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ABSTRACT
Background. The role of methane in global warming has become paramount to the
environment and the human society, especially in the past few decades.Methane cycling
microbial communities play an important role in the global methane cycle, which is
why the characterization of these communities is critical to understand andmanipulate
their behavior. Methanotrophs are a major player in these communities and are able
to oxidize methane as their primary carbon source.
Results. Lake Washington is a freshwater lake characterized by a methane-oxygen
countergradient that contains amethane cyclingmicrobial community.Methanotrophs
are a major part of this community involved in assimilating methane from lake water.
Two significant methanotrophic species in this community are Methylobacter and
Methylomonas. In this work, these methanotrophs are computationally studied via
developing highly curated genome-scale metabolic models. Each model was then
integrated to form a community model with a multi-level optimization framework.
The competitive and mutualistic metabolic interactions among Methylobacter and
Methylomonas were also characterized. The community model was next tested under
carbon, oxygen, and nitrogen limited conditions in addition to a nutrient-rich
condition to observe the systematic shifts in the internal metabolic pathways and
extracellular metabolite exchanges. Each condition showed variations in the methane
oxidation pathway, pyruvate metabolism, and the TCA cycle as well as the excretion of
formaldehyde and carbon di-oxide in the community. Finally, the community model
was simulated under fixed ratios of these twomembers to reflect the opposing behavior
in the two-member synthetic community and in sediment-incubated communities.
The community simulations predicted a noticeable switch in intracellular carbon
metabolism and formaldehyde transfer between community members in sediment-
incubated vs. synthetic condition.
Conclusion. In this work, we attempted to predict the response of a simplified methane
cyclingmicrobial community from LakeWashington to varying environments and also
provide an insight into the difference of dynamics in sediment-incubated microcosm
community and synthetic co-cultures. Overall, this study lays the ground for in silico
systems-level studies of freshwater lake ecosystems, which can drive future efforts of
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understanding, engineering, and modifying these communities for dealing with global
warming issues.

Subjects Bioinformatics, Computational Biology, Microbiology, Molecular Biology, Freshwater
Biology
Keywords Methylomonas sp. LW13, Microbial community, Genome-scale metabolic modeling,
Methane-cycling community, Lake Washington,Methylobacter tundripaludum 21/22

INTRODUCTION
The accelerated rise in worldwide average temperature in recent years is posing a serious
threat to the environment, terrestrial ecosystems, human health, economy, and the ultimate
survival of the planet earth. About 20 percent of global warming is caused by methane and
it is expected to be 86 times more potent than carbon di-oxide in warming the earth over
the next two decades (Houghton, Jenkins & Ephraums, 1990; IPCC, 2013). The impacts
of the rapid increase in atmospheric methane (Nisbet et al., 2019) are compounded as
higher temperatures are associated with an increase in methane production from wetlands
and lakes (Yvon-Durocher et al., 2014). Aerobic methanotrophs are mostly gram-negative
Proteobacteria that are an integral part of the global carbon cycle (Hanson & Hanson, 1996).
They exist in diverse environments such as wetlands, lakes, and the tundra and use the
enzymemethanemonooxygenase (MMO) to oxidizemethane as their sole source of carbon
(Hanson & Hanson, 1996). Methane-oxidizing Verrucomicrobia found in geothermal acidic
environments are also involved in methane oxidation while solely using carbon dioxide
in the Calvin cycle (Carere et al., 2019; Mohammadi et al., 2019; Van Teeseling et al., 2014).
The anaerobic methanotrophic archaea are also an important sink of methane that couple
methane oxidation with sulfate reduction mediated by sulfate-reducing bacteria (Cui et
al., 2015). Thus, methanotrophs act as the primary biological sink for methane (Hanson
& Hanson, 1996), consuming up to 90 percent of the methane produced in soil/sediments
in addition to the atmospheric methane (Whalen & Reeburgh, 1990; Krause et al., 2017).
Methanotrophs have also shown the ability to produce various useful products such as
single-cell proteins, biodiesels, biopolymers, and osmo-protectants (Strong, Xie & Clarke,
2015).

