentage of classified matrices and the compartment segregation value (see also Supplementary Figure S2). (C) SOFM map showcasing the medoid
of each neuron for optimal SOFM with the highest compartment segregation as well as highest percentage of classified CTCF–CTCF submatrices. (D)
Low dimensional representation of the SOFM neurons using a UMAP algorithm followed by a clustering method using HDBSCAN. A total of 10 clusters
were obtained. Each point corresponds to a neuron in the SOFM map in panel C. Clusters are represented by the medoid signal and the number of
CTCF–CTCF submatrices per cluster.

ure 2I). Finally, enhancer-enhancer pairs, are more present
in interacting clusters (clusters 1–4) and less abundant in
non-interacting clusters (clusters 7–10) (Figure 2J). Inter-
estingly cluster 1, with the strongest interaction pattern,
presented the highest concentration of enhancer-enhancer
loops, being this feature, it’s most distinct measure when
compared to cluster 2 or 3. Finally, and in agreement with
previous results, we noticed an enrichment for cohesin sub-
units (RAD21 and SMC3) in most active clusters (Supple-
mentary Figure S3).

Our analysis indicates the existence of clusters or types of
CTCF–CTCF pairs that gradually expand from enhancer-
promoter, convergent, mid-range interacting pairs in A-
type compartment, to a polycomb-heterochromatin, diver-
gent, short-range, non-interacting pairs in B compartment.
Taken together, our results based solely on the interaction
pattern of CTCF–CTCF proteins highlights two expected
major types of CTCF–CTCF pairing, one more active with
clear interactions, and one more heterochromatic without

interactions. Moreover, the well-defined clusters with inter-
mediate levels of activity do not correspond to the expected
intermediate functional profiles as exemplified by the clus-
ter enriched in polycomb states.

Based on these results, we hypothesized that SOFM clus-
ters could be used to train a convolutional neural net-
work (CNN) and generate a highly specific model to detect
CTCF-bound promoter-enhancer loops. Moreover, if vali-
dated, this hypothesis would help characterize the link be-
tween chromatin loop structure and function.

Loop calling using LOOPbit, a CNN trained with looping
and non-looping CTCF–CTCF pairs

Next, we randomly subset a total of 6000 CTCF–CTCF
submatrices from clusters 1 to 5 as loop forming pairs
(significantly enriched in CTCF-bound promoter-enhancer
loops) and another 6000 CTCF–CTCF submatrices from
clusters 7 to 10 as non-loop forming pairs. The two datasets,
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Figure 2. Distribution of multiple genomic features throughout CTCF clusters. In the first row the representative medoid of each CTCF cluster is rep-
resented. Below the different genomic features per cluster. In the first row the compartment type distribution, then the binding CTCF motif orientation,
the distance between the two CTCFs and finally the chromatin state enrichment of the CTCF pairs. The dashed gray lines mark the mean, whereas the
standard deviation is marked with lighter gray. Statistical significance against the mean is calculated using Wilcoxon test. P < 0.05 (*), P < 0.001 (**),
P < 0.0001 (***).
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loop and non-loop, where next used to train a CNN that
we called LOOPbit. The CNN aims to automatically as-
sign a probability of being a loop to any 9 × 9 subma-
trix in a genome-wide Hi-C interaction matrix (Figure 3A
and Materials and Methods). LOOPbit, which was trained
by a 20% leave-out of the used data, was then assessed
for accuracy and compared to other loop-calling meth-
ods using a recently published benchmark (23). LOOPbit,
similarly to other published methods (including HiCCUPS
(9), GOTHiC (38), HOMER (39), diffHic (40), HIPPIE
(41) and Fit-Hi-C (42)), detects an increasing number of
chromatin loops in denser Hi-C experiments (Figure 3B).
A solution to minimize this effect is to reduce data resolu-
tion (i.e. from 5 to 40 kb) (Supplementary Figure S4a). We
note here that LOOPbit is the loop caller with steeper slope,
meaning that it is the most conservative in sparse dataset.
Loops detected by LOOPbit were of similar average size as
of HiCCUPS, diffHiC and HIPPIE (∼200 kb) and larger
than those by GOTHiC (∼80 kb) or HOMER (∼100 kb)
but shorter than those by Fit-Hi-C (∼10 Mb) (Figure 3C).
This loop size measure is again dependent on the resolution
of the data as loops called at 40 kb resolution increased to
∼1 Mb of size for all methods (Supplementary Figure S4b).

