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Objectives: To systematically evaluate and compare the predictive capability for
microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients based on
radiomics from multi-parametric MRI (mp-MRI) including six sequences when used
individually or combined, and to establish and validate the optimal combined model.

Methods: A total of 195 patients confirmed HCC were divided into training (n = 136) and
validation (n = 59) datasets. All volumes of interest of tumors were respectively segmented
on T2-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient, artery
phase, portal venous phase, and delay phase sequences, from which quantitative
radiomics features were extracted and analyzed individually or combined. Multivariate
logistic regression analyses were undertaken to construct clinical model, respective
single-sequence radiomics models, fusion radiomics models based on different
sequences and combined model. The accuracy, sensitivity, specificity and area under
the receiver operating characteristic curve (AUC) were calculated to evaluate the
performance of different models.

Results: Among nine radiomics models, the model from all sequences performed best
with AUCs 0.889 and 0.822 in the training and validation datasets, respectively. The
combined model incorporating radiomics from all sequences and effective clinical features
achieved satisfactory preoperative prediction of MVI with AUCs 0.901 and 0.840,
respectively, and could identify the higher risk population of MVI (P < 0.001). The
Delong test manifested significant differences with P < 0.001 in the training dataset and
P = 0.005 in the validation dataset between the combined model and clinical model.

Conclusions: The combined model can preoperatively and noninvasively predict MVI in
HCC patients and may act as a usefully clinical tool to guide subsequent individualized
treatment.
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 75%–85% of
primary liver cancer, which is the sixth most common cancer
and the fourth leading cause of cancer-related death globally (1,
2). Hepatectomy and liver transplantation are potential effective
treatments for HCC. However, the prognosis is still poor with
high tumor recurrence rate of 70% after hepatectomy and 25%
after transplantation (3, 4). Microvascular invasion (MVI) is
regarded as an extremely important independent risk factor of
postoperative recurrence and poor outcome (5, 6). Study found
that patients with higher MVI risk benefited from anatomical
hepatectomy and widened surgical margin in terms of disease-
free survival and overall survival (7). Unfortunately, the
diagnosis of MVI still depends on the postoperative
histopathology in current clinical practice (8). Therefore, early
and accurate preoperative prediction of the MVI is of vital
importance for clinical decision-making in choosing the best
strategy to manage the individual HCC patients (9).

Currently, many efforts have been made to preoperatively
find the factors related to MVI, including clinical biomarkers and
imaging features. According to previous researches (10–12),
serum total bilirubin (TBil), hepatitis B surface antigen
(HBsAg), neutrophils to lymphocytes ratio (NLR), alpha-
fetoprotein (AFP), and tumor maximum diameter (MD) were
related to MVI. However, significant biomarkers varied from
study to study. Serum AFP lacked sensitivity for the prediction of
MVI (13). Besides, some biomarkers, such as TBil and NLR, also
fluctuated under the influence of time, eating, exercise, and so on.
Various researches based on preoperative imaging features of
HCC were performed to predict the MVI, but showed no
consensus (14–16). Moreover, the reproducibility and
practicality were still controversial due to the overreliance on
the subjective judgment of radiologists (17). All of these lack
characteristic evaluation on tumor heterogeneity that reflects
different biological behaviors of HCC.

Radiomics, as an emerging method for medical image
processing, is used to convert medical images into high-
throughput quantification features that greatly push the
development of precision medicine (18). In contrast to tissue
biomarkers, radiomics noninvasively reflect the entire tumor at
the heterogeneity, phenotype and microenvironment (19).
Recently, a few studies have been published on the utility of
radiomics for MVI prediction in HCC patients based on CT (20–
22) and hepatobiliary-phase MRI (23, 24). They found that
radiomics was more desirable than conventional and
functional imaging methods, and the results appeared to be
preliminary but encouraging (25). Multi-parametric MRI (mp-
MRI) includes different sequences, indicating its greater potential
to assess tumor metabolism and proliferation with higher
accuracy (26).