Lakes act as major sources and sinks for methane and account for 6 to 16 percent of
biologically produced methane (IPCC, 2013; Yvon-Durocher et al., 2014). LakeWashington
is a freshwater lake characterized by a methane-cycling community where methanotrophs
are one of the important functional microbial groups involved in methane oxidation (Yu
et al., 2016). It contains a steep vertical counter-gradient of methane and oxygen, and
is separated into oxic and anoxic layers where methane production and consumption
occur, respectively (Yu et al., 2016). Hence, it can be a model system to better understand
methane-cycling communities in lakes and their role in the global methane cycle.
Understanding the metabolic interactions in these communities will aid in developing
methods to reduce the amount of methane emitted from lakes. A diverse array of microbes
exist in the Lake Washington community, where Proteobacteria comprise 33% of the
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community and includes a major subtype of methanotrophs, Methylococcaceae at a
10% abundance level (Beck et al., 2013). The genus Methylobacter is the most dominant
player in Methylococcaceae group at 47.7%, while other major players include Crenothrix,
Methylomonas, andMethylomicrobium at 30.0%, 10.8%, and 7.4%, respectively (Beck et al.,
2013). Other members include cyanobacteria, bacteriodetes, acidobacteria, and chloroflexi
(Beck et al., 2013).

Understanding the physiological dynamics and interactions in natural methane-cycling
communities, such as the Lake Washington, are crucial to addressing problems concerning
methane’s role in global warming and leveraging methanotrophs’ possible functions
in bioremediation and bioproduction. Omics-based techniques and high-throughput
sequencing can elucidate important features of the community such as taxonomic
information, community composition, and presence of functionally important genes
(Temperton & Giovannoni, 2012). However, it is difficult to assign functionality tomembers
of the community and decipher the roles of individual players due to the complexity of
the community and the data involved (Zengler, 2009; Zengler & Palsson, 2012). On the
other hand, synthetic communities were proven to be efficient models to provide insight
into metabolic capabilities and interactions (De Roy et al., 2014). Simple representative
community structures can be made to lower complexity, achieve more consistent results,
and efficiently elucidate inter-species interactions (De Roy et al., 2014). Certain Lake
Washington community members are easier to cultivate in a laboratory setting than other
members. For instance, Methylomonas and Methylosinus species previously shown ease
of cultivation in the laboratory (Auman et al., 2000). However, Methylobacter species
were difficult to isolate and demonstrated poor growth compared to Methylomonas
and Methylosinus (Yu et al., 2016). A synthetic community comprising 50 different
Lake Washington microbes belonging to 10 methanotrophic, 36 methylotrophic, and
4 non-methanotrophic heterobacteria showed that Methylobacter was outperformed by
Methylomonas in the community (Yu et al., 2016). Similar results about the dominance
of Methylomonas in pure cultures and in standard conditions were observed in their
later experiments (Yu, Beck & Chistoserdova, 2017). These observations were inconsistent
with previous stable isotope probing studies that found Methylobacter is the dominant
Methylococcaceae species among microbes from Lake Washington when grown on
methane (Beck et al., 2013; Kalyuzhnaya et al., 2008). These inconsistencies indicate that
the complexities of biological systems oftenmake it challenging to understand the functions
and interactions within and among organisms in synthetic communities via in vitro and
in vivo studies.