Next, we assessed the ability of LOOPbit to reproduce
loop detection by measuring the Jaccard Index using repli-
cates of previously published Hi-C experiments (Materi-
als and Methods and Supplementary Table S2). Despite
that LOOPbit yields continuous probability clouds instead
of pinpointing single cells in the matrix, we used the ex-
act same benchmark measures previously published (23) to
calculate the Jaccard Index between replicates (i.e. to con-
sider two loops identical if both their anchoring bins are the
same). With such benchmark, LOOPbit results are slightly
more reproducible in average than compared to HOMER
and Fit-Hi-C, similar to GOTHiC, diffHiC and HIPPIE
but lower than HiCCUPS (Figure 3D). We also noticed for
LOOPbit an increase in its reproducibility (in terms of Jac-
card Index) in denser HI-C datasets. This result is expected
as denser matrices contain more information but also be-
cause LOOPbit was trained in a dense Hi-C interaction ma-
trix. Importantly, the Jaccard Index, as defined by Forcato
et al. (23) is very strict. Allowing a looser overlap between
loops increased dramatically the measured reproducibility
(Supplementary Figure S5), an example of the overlap be-
tween sub-samples in GM12878 can be seen in Figure 4
and in Supplementary Figure S6. Finally, we compared the
accuracy of the loop callers in terms of the biological rel-
evance of the predicted loops. LOOPbit was able to de-
tect higher percentage of enhancer-promoter loops than any
other caller (Figure 3E, top panel). Concomitantly, LOOP-
bit also detected less loops between heterochromatic an-
chors (Figure 3E, middle panel) and has similar levels of
non-expected loops (that is, between enhancer and hete-
rochromatin, Figure 3e, bottom panel). This result was con-
firmed by segregating loops by A/B-compartment types,
which indicated that heterochromatic loops were enriched
in B-compartments while promoter-enhancer loops were
enriched in A-compartments (Supplementary Figure S7).
Interestingly, and likely particular to LOOPbit as it was
trained using CTCF–CTCF selected loops (Materials and
Methods), ∼56% of all detected loops in the training had

an annotated CTCF site in both anchor points. To note that
computationally, LOOPbit had higher requirements than
some of the benchmarked methods, taking about 24 h to
complete the scanning of a 100 Mb length Hi-C map using
a single CPU, and requiring 32 Gb of RAM for the task.

Altogether our results indicate that, although LOOPbit
has a similar level of reproducibility as other loop callers,
chromatin loops detected by LOOPbit show a clear enrich-
ment in functional signatures when compared to the other
methods.

DISCUSSION AND CONCLUSION

In this work, we introduce the use of the structure signal
deconvolution in the context of colocalizing DNA-binding
proteins. This methodology aims at identifying clusters of
different structural patterns. Until now, most methods de-
tecting structural patterns associated to DNA-binding pro-
teins use aggregate peak analysis (APA) to show an average
interaction pattern for different targets of interest. Unfor-
tunately, APA is blind to small subsets with specific inter-
action patterns, subsets with different structures that could
potentially be related to specific functions.

