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Luzindole attenuates LPS/
D-galactosamine-induced
acute hepatitis in mice
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Jiayi Huang1, Li Tang1 and Li Zhang1,2

Abstract

Melatonin is a well-documented hormone that plays central roles in the regulation of sleep–wake cycles. There is

cumulative evidence to suggest that melatonin is also a pleiotropic regulator of inflammation, and luzindole has been

widely used as a melatonin receptor antagonist. This study investigated the potential effects of luzindole on LPS/D-

galactosamine (D-GalN)-induced acute hepatitis. The results indicated that treatment with luzindole alleviated histolog-

ical damage in the liver, reduced the level of transaminases in plasma and improved the survival of LPS/D-GalN-exposed

mice. Treatment with luzindole also suppressed the production of the pro-inflammatory cytokines TNF-a and IL-6 in

LPS/D-GalN-exposed mice. In addition, treatment with luzindole inhibited the activation of caspase-3, -8 and -9, and

suppressed the cleavage of caspase-3 and poly(ADP-ribose) polymerase. Therefore, treatment with luzindole attenuates

LPS/D-GalN-induced acute liver injury, suggesting that luzindole might have potential value for the intervention of

inflammation-based hepatic disorders.
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Introduction

The uncontrolled inflammatory response is one of the

primary mechanisms underlying the development

of acute hepatitis induced by infections, drugs, toxins

and so on.1 LPS, the major virulence factor from

Gram-negative bacteria, is a representative stimulator

of inflammation, which is extensively involved in vari-

ous inflammatory disorders, including acute hepatitis.2

Exposure to LPS in D-galactosamine (D-GalN)-sensi-

tised mice is a widely used approach to induce acute

hepatitis in experimental studies.3,4

The inflammatory response is tightly regulated

by various endogenous factors, such as hormones,

neurotransmitters and metabolites.5 Melatonin is a

well-documented hormone that is mainly released

from the pineal gland and plays central roles in the

regulation of sleep–wake cycles.6 In addition, cumula-

tive evidence suggests that melatonin also functions as

a pleiotropic regulator of inflammation in peripheral

tissues, and experimental studies have found that

melatonin might act as both an activator and an inhib-
itor in inflammatory response.7

Luzindole is an antagonist of melatonin receptor,
and its competitive binding to the melatonin receptor
has been observed by competition experiments with
2-[125I]iodomelatonin.8,9 Luzindole has been widely
used to block the activities of endogenous or exogenous
melatonin in experimental studies.10,11 Although some
studies have found that luzindole abolished the
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anti-inflammatory benefits of melatonin,12,13 treatment
with luzindole also resulted in alleviated inflammatory
injury under certain circumstances.14,15 In this study,
the melatonin receptor antagonist luzindole was
administered into mice with LPS/D-GalN-induced
acute hepatitis, and its potential effects on inflamma-
tory response, hepatocyte apoptosis, histological
abnormalities and animal survival were determined.

Materials and methods

Animal and experimental materials

Male BALB/c mice (6–8 wk old, 18-20 g) were provided
by the Experimental Animal Center of Chongqing
Medical University. LPS (Escherichia coli, 055:B5),
D-GalN and luzindole were purchased from Sigma–
Aldrich (St Louis, MO). The mouse TNF-a and IL-6
ELISA kits were purchased from NeoBioscience
(Shenzhen, PR China). The alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) assay
kits were products from the Nanjing Jiancheng
Bioengineering Institute (Nanjing, PR China). The
Total Protein Extract Kit and the Caspase-3, -8, -9
Colorimetric Assay Kit were products from Beyotime
Biotechnology Institute (Jiangsu, PR China). The
in situ cell death assay kit was from Roche
(Indianapolis, IN). The Abs against cleaved caspase-
3, poly(ADP-ribose) polymerase (PARP) and b-actin
were obtained from Cell Signaling Technology
(Danvers, MA). The HRP goat anti-rabbit Ab, the
BCA Protein Assay Kit and the enhanced chemilumi-
nescence (ECL) reagent were from Pierce
Biotechnology (Rockford, IL).