In silico evaluation and analysis utilizing mathematical relation-based modeling allow
for a high-resolution understanding of the biological processes in a microbial community.
The availability of genome-scale metabolic network models combined with biological
constraints provide multiple methods to analyze, perform in silico experiment, develop
hypotheses, and redesign biological systems at a genome-level (Zomorrodi & Maranas,
2012; Zomorrodi, Islam &Maranas, 2014; Maranas & Zomorrodi, 2016; Islam & Saha,
2018; Alsiyabi, Immethun & Saha, 2019; Islam et al., 2020; Schroeder, Harris & Saha, 2020;
Schroeder & Saha, 2019). To develop effective multi-species community models, significant
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and comprehensive knowledge of inter-species interactions and experimental data must
be utilized. Compartmentalized community metabolic models were used to model simple
microbial consortia involved in bioremediation, synthetic auxotrophic co-growth, human
gut microbiome, and soil bacterial ecosystems (Stolyar et al., 2007; Bizukojc et al., 2010;
Lewis et al., 2010; Zhuang et al., 2011; Shoaie & Nielsen, 2014; Henry et al., 2016). On the
other hand, community modeling frameworks incorporating the trade-offs between
species- and community-level fitness successfully modeled steady-state and dynamic
behavior in naturally occurring and synthetic soil microbial communities, synthetic
co-cultures for bioproduction, human gut microbiome, and very recently to understand
the microbial interactions in bovine rumen and viral influences (Zomorrodi & Maranas,
2012; Zomorrodi, Islam &Maranas, 2014; Chan, Simons & Maranas, 2017; Islam et al.,
2019). Other novel methods were also proposed for modeling of such communities
involving elementary mode analysis, evolutionary game theory, nonlinear dynamics, and
stochastic processes (Vallino, 2003; Lehmann & Keller, 2006; Shou, Ram & Vilar, 2007;
Borenstein & Feldman, 2009; Freilich et al., 2009; Frey, 2010; Nadell, Foster & Xavier, 2010;
Magnúsdóttir, Heinken & Kutt, 2017). While there have been multiple studies in recent
years involved in the model development of various methanotrophs (Akberdin et al.,
2018; Bordel et al., 2019a; Bordel, Rojas & Munoz, 2019b; De la Torre et al., 2015; Lieven et
al., 2018; Naizabekov & Lee, 2020), an integrated community level analysis of freshwater
methane utilizing ecosystems have not been performed yet.

In this work, we developed a simplified community metabolic model with two
representative and functionally important strains of Lake Washington, namely,
Methylobacter tundripaludum 21/22 (hereafter, Methylobacter) and Methylomonas sp.
LW13 (hereafter, Methylomonas) as representative organisms of the methane-oxidizing
microbes in the Lake Washington ecosystem. These species were chosen because of their
availability in Lake Washington sediments, the ability to mitigate common pollutants,
and produce desirable biological products, and the availability of genome-annotation.
Draft models of these species were reconstructed followed by careful curation to ensure
proper representation of the species. Metabolic pathways and individual reactions that
are fundamental to the growth of these organisms such as the ribulose monophosphate
pathway, pentose phosphate pathway, methane metabolism, amino acid synthesis and
utilization, serine cycle, and Coenzyme B12 biosynthesis were manually scrutinized and
then integrated into the models. The metabolites exchanged by the two species models
were established by referring to literature and known transporter information (Boden
et al., 2011; Caspi et al., 2016; Elbourne et al., 2017; Henry et al., 2010; Kanehisa, 2008;
Nguyen et al., 2018; Orata, Kits & Stein, 2018; Svenning et al., 2011; Szklarczyk et al., 2017;
UniProt Consortium, 2018; Wartiainen et al., 2006). The curated models of Methylobacter
(704 genes, 1,329 metabolites, and 1,404 reactions) and Methylomonas (658 genes, 1,378
metabolites, and 1,391 reactions) were then utilized to develop a community model using
a multi-level optimization framework, which was used to estimate biologically feasible
metabolite secretion profiles and community compositions (Zomorrodi & Maranas, 2012;
Zomorrodi, Islam &Maranas, 2014; Islam et al., 2019). The community was placed under
carbon, oxygen, and nitrogen-limiting as well as nutrient-rich environments to study
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the changes in intracellular carbon and nitrogen metabolism and metabolite excretion
profiles. The community composition of carbon-limited environments predicted a shift
in the carbon metabolism of both species. The community also demonstrates conservative
metabolism under oxygen and carbon-limited environments and produce less carbon-
di-oxide. Under these conditions, the mutualistic behavior involving formaldehyde
transfer between Methylobacter and Methylomonas is rarely observed. Our results also
indicate metabolic reprogramming in TCA cycle and pyruvate metabolism, which can help
generate new hypotheses for in vivo experiments. We also simulated the observed binary
compositions in a sediment-incubated community and a synthetic co-culture to predict
the changes in intra- and extracellular metabolic fluxes. Overall, our results enhance the
mechanistic understanding of the Lake Washington methane-cycling community, which
can drive further engineering efforts for efficient rerouting of carbon and nitrogen as well
as mitigation of methane emission from freshwater ecosystems globally.