Therefore, in this study, we aimed to systematically evaluate
and compare the predictive capability for MVI in HCC patients
based on radiomics from mp-MRI including six sequences when
used individually or combined, and to establish and validate the
optimal combined model.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Patients
This retrospective study was approved by our institutional ethics
committee and informed consent was waived. Between January
2018 and July 2020, 379 patients underwent preoperative mp-
MRI for HCC in our institutional database. All data were
acquired from the picture archiving and communication
system (PACS), which was used to identify patients who had
pathologically confirmedMVI-positive (MVI+) or MVI-negative
(MVI−). Inclusion criteria included: ①pathologically confirmed
HCC; ②single tumor with maximum diameter no more than
5 cm; ③no macrovascular invasion and no distant metastasis;
④underwent radical resection; ⑤no cancer-related treatments
before mp-MRI and operation; and⑥mp-MRI with sufficient
image quality. A total of 184 patients were excluded because of
the following reasons: ①more than 5 cm in maximum diameter
(n = 51); ② multiple tumors or history of other tumors (n = 47);
③ macrovascular invasion or distant metastasis (n = 32);
④preoperative antitumor treatments (n =3 4); ⑤incomplete
clinicopathological data (n = 12); or ⑥ apparent artifact that
affect imaging analysis (n = 8). Finally, 195 patients were enrolled
and were divided into training (n = 136) and validation (n = 59)
datasets at a ratio of 7:3 according to the time of mp-MRI
examination. The patient recruitment process is shown in
Figure 1.

Clinical Data
The preoperative clinical data were collected from our PACS,
including age, gender (male or female), HBsAg status (positive or
negative), NLR level, AFP level, TBil level, MD, and tumor
location (left or right lobe).
FIGURE 1 | Flowchart of the enrolled patients. (HCC, hepatocellular
carcinoma; mp-MRI, multi-parametric MRI; MVI+, patients with microvascular
invasion; MVI−, patients without microvascular invasion).
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MRI Protocol
All patients received mp-MRI examinations one week before
surgery using a 3.0T MRI scanner (Discovery MR 750, GE
Healthcare, Waukesha, WI, United States). Our liver mp-MRI
protocol included axial T2-weighted imaging (T2WI) with fat
suppression, dual-echo (in-phase and opposed-phase) T1-
weighted imaging (T1WI), diffusion-weighted imaging (DWI),
apparent diffusion coefficient (ADC), pre-contrast and post-
contrast dynamic three-dimensional fast-spoiled gradient-
recalled echo sequence (liver acceleration volume acquisition,
LAVA). DWI was obtained using a respiratory triggering, a
single-shot echo-planar imaging pulse sequence with b values
of 0 and 800 s/mm2. Dynamic contrast-enhanced (DCE) LAVA
images were acquired at 15–20s (arterial phase, AP), 50–55s
(portal venous phase, PP) and 85–90s (delayed phase, DP) after
contrast-agent injection. The scanning parameters were
described as Table 1.

Image Segmentation and Feature
Selection
Image preprocessing including resample, intensity normalization
and gray-level discretization were performed with AK software
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare) as described
previously (27). Then, we got the standardized images with 1 × 1 ×
1 mm3 voxel size for each sequence. Three-dimensional manual
segmentation of the entire HCC was performed by an abdominal
radiologist with more than 10 years of experience in liver MRI
using the ITK-SNAP software (28). All volumes of interest (VOIs)
were respectively segmented on the standardized T2WI, DWI with
b values of 800 s/mm2, ADC, AP, PP, DP sequences slice-by-slice
for each patient. The segmentation results were then corrected and
validated by a senior radiologist with more than 15 years of
experience in liver MRI. To ensure reproducibility and
repeatability, the inter-reader reliability on VOI segmentation
was computed by comparing the measurement from these two
experienced radiologists in a cohort of 30 randomly selected
patients by Spearman’s rank correlation test. The two
radiologists were completely blinded to the clinical, laboratory,
and pathologic information.