Experimental protocol

BalB/c male mice (n¼ 144) were divided into three sets.
Set 1 comprised 32 mice randomised into four groups
(n¼ 8): (a) the control group that received an i.p. injec-
tion of solvent; (b) the luzindole group that received an
i.p. injection of the melatonin receptor antagonist
luzindole at a dose of 40 mg/kg dissolved in 10%
DMSO (diluted with edible oil; the dose of luzindole
was chosen based on the previous literature and our
preliminary experiment16); (c) the LPS/D-GalN group
that received an i.p. injection of a mixture of LPS
(10 lg/kg) and D-GalN (700mg/kg); and (d) the luzin-
dole intervention group where LPS/D-GalN was
injected 30 min after the luzindole injection. Mice
were sacrificed by cervical dislocation 90 min after
LPS/D-GalN treatment, and the plasma samples were
collected for detection of TNF-a and IL-6. Set 2 also
comprised 32 mice divided into four groups (n¼ 8).
Mice were sacrificed 6 h after LPS/D-GalN injection,

and plasma samples and liver were collected. Set 3 com-

prised 80 mice divided into four groups (n¼ 20) and

were used for survival observation. The mice were

monitored for survival every 6 h for at least 7 d, and

the survival rate of the mice was analysed by Kaplan–

Meier curve.

Histopathological examination

The liver samples were fixed in 4% formaldehyde solu-

tion, follow-up conventional paraffin embedding, section-

ing, hematoxylin and eosin staining and observation of

photographs under an optical microscope (Olympus,

Tokyo, Japan).

Analysis of AST and ALT levels

The levels of ALT and AST were determined for

evaluating the degree of liver injury. The activity of

liver enzymes was assessed by using the detection kits
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Figure 1. Luzindole reduced LPS/D-GalN-induced elevation of
aminotransferase (ALT) and aspartate aminotransferase. Acute
hepatitis was induced in mice by i.p. injection of LPS/D-GalN, and
luzindole was injected 30 min before LPS/D-GalN exposure. The
plasma samples were collected 6 h after LPS/D-GalN exposure,
and the levels of ALT (a) and AST (b) were determined. Data are
expressed as the mean� SD. Compared to the LPS/D-GalN
group, n¼ 8, **P< 0.01.
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following the manufacturer’s instructions (Nanjing
Jiancheng Bioengineering Institute).

ELISA assay

The plasma samples were collected 1.5 h after LPS/
D-GalN exposure. Levels of TNF-a and IL-6 were mea-
sured by the ELISA kits following the manufacturer’s
instructions (NeoBioscience).

Determination of caspase activity

The liver samples were lysed according to the manufac-
turer’s instructions, and the protein content was deter-
mined by the Bradford method. A 96-well microtiter
plate was taken, and each sample was set up with a
measuring well and a blank well. The experimental pro-
cedure was carried out according to the instructions, and
finally the OD value was measured at a wavelength of
405 nm. The relative activity of caspase was calculated
and normalised by the protein content of each sample.

TUNEL assay

The sections were dewaxed by xylene for 1 h and
hydrated in 100%, 90%, 80% and 70% gradient alco-
hol for 0.5 h at room temperature (25�C), and the slice
was washed with PBS (three times for 5 min). The
experiment was then performed according to the fol-
lowing steps: add proteinase K at 37�C for 0.5 h, wash

the slice with PBS, incubate the slice with 0.1% Triton

X-100 solution containing 0.1 g sodium citrate for

4 min at 4�C, wash the slice with PBS, incubate the

slice with freshly prepared 3% H2O2 methanol solution

for 20 min at room temperature, wash with PBS, add

20 ml TUNEL reaction solution at 37�C for 1 h, wash

the slice with PBS, add 20 ml POD for 30 min at 37�C,
and wash the slice with PBS. Finally, add the DAB

solution to develop colour.

Western blot

The liver tissue was homogenised and centrifuged, and

the supernatant was collected to extract total tissue

protein. The protein concentration of each sample

was determined by bicinchoninic acid assay (BCA),

and the total protein in each sample was boiled and

denatured. The protein samples were separated by a

12% SDS-PAGE and then transferred to a nitrocellu-

lose membrane. After blocking with 5% defatted high

protein milk, the membrane was incubated with the

primary Ab overnight at 4�C. Then, the membrane

was washed with TBST three times, and the secondary

Ab was added and incubated at room temperature for

2 h. After washing, the blot was developed with the

ECL reagent. As an internal parameter, b-actin was

semi-quantitatively analysed for the grey value of

each band.
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Figure 2. Luzindole attenuated LPS/D-GalN-induced liver tissue damage. Acute hepatitis was induced in mice by i.p. injection of LPS/
D-GalN, and luzindole was injected 30 min before LPS/D-GalN exposure. The liver tissue was collected 6 h after LPS/D-GalN
exposure, and the liver sections were stained with hematoxylin and eosin for histological examination. The representative liver
sections are shown (original magnification 100�, 200� and 400�).
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Statistical analysis

The data are expressed as the mean�SD. The differ-
ences in the measurement data between groups were
compared by one-way ANOVA, followed by Turkey’s
test. In addition, the survival data were expressed with
the Kaplan–Meier curve and analysed by the log-rank
test. All the statistical analyses was performed using
SPSS software (v23, IBM Corp., Armonk, NY). A P
value of < 0.05 was considered statistically significant.