Here, we convoluted the genomic average CTCF–CTCF
interaction pattern, and, based solely on this structural fea-
ture, were able to characterize distinct subpopulations. Ac-
cording to their structural pattern of interaction only, ten
CTCF clusters were obtained (Figure 1D). Each CTCF–
CTCF cluster has a specific genome compartment location
and epigenetic state. The first observation is that the ge-
nomic distance between the CTCF pairs as well as their
orientation are relevant features to classify CTCF–CTCF
interactions between those that structurally form and do
not form loops (1,9). Also expected, loop forming clus-
ters (that is, those from cluster 1 to cluster 5) are enriched
in A compartment and drive primarily enhancer-enhancer
and enhancer-promoter interactions. In this category, we
noted that the first cluster, presenting the strongest pattern
of interaction, and the largest genomic distances, was par-
ticularly enriched in enhancer-enhancer loops, suggesting
transcriptional hubs with rosette like structures (43). On
the other side of the spectrum, clusters of CTCF–CTCF
pairs presenting sparse or blur signal of interactions are
enriched in B-compartment type, heterochromatin or poly-
comb chromatin states and are spanning shorter genomic
distance. These clusters are representative of either silent
chromatin (44) or of polycomb-polycomb driven interac-
tions (45,46). Interestingly, we could capture the polycomb
interacting network, which has been observed to be essen-
tial for cell differentiation and identity. Thus, cluster num-
ber 10, which is mostly associated to compartment B, no
loop structure, few interactions, divergent CTCF binding
sites and short genomic distances between anchor points,
contained a surprising enrichment of promoter-polycomb
states which could be explained by polycomb protecting a
given promoter with CTCF from interacting with another
CTCF site. While clusters 4 to 6, presented a loop pattern
and were mostly associated to A compartment, were en-
riched in polycomb at both loop anchors, suggesting the for-
mation of chromatin loops for a proper cell identity regula-
tion. Together these findings define subcategories of CTCF–
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Figure 3. LOOPbit technical and biological benchmarking. (A) CNN workflow, model building with the multiple layers to transform the input data. Model
compilation to assess the accuracy and optimize the model. Finally, model training using the data coming from the CTCF–CTCF SOFM deconvolution.
(B) Representation of the number of reads after filters and the number of identified cis-interactions by LOOPbit in all experiments at a 5 kb resolution
(n = 32). (C) Average distance between the identified loop-anchors of all the Hi-C experiments at 5 kb resolution (n = 32). (D) Boxplot representing the
Jaccard Index, in here the overlapping between exact loop-anchors were considered to be the same loop between the same replicates (n = 39). (E) Proportion
of the identified cis interactions based on the chromatin states at their anchoring points of the datasets at 5 kb resolution (n = 32).

CTCF interactions within which only ∼30% (clusters 1 to 5)
are consistent with the most accepted model of CTCF loops
bringing together promoters and enhancers to initiate tran-
scription (14). Additionally, the SOFM clustering allowed
us to distinguish intermediate clusters, like cluster 6, that
present some level of interaction between CTCF pairs, and
thus could be interpreted as enhancer-promoter loops func-
tionally related to polycomb.

The deconvolution of the average signal between CTCF–
CTCF pairs allowed us thus to identify two major groups,
one forming a canonical loop (clusters 1 to 5) and a second
segregating CTCF sites (clusters 7 to 10). This allowed us to
generate a bona fide set of CTCF–CTCF submatrices that
generate loops versus those that do not. Next, we used those
two sets to train an CNN to develop the loop-caller LOOP-
bit, which was technically and biologically tested against
several previously benchmarked methods (23). LOOPbit,
which was applied to 33 Hi-C experiments at 5 kb resolu-
tion and five experiments at 40 kb resolution, resulted in
a number and length of loops similar to all other bench-
marked methods and suffered from the same limitations.
Indeed, loop-callers cannot easily reproduce findings when