All VOIs were imported into the AK software for feature
extraction, including histogram, gray-level cooccurrence
matrix (GLCM), gray-level size zone matrix (GLSZM), run-
length matrix (RLM), formfactor, and haralick. A total of 396
radiomics features were extracted for each patient each sequence,
including histogram (42 features), GLCM (144 features), GLSZM
(11 features), RLM (180 features), formfactor (9 features), and
haralick (10 features). The details of all radiomics features are
Frontiers in Oncology | www.frontiersin.org 3
described in Supplementary Figure S1. Firstly, Spearman’s rank
correlation test was performed on a cohort of 30 randomly
selected patients not only to test the repeatability, but also to
exclude the radiomics features with correlation coefficients lower
than 0.80. Then, dimension reduction was performed using
analysis of variance and Mann-Whitney U-test, correlation
analysis and the least absolute shrinkage and selection operator
(LASSO) to reduce data redundancy and to further select
significant radiomics features. The details of radiomics features
extraction and selection for each sequence are described in
Supplementary Radiomics Feature.

Model Construction and Evaluation
In order to preoperatively predict MVI, multivariate logistic
regression analysis was undertaken to construct a total of 11
models, including one clinical model, nine radiomics models and
one combined model. The clinical model was constructed by
integrating the final selected clinical features using logistic
regression modeling. The radiomics models were built using the
respective remaining features. And radiomics models included six
single-sequence models based on T2WI, DWI, ADC, AP, PP, and
DP, respectively, and three fusion models based on AP, PP and
DP sequences (DCE), T2WI and DP sequences (T2WI&DP), all
sequences (ALL), respectively. The combined model incorporated
radiomics from all sequences and effective clinical features
together with a logistic regression model.

Thereafter, we calculated the radiomics score for each patient.
The predictive efficiency of different models in both the training
and validation datasets was then evaluated using the area under
the receiver operating characteristic (ROC) curve (AUC).
Calibration curve was used to assess the calibration. Further,
decision curve analysis (DCA) was conducted to assess the
clinical efficiency of different models in predicting MVI.

Statistical Analysis
Statistical analyses were performed with R software (version
3.4.1) and SPSS software (version 24.0). Continuous variables
were expressed as mean ± standard deviation or median
(interquartile range). Categorical variables were presented as
numbers (percentages). The normality of distribution was
evaluated using the Kolmogorov-Smirnov test. The two-sample
t test, Mann-Whitney U test, and Chi-square test were used to
identify variables differed significantly between the training and
validation datasets. Then, LASSO logistic regression model with
penalty parameter tuning was conducted by 10-fold cross-
validation based on the minimum criteria to select the most
valuable predictive features. Forward stepwise selection was
TABLE 1 | Imaging protocol parameters for multi-parametric MRI.

Sequences TR (msec) TE (msec) FOV (mm²) matrix thickness (mm) interslice gap (mm) NEX

T2WI 13,000 75 360 × 360 320 × 320 5 1 1.5
T1WI 3.7 1.7 360 × 288 260 × 224 5 0 1.0
DWI 8,000 50 360 × 288 128 × 96 5 1 2.0
DCE 3.7 1.7 360 × 288 260 × 224 5 0 1.0
March
 2021 | Volume 11 | Article 63
TR, repetition time; TE, echo time; FOV, field of view; NEX, number of excitations; DCE, dynamic contrast-enhanced.
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applied through a likelihood ratio test and Akaike’s information
criterion as the stopping rule. Multivariate logistic regression
analysis was used to construct prediction models. ROC curves
were used to evaluate the predictive efficiency of different models
in both the training and validation datasets. The ‘‘rms’’ package
of R software was used to construct calibration plots. The
“dca.R.” package of R software was used to construct DCA.
Statistical significance was set at P < 0.05.
RESULTS

Patients’ Characteristics
In this study, a total of 195 patients were included with an
average age of 57.65 ± 10.80 years (range: 27–83 years; median:
56.00 years), and were divided into training (n = 136) and
validation (n = 59) datasets. Patients’ characteristics in the
training and validation datasets were fully detailed in Table 2.
There were no statistical differences between the training and
validation datasets (P = 0.139–0.722). We observed statistical
differences between the MVI+ and MVI− groups in terms of age
(P = 0.044), AFP (P = 0.001), MD (P = 0.014) in the training
dataset and AFP (P = 0.003) in the validation dataset. There were
no significant differences between the MVI+ and MVI− groups
in terms of gender, HBsAg, NLR, TBil, and tumor location both
in the training and in the validation datasets.