Results

Luzindole attenuated LPS/D-GalN-induced
liver injury

As shown in Figure 1, the level of ALT and AST in
plasma significantly increased in LPS/D-GalN-exposed
mice. The LPS/D-GalN-induced elevation of ALT and
AST was suppressed in mice receiving the luzindole inter-
vention. In the histological examinations, the liver lobule
structure in mice exposed to LPS/D-GalN was blurred,
and the hepatocyte cell line was disordered. These path-
ological changes were significantly alleviated in mice
receiving the luzindole intervention (Figure 2). The
survival analysis showed that treatment with luzindole
significantly improved survival of LPS/D-GalN-exposed
mice (Figure 3). These data suggested that LPS/D-GalN-
induced liver injury was alleviated by luzindole.

Luzindole suppressed the induction
of TNF-a and IL-6

In mice exposed to LPS/D-GalN, the levels of TNF-a
and IL-6, two representative pro-inflammatory

cytokines,17 in the model group increased significantly.

After the luzindole intervention, the induction of TNF-a
and IL-6 was significantly suppressed (Figure 4), suggest-

ing that LPS/D-GalN-induced inflammation was sup-

pressed by luzindole.

Luzindole inhibited LPS/D-GalN-induced apoptosis

The data from Western blot analysis indicated that

treatment with luzindole significantly inhibited LPS/

D-GalN-induced cleavage of caspase-3 and PARP
(Figure 5). In agreement with these findings, treatment

with luzindole inhibited the activities of caspase-3,

-8 and -9 in LPS/D-GalN-exposed mice (Figure 6).
In addition, the TUNEL assay indicated that

LPS/D-GalN-induced up-regulation of TUNEL-
positive cells was inhibited by luzindole (Figure 7).

These data suggested that LPS/D-GalN-induced apo-

ptosis was suppressed by luzindole.
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Figure 3. Luzindole improved the survival of LPS/D-GalN-
exposed mice. Acute hepatitis was induced in mice by i.p. injec-
tion of LPS/D-GalN, and luzindole was injected 30 min before
LPS/D-GalN exposure. The mortality of the experimental animals
was monitored every 6 h, and the cumulative survival curve was
recorded by a Kaplan–Meier survival curve. Compared to the
LPS/D-GalN group, n¼ 20, **P< 0.01.
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Figure 4. Luzindole suppressed LPS/D-GalN-induced production
of TNF-a and IL-6. Acute hepatitis was induced in mice by i.p.
injection of LPS/D-GalN, and luzindole was injected 30 min before
LPS/D-GalN exposure. The plasma samples were collected 1.5
h after LPS/D-GalN exposure, and the levels of TNF-a (a) and IL-6
(b) were determined. Data are expressed as the mean� SD.
Compared to the LPS/D-GalN group, n¼ 8, **P< 0.01.
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Discussion

In addition to its critical regulatory roles in sleep–wake
cycles, increasing evidence indicates that melatonin
also plays important roles in the modulation of inflam-
matory responses.7 It has been reported that treatment
with the melatonin receptor antagonist luzindole sup-
pressed experimental autoimmune encephalomyelitis in
mice.14 In agreement with these findings, the present
study found that treatment with luzindole significantly
alleviated LPS/D-GalN-induced acute hepatitis, sug-
gesting that luzindole might have potential value in
the intervention of inflammation-based liver injury.

In the LPS/D-GalN model, the activation of inflam-
matory cells and the induction of pro-inflammatory
mediators are the primary mechanisms underlying the
development of acute liver injury.18,19 Melatonin has
been reported to function as a dual regulator in inflam-
mation.7 Some studies have found that treatment with
melatonin resulted in beneficial outcomes in experimen-
tal animals with colitis and those with pancreatitis
ischaemia/reperfusion injury.20–22 On the contrary,
treatment with melatonin also promoted an inflamma-
tory response via activating 5-lipoxygenase and extend-
ing the lifespan of recruited leucocytes under certain
circumstances.23 In the present study, the alleviated
liver injury in luzindole-treated mice was associated
with suppressed production of pro-inflammatory