comparing replicates of low sequencing depths or binned at
high resolutions. Fortunately, when high sequencing depth
data is available, LOOPbit increased its reproducibility. Im-
portantly, loops called by LOOPbit were found to be par-
ticularly relevant in terms of biological function. We found
a clear enrichment of promoter-enhancer loops and deple-
tion of loops between anchor points in heterochromatin
state (9,14). When compared to other callers, LOOPbit de-
tected almost twice as many promoter-enhancer loops. This
feature is likely to be a direct consequence of the SOFM
classification that allowed us to exclude from the train-
ing set chromatin loops mostly enriched in Polycomb or
other repressed regions. Indeed, the SOFM classification
was able to discern structural differences between repressed
and promoter-enhancer loops, which then was learned by
LOOPbit. Compared to other loop-callers, our method-
ology, prototyped in LOOPbit, is based on stratifying all
possible structural pattern involving CTCF pairs, and se-
lecting as a training set those matching the most the tar-
geted promoter-enhancer loops. Most recent loop-callers
as Peakachu (47) and Mustache (48) do not use this in-
formation. Peakachu, the most similar to LOOPbit, trains
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Figure 4. Example of LOOPbit results in several GM12878 replicates (5 kb resolution). Result of loop calling in a chunk of human chromosome 22.
Arrows indicate predicted loops in different sub-samples of GM12878 (different arrow orientations correspond to different sub-samples). The Hi-C matrix
represents the sum of interactions from all GM12878 replicates available.

its RandomForest against CTCF peaks or H3K27ac marks
but does not classify these pairs of coordinates to subset
the most functionally relevant interaction patterns. LOOP-
bit finds CTCF loops enriched in active promoter–enhancer
contacts as a consequence of being trained with such loops
selected by our SOFM-UMAP classification. Interestingly,
the loop-caller software that similarly performs to LOOPbit
is HiCCUPS, a tool that uses a parallel approach: it searches
for a specific interaction shape with local enrichment sur-
rounded by less interactions with a major difference with
LOOPbit being its specific training with active promoter-
enhancer CTCF–CTCF loops.

In summary, we have shown that signal deconvolution is
able to define sub-classes of CTCF-driven chromatin loops
with specific structural features. We then designed a soft-
ware based on this classification and its loops were the most
enriched in enhancer–promoter interactions among other
loops called by other software. With this work we have char-
acterized and validated the relationship between structure
and function of CTCF driven chromatin loops and provide
a method that can be trained to identify chromatin loops
driven by other DNA binding proteins beyond CTCF.

DATA AVAILABILITY

Meta-Waffle as well as LOOPbit are available on
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28. Serra,F., Baù,D., Goodstadt,M., Castillo,D., Filion,G.J. and
Marti-Renom,M.A. (2017) Automatic analysis and 3D-modelling of
Hi-C data using TADbit reveals structural features of the fly
chromatin colors. PLoS Comput. Biol., 13, e1005665.

29. Vidal,E., le Dily,F., Quilez,J., Stadhouders,R., Cuartero,Y., Graf,T.,
Marti-Renom,M.A., Beato,M. and Filion,G.J. (2018) OneD:
increasing reproducibility of Hi-C samples with abnormal
karyotypes. Nucleic Acids Res., 46, e49.

30. Imakaev,M.V., Fudenberg,G., McCord,R.P., Naumova,N.,
Goloborodko,A., Lajoie,B.R., Dekker,J. and Mirny,L.A. (2012)
Iterative correction of Hi-C data reveals hallmarks of chromosome
organization. Nat. Methods, 9, 999–1003.

31. McInnes,L., Healy,J. and Melville,J. (2018) UMAP: uniform
manifold approximation and projection for dimension reduction.
JOSS, 3, 861.

32. van der Marteen,L. and Hinton,G. (2008) Visualizing data using
t-SNE. J. Mach. Learn. Res., 9, 2579–2605.

33. Campello,R.J.G.B., Moulavi,D. and Sander,J. (2013) Density-Based
clustering based on hierarchical density estimates. In: Pei,J.,
Tseng,V.S., Cao,L., Motoda,H. and Xu,G. (eds). Advances in
Knowledge Discovery and Data Mining, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Berlin, Heidelberg, Vol. 7819,
pp. 160–172.