Models Construction
Univariate and multivariate analyses showed that age, AFP and
MD were effective factors for clinical model construction.

Figure 2 showed the radiomics workflow. A total of 396
radiomics features were extracted for each patient each sequence.
Spearman’s rank correlation test was performed to test the
repeatability of radiomics features with correlation coefficients
more than 0.80. Then, 378, 336, 351, 342, 327, 380 features were
retained for T2WI, DWI, ADC, AP, PP, and DP, respectively.
Frontiers in Oncology | www.frontiersin.org 4
According to dimensionality reduction, 11, 7, 6, 8, 6, and 9
features were ultimately selected for T2WI, DWI, ADC, AP, PP,
and DP radiomics model construction, respectively. Details of
the selected radiomics features were shown in Supplementary
Table S1.

Performance of Different Models
The clinical model performed poorly with AUCs 0.663 and 0.611
in the training and validation datasets, respectively (Figure 3).

Among the six single-sequence radiomics models, we
observed that the two best-performing models were T2WI
(AUC = 0.816 and 0.754, respectively) and DP (AUC = 0.824
and 0.806, respectively), which outperformed the DWI (AUC =
0.704 and 0.708, respectively), ADC (AUC = 0.739 and 0.737,
respectively), AP (AUC = 0.736 and 0.748, respectively), and PP
(AUC = 0.713 and 0.737, respectively) models both in the
training dataset and in the validation dataset (Figure 3,
Supplementary Figure S2A, B).

Among the three fusion radiomics models, the ALL model
had the best predictive performance with AUCs 0.889 and 0.822
in the training and validation datasets, respectively (Figure 3,
Supplementary Figures S2C, D).

Then, incorporating radiomics from all sequences and
effective clinical features to establish the optimal combined
model, the predictive performance improved with AUCs 0.901
and 0.840 in the training and validation datasets, respectively
(Figure 3). The AUC, sensitivity, specificity and accuracy for
each model were summarized in Table 3.

Validation of Combined Model
As the combined model had the best predictive performance, we
validated the efficacy of this model. Comparison was made
between the combined model and the other models using the
Delong test. It was worth mentioning that significant differences
with P < 0.001 in the training dataset and P = 0.005 in the
validation dataset between the combined model and the clinical
TABLE 2 | Patients’ characteristics in the training and validation datasets.

Characteristics Training dataset (n = 136) Validation dataset (n = 59) Pinter

MVI+ (n = 76) MVI− (n = 60) Pintra MVI+ (n = 34) MVI− (n = 25) Pintra

Age (years), median (IQR) 55.50 (51.00–64.00) 60.00 (53.00–68.75) 0.044* 54.50 (49.00–66.25) 54.00 (51.50–68.00) 0.480 0.459
Gender, no. (%)
Male 65 (85.5) 56 (93.3) 0.243 30 (88.2) 20 (80.0) 0.615 0.409
Female 11 (14.5) 4 (6.7) 4 (11.8) 5 (20.0)

HBsAg, no. (%)
Positive 61 (80.3) 44 (73.3) 0.339 31 (91.2) 20 (80.0) 0.393 0.139
Negative 15 (19.7) 16 (26.7) 3 (8.8) 5 (20.0)