cytokines, including TNF-a and IL-6. These data sug-

gest that the anti-inflammatory potential of luzindole

might be responsible for the beneficial outcomes in

LPS/D-GalN-exposed mice.
Hepatocyte apoptosis is an important pathological

manifestation of acute hepatitis induced by LPS/

d-GalN as well as other harmful factors.24,25 In the

principle of LPS/D-GalN-induced acute hepatitis, the

production of TNF-a plays central roles in the induc-

tion of hepatocyte apoptosis.26 TNF-a initiates the

death receptor-dependent apoptotic pathway via its

receptor, which leads to the activation of caspase cas-

cade.27 Finally, the activated executive caspase-3

cleaves functional proteins such as PARP, which is a

crucial molecular event for the induction of apopto-

sis.28 In the present study, the activity of caspase-8, -9

and -3, the level of cleaved caspase-3 and cleaved

PARP, and the count of TUNEL-positive cells were

markedly reduced in mice that had received luzindole

treatment, suggesting that LPS/D-GalN-induced hepa-

tocyte apoptosis was suppressed by luzindole.
It has been reported that mice lacking the genes

encoding TNF-a or its receptor were resistant to

LPS/D-GalN-induced liver injury.24 Therefore, sup-

pression of TNF-a production might be an important

reason for the suppressed apoptosis in luzindole-

treated mice. In addition to the regulatory roles in
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Figure 5. Luzindole suppressed LPS/D-GalN-induced cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Acute hep-
atitis was induced in mice by i.p. injection of LPS/D-GalN, and luzindole was injected 30 min before LPS/D-GalN exposure. The liver
samples were collected 6 h after LPS/D-GalN exposure, and the levels of cleaved caspase-3 (a) and cleaved PARP (c) were determined.
The blot was scanned, and the data are expressed as relative intensity units (b and d). Data are expressed as the mean� SD.
Compared to the LPS/d-GalN group, n¼ 4, **P< 0.01.
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the production of pro-inflammatory cytokines, several

studies have found that melatonin is also directly

involved in regulating apoptosis. For example, treat-

ment with melatonin induced apoptosis in gastric

cancer cells, breast cancer cells, cervical cancer cells

and osteoblastic cells.29–32 Treatment with melatonin
also enhanced apoptosis induced by other stimulators
such as docetaxel and cisplatin.31,33 Interestingly, it has
been reported that treatment with melatonin induced
apoptosis in hepatoma cells.34,35 Therefore, it is possi-
ble that treatment with luzindole might block the pro-
apoptotic property of melatonin and provides protec-
tive benefits in LPS/D-GalN-exposed mice.

Although luzindole has been widely used as a
melatonin receptor antagonist, experimental studies
have also found that some pharmacological activities
of melatonin could not be blocked by luzindole. In rats
with experimental reflux oesophagitis, luzindole failed
to antagonise the protective effects of melatonin.36 In
addition, luzindole also failed to reverse the effects of
melatonin on the proliferation of granulosa cells under
thermal stress.37 Therefore, it could not be excluded
that the protective benefits of luzindole in the present
study might be independent of melatonin.

Interestingly, a study found that luzindole, but
not other melatonin receptor antagonists, suppressed
LPS-induced generation of malondialdehyde, a repre-
sentative marker for oxidative stress.38 In addition,
an in vitro study investigated the radical scavenging
activity of luzindole by using a spectrophotometrical
scavenger competition assay. The study found that
luzindole reduced the level of radical more intensely
than did ascorbic acid.39 This evidence suggests that
luzindole might have anti-oxidative activity, which
could be responsible for some of the melatonin recep-
tor–independent pharmacological effects of luzindole.

In fact, reactive oxygen species play crucial roles in
the LPS/D-GalN model. It has been reported that
genetic deficiency or pharmacological inhibition of
antioxidant enzyme resulted in exacerbated liver
injury in mice exposed to LPS/D-GalN.40,41 On the con-
trary, induction of heme oxygenase-1 or overexpression
of thioredoxin attenuated LPS/D-GalN-induced liver
injury.42,43 In addition, supplementing with antioxi-
dants, such as edaravone, N-acetylcysteine and
a-lipoic acid, markedly suppressed LPS/D-GalN-
induced elevation of ALT, inhibited the up-regulation
of pro-inflammatory cytokines and alleviated histolog-
ical abnormalities.44–46 Thus, the anti-oxidative effects
of luzindole might also contribute to the beneficial out-
comes in the present study.

Taken together, the present study found that
treatment with the widely used melatonin receptor
antagonist luzindole suppressed LPS/D-GalN-induced
inflammatory response, attenuated hepatocyte apopto-
sis and improved the survival of the experimental ani-
mals. These beneficial outcomes might result from the
prevention of the pro-inflammatory and pro-apoptotic
effects of melatonin by luzindole or could be attributed
to the anti-oxidative effect of luzindole, but the detailed
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Figure 6. Luzindole inhibits LPS/D-GalN-induced activation of
caspase cascade. Acute hepatitis was induced in mice by i.p.
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underlying mechanisms remain to be further investigat-
ed. This study suggests that luzindole might have
potential value for the pharmacological intervention
of inflammation-based hepatic disorders.
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