34. Roadmap Epigenomics Consortium, Kundaje,A., Meuleman,W.,
Ernst,J., Bilenky,M., Yen,A., Heravi-Moussavi,A., Kheradpour,P.,
Zhang,Z., Wang,J. et al. (2015) Integrative analysis of 111 reference
human epigenomes. Nature, 518, 317–330.

35. Schreiber,J., Singh,R., Bilmes,J. and Noble,W.S. (2020) A pitfall for
machine learning methods aiming to predict across cell types.
Genome Biol., 21, 282.

36. Srivastava,N., Hinton,G., Krizhevsky,A., Sutskever,I. and
Salakhutdinov,R. (2014) Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. J. Machine Learning Res., 15, 1929–1958.

37. Ho,J.W.K., Jung,Y.L., Liu,T., Alver,B.H., Lee,S., Ikegami,K.,
Sohn,K.-A., Minoda,A., Tolstorukov,M.Y., Appert,A. et al. (2014)
Comparative analysis of metazoan chromatin organization. Nature,
512, 449–452.

38. Mifsud,B., Martincorena,I., Darbo,E., Sugar,R., Schoenfelder,S.,
Fraser,P. and Luscombe,N.M. (2017) GOTHiC, a probabilistic model
to resolve complex biases and to identify real interactions in Hi-C
data. PLoS One, 12, e0174744.

39. Heinz,S., Benner,C., Spann,N., Bertolino,E., Lin,Y.C., Laslo,P.,
Cheng,J.X., Murre,C., Singh,H. and Glass,C.K. (2010) Simple
combinations of lineage-determining transcription factors prime



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1 11

cis-Regulatory elements required for macrophage and B cell
identities. Mol. Cell, 38, 576–589.

40. Lun,A.T.L. and Smyth,G.K. (2015) diffHic: a bioconductor package
to detect differential genomic interactions in Hi-C data. BMC Bioinf.,
16, 258.

41. Hwang,Y.C., Lin,C.F., Valladares,O., Malamon,J., Kuksa,P.P.,
Zheng,Q., Gregory,B.D. and Wang,L.S. (2015) HIPPIE: a
high-throughput identification pipeline for promoter interacting
enhancer elements. Bioinformatics, 31, 1290–1292.

42. Ay,F., Bailey,T.L. and Noble,W.S. (2014) Statistical confidence
estimation for Hi-C data reveals regulatory chromatin contacts.
Genome Res., 24, 999–1011.

43. Oudelaar,A.M., Harrold,C.L., Hanssen,L.L.P., Telenius,J.M.,
Higgs,D.R. and Hughes,J.R. (2019) A revised model for promoter
competition based on multi-way chromatin interactions at the
�-globin locus. Nat. Commun., 10, 5412.

44. Ogiyama,Y., Schuettengruber,B., Papadopoulos,G.L., Chang,J.-M.
and Cavalli,G. (2018) Polycomb-Dependent chromatin looping

contributes to gene silencing during drosophila development. Mol.
Cell, 71, 73–88.

45. Narendra,V., Rocha,P.P., An,D., Raviram,R., Skok,J.A.,
Mazzoni,E.O. and Reinberg,D. (2015) CTCF establishes discrete
functional chromatin domains at the hox clusters during
differentiation. Science, 347, 1017–1021.

46. Van Bortle,K. and Corces,V.G. (2012) Nuclear organization and
genome function. Annu. Rev. Cell Dev. Biol., 28, 163–187.

47. Salameh,T.J., Wang,X., Song,F., Zhang,B., Wright,S.M.,
Khunsriraksakul,C., Ruan,Y. and Yue,F. (2020) A supervised
learning framework for chromatin loop detection in genome-wide
contact maps. Nat. Commun., 11, 3428.

48. Roayaei Ardakany,A., Gezer,H.T., Lonardi,S. and Ay,F. (2020)
Mustache: multi-scale detection of chromatin loops from Hi-C and
Micro-C maps using scale-space representation. Genome Biol., 21,
256.