NLR, median (IQR) 3.10 (1.84–5.53) 2.45 (1.51–4.98) 0.329 2.56 (1.76–4.24) 1.95 (1.31–3.49) 0.163 0.150
AFP, median (IQR) 89.05 (6.60–787.38) 6.50 (3.23–89.40) 0.001* 159.60 (8.90–4,529.50) 6.30 (2.95–15.50) 0.003* 0.722
TBil, median (IQR) 15.05 (13.30–23.10) 18.45 (13.13–23.70) 0.302 16.50 (11.25–23.03) 15.60 (13.40–24.40) 0.505 0.695
MD (cm), median (IQR) 4.40 (3.05–5.00) 3.50 (2.05–4.68) 0.014* 4.00 (2.73–5.00) 3.20 (2.00–5.00) 0.214 0.650
Location, no. (%)
Left lobe 24 (31.6) 24 (40.0) 0.308 12 (35.3) 10 (40.0) 0.712 0.294
Right lobe 52 (68.4) 36 (60.0) 22 (64.7) 15 (60.0)
March 2021 | Volume 11 | Article 6
MVI+, patients with microvascular invasion; MVI-, patients without microvascular invasion; IQR, interquartile range; HBsAg, hepatitis B surface antigen; NLR, neutrophils to lymphocytes
ratio; AFP, alpha-fetoprotein; TBil, serum total bilirubin; MD, tumor maximum diameter. Pintra is the result of univariate analyses between the MVI+ and MVI- groups while Pinter represents
whether a significant difference exists between the training and validation datasets. *represents P < 0.05.
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model were achieved (Figures 4A, B). According to the optimal
diagnostic cutoff value of 0.865, the patients were divided into
high-risk group and low-risk group. There was a significant
difference in predicting MVI status between the high-risk group
and the low-risk group (P < 0.001), as shown in Figure 4C.
Furthermore, the calibration curves demonstrated good
consistency between the predicted and the actual MVI
probability (Figures 5A, B). The Hosmer-Lemeshow test
yielded no significant difference between the predictive
calibration curve and the ideal curve for MVI prediction both
in the training (P = 0.479) and in the validation datasets (P =
0.975), indicating no deviation from normality. DCA indicated
the farther the decision curve was from the two extreme curves,
the higher the clinical decision net benefit. In this study, the net
benefit for the combined model was higher than the measures
that treat all patients and treat none patient when the threshold
Frontiers in Oncology | www.frontiersin.org 6
probabilities were within 0.097–1.000 in the training dataset and
0.219–0.806 in the validation dataset (Figures 5C, D).
DISCUSSION

In this study, we systematically evaluated and compared the
predictive capability for MVI in HCC patients based on
radiomics from mp-MRI including six sequences when used
individually or combined. It was noticed that the DP radiomics
model (AUC = 0.824 and 0.806, respectively) outperformed
other single-sequence models and the ALL radiomics model
(AUC = 0.889 and 0.822, respectively) outperformed other
fusion models both in training and in validation datasets.
Furthermore, we established and validated an optimal
combined model incorporating radiomics from all sequences
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves for microvascular invasion prediction of different models in the training (A) and validation (B) datasets.
(Clinical, the clinical model based on effective clinical parameters; DP, the DP radiomics model based on features from delayed phase; ALL, the fusion radiomics
model based on features from all sequences; Combined, the combined model based on radiomics features from all sequences and effective clinical parameters).
TABLE 3 | Predictive performance of different models.

Models Training dataset (n = 136) Validation dataset (n = 59)

AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy

Clinical 0.663 (0.567–0.759) 0.776 0.517 0.662 0.611 (0.463–0.758) 0.676 0.560 0.627
T2WI 0.816 (0.742–0.889) 0.819 0.656 0.743 0.754 (0.620–0.889) 0.737 0.667 0.712
DWI 0.704 (0.617–0.791) 0.732 0.547 0.644 0.708 (0.568–0.849) 0.684 0.571 0.644
ADC 0.739 (0.655–0.822) 0.720 0.672 0.699 0.737 (0.608–0.866) 0.743 0.500 0.644
AP 0.736 (0.652–0.820) 0.750 0.483 0.632 0.748 (0.623–0.873) 0.706 0.640 0.678
PP 0.713 (0.626–0.800) 0.827 0.410 0.640 0.737 (0.595–0.878) 0.857 0.542 0.729
DP 0.824 (0.755–0.893) 0.795 0.667 0.735 0.806 (0.682–0.930) 0.811 0.727 0.780
DCE 0.846 (0.779–0.913) 0.855 0.683 0.779 0.791 (0.666–0.915) 0.794 0.760 0.780
T2WI&DP 0.869 (0.809–0.928) 0.867 0.689 0.787 0.799 (0.672–0.926) 0.829 0.625 0.746
ALL 0.889 (0.834–0.943) 0.868 0.783 0.831 0.822 (0.708–0.937) 0.794 0.800 0.797
Combined 0.901 (0.850–0.951) 0.855 0.750 0.809 0.840 (0.738–0.942) 0.765 0.800 0.780
March 2021 |
 Volume 11 | Arti
AP, arterial phase; PP, portal venous phase; DP, delay phase; DCE, dynamic contrast-enhanced; ALL, all sequences; Combined, incorporating radiomics from all sequences and effective
clinical features; AUC, area under the curve; CI, confidence interval.
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and clinical features. Encouragingly, the results showed that
the combined model can identify the higher risk population of
MVI (P < 0.0001). This means that it is an accurate and
effective tool that predicts MVI and may aid in clinical
decision-making.

Recently, few studies about the utility of radiomics derived
from mp-MRI in MVI preoperative prediction of HCC have
been reported (29–31). Zhu et al. (29) only analyzed AP and PP
radiomics and believed that AP radiomics model showed better
diagnostic performance than did the PP model with AUC 0.773
vs. 0.623 in the validation dataset. Nebbia et al. (30) found the
T2WI and PP radiomics models performed better with AUCs
0.808 and 0.792 to predict MVI. Another result (31) showed that
first-order radiomics features extracted from PP (OR = 4.7, 95%
CI 1.37–16.3, P = 0.014) were associated with MVI. However,
they all ignored the preoperative prediction value for MVI based
on radiomics derived from DP sequence. Besides, the last two
studies were lack of further validation.

In this study, we studied six MRI sequences and
systematically evaluated and compared their performance
when used individually or combined. Interestingly, the
Frontiers in Oncology | www.frontiersin.org 7
predictive efficiency of each radiomics model was higher than
that of clinical model indicating that the radiomics could act as a
potential noninvasive biomarker to preoperatively predict MVI.

Among single-sequence radiomics models, the T2WI (AUC =
0.816 and 0.754, respectively) and the DP (AUC = 0.824 and
0.806, respectively) models outperformed other models both in
training and in validation datasets. For T2WI, it was consistent
with previous report with an AUC of 0.808 (30). However, that
study only included 99 patients with unbalanced samples (61
MVI+ patients) and lacked further validation. In addition, only
14 cases with tumor size less than 3 cm in that study. For DP,
this could be explained that the tumor continuously released
large amounts of angiogenesis promoting factors, thus
diversifying the neo-vasculature supplying blood of the tumor
(32), changing the tumor perfusion, and leading to detectable
differences in contrast-enhancement between MVI− and MVI+.
The DP imaging are more valuable in showing the extravascular
space and the vascular permeability. Therefore, DP is more
valuable in predicting MVI in HCC patients. Previous study
had reported that higher CT values in DP were closely related to
MVI in HCC (33) and radiomics was a very promising non-
A B

C

FIGURE 4 | Comparison was made between the combined model and the other models using the Delong test in the training (A) and validation (B) datasets.
According to the combined model, the probability of microvascular invasion in the high-risk group was significantly higher than that in the low-risk group (C).
March 2021 | Volume 11 | Article 633596
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invasive method for individualized evaluation based on intra-
tumor heterogeneity analysis (34–36). These further confirmed
our point.

Among fusion radiomics models, the ALL radiomics model
performed best with AUCs 0.889 and 0.822 in the training and
validation datasets, respectively. Previously, Zhang et al. (37)
explored the radiomics model combining bi-regional radiomics
features from DCE MRI, showing that the model can classify
MVI+ and MVI– with AUCs 0.784 and 0.820 in the training and
validation datasets, respectively, which was in accord with the
results of our study. However, different from that study, our ALL
radiomics model showed higher sensitivity both in the training
(0.868 vs. 0.657) and in the validation (0.794 vs. 0.692) datasets.
It was worth mentioning that Nebbia et al. (30) found that the
performance of the model dropped when combining the tumor
and margin radiomics features together, indicating that
information from the margin was not complementary to (and
may even be in conflict with) information from the tumor.
Therefore, our study only used radiomics extracted from the
Frontiers in Oncology | www.frontiersin.org 8
whole tumors to predict MVI, and showed better predictive
performance. In addition, our results revealed that different
sequences can capture complementary information, thus
achieving increased performance when combined. This is the
first study to establish radiomics model from all MRI sequences
to predict MVI in HCC so far.

Furthermore, we compared clinical model, different
radiomics models and combined model in predicting MVI,
which can provide references for subsequent treatments and
selection of clinical evaluations. The results showed that the
combined model achieved satisfactory preoperative prediction
with good discrimination both in the training and validation
datasets. Encouragingly, we found that the predictive ability of
combined model (AUC = 0.901 and 0.840, respectively)
significantly higher than that of clinical model (AUC = 0.663
and 0.611, respectively) both in the training dataset (P < 0.0001)
and in the validation dataset (P = 0.0054). Moreover, the
combined model showed better predictive performance than
other radiomics models, although there were no statistically
A B

C D

FIGURE 5 | Calibration curves of the combined model in predicting microvascular invasion status on the training (A) and validation (B) datasets, which demonstrated good
agreement with the ideal curve. The net benefit of the decision curve analysis (DCA) for the combined model was higher than the measures that treat all patients and treat
none patient when the threshold probabilities were within 0.097–1.000 in the training dataset (C) and 0.219–0.806 in the validation dataset (D).
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significant differences in the validation dataset. The sensitivity,
specificity and accuracy of the combined model were more than
75%. More encouragingly, we found the combined model can
identify the higher risk population of MVI. This means that it is
an accurate and effective tool that predicts MVI and may aid in
clinical decision-making. These findings showed that a multi-
sequence approach to predict MVI was advisable.

From the clinical perspective, radiomics has the advantages of
stable calculation, high repeatability, indefatigability, and free
human subjective interference (38). The results of this study
suggest that radiomics may be an option for preoperative
prediction of MVI in HCC. This could alert pathologists to
conduct more detailed pathological examination, especially when
preoperative radiomics indicates a high likelihood of MVI.
Meanwhile, predicting the possibility of MVI could also help
clinicians to choose more suitable treatments for HCC patients.

The present study had the following advantages. First,
different from previous researches, we studied six MRI
sequences and systematically evaluated and compared their
effects when used individually or combined. Second, the
combined model we developed was based on routinely
available radiologic images and clinical laboratory data and
was easy to implement in routine clinical practice. Third, to
the best of our knowledge, this was the first study incorporating
radiomics from all sequences and clinical features to build a
combined model for predicting the MVI status preoperatively
and noninvasively. Last but not least, training and validation
datasets were used to make the combined model more objective.

Despite our promising results, our study has some limitations.
First, the sample size was limited to 195 patients. Nevertheless, we
conducted an extensive analysis investigating six different MRI
sequences. Second, this was a retrospective study using the same
MRI scanner in a single-center. While this data consistency reduces
potential confounding effects, external datasets and different MRI
scanners are necessary to confirm the prediction value of the
combined model. Third, because tumor VOIs were manually
drawn, there could be some differences between the tumor VOI
outlines in different sequences. More accurate and automatic tumor
segmentation is needed for an in-depth analysis in future work.

In conclusion, our study suggests that radiomics based on
mp-MRI can predict MVI in HCC preoperatively and
noninvasively. The combined model incorporating radiomics
from all sequences and clinical features can identify the higher
risk population of MVI. It may be valuable for clinicians to
Frontiers in Oncology | www.frontiersin.org 9
objectively select appropriate treatments and as an individualized
predictive tool for improving clinical outcomes.
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