MATERIALS & METHODS
Metabolic model reconstruction
The draft genome-scale metabolic models of Methylobacter and Methylomonas were
developed and downloaded using the ModelSEED database (Henry et al., 2010). The
models included reactions for glycolysis/gluconeogenesis, citrate cycle, pentose phosphate
pathway, steroid biosynthesis, nucleotidemetabolism, and various amino acid biosynthesis.
Flux Balance Analysis (FBA), amathematical approach for analyzing the flow ofmetabolites
through ametabolic network, was utilized formodel testing and analyzing flux distributions
throughout the work (Orth, Thiele & Palsson, 2010). FBA implements the following
optimization framework.

Maximize(vj) vbiomass

subject to∑
j∈J

Sij .vj = 0 ∀i∈ I (1)

LBj ≤ vj ≤UBj ∀j ∈ I (2)

In the framework, I and J represent the sets of metabolites and reactions in themetabolic
model, respectively. Sij represents the stoichiometric coefficient of metabolite i in reaction
j. The flux value of each reaction j, vj , must be within the parameters of the minimum,
LBj , and maximum, UBj , biologically allowable fluxes. vbiomass is the flux of the biomass
reaction which simulates the yield of cellular growth in the model (Orth, Thiele & Palsson,
2010).

The biomass composition from recently published methanotroph model Methylomi-
crobium buryatense strain 5G(B1) (De la Torre et al., 2015) was adopted in this study with
slight modification in the lipid macromolecular stoichiometry to account for different lipid
macromolecules in the models (see Data S1). Non-growth associated ATP maintenance
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flux was set to 21.6 mmol/gDCW.hr according to calculated values in the closely related
organism Methylomicrobium alcaliphilum by Akberdin et al. (2018). All of the three modes
of electron transfer during Methane oxidation (redox arm, direct coupling and uphill
electron transfer) have been included in the models, since they are all possible and there is
no definitive conclusion of which organism prefers what mode of methane oxidation.

Metabolic model curation
Draft models for both Methylobacter and Methylomonas underwent an extensive
manual curation process, including chemical and charge-balancing, elimination of
thermodynamically infeasible cycles, and ensuring network connectivity. Reactions in
the draft model reaction set imbalanced in protons were checked with their appropriate
protonation states and corrected by adding and deleting proton(s) on either side of the
reaction equation. The remaining imbalanced reactions were stoichiometrically inaccurate
and required the atoms on both sides of the reaction equation to be balanced. The
metabolites consumed and produced by models were established by referring to literature
and known transporter information (Boden et al., 2011; Caspi et al., 2016; Elbourne et al.,
2017; Henry et al., 2010; Kanehisa, 2008; Nguyen et al., 2018; Orata, Kits & Stein, 2018;
Svenning et al., 2011; Szklarczyk et al., 2017; UniProt Consortium, 2018; Wartiainen et al.,
2006).

Genome annotations of methanotrophs indicate that formaldehyde assimilation
can happen through the oxidative Pentose Phosphate Pathway as well as the
formaldehyde/formate dehydrogenases and the tetrahydrofolate-associated pathways
(Cai et al., 2016; Khmelenina et al., 2018). However, there have been extensive evidences
that the Ribulose Monophosphate (RuMP) cycle is the major route for formaldehyde
assimilation (Fu, Li & Lidstrom, 2017; He et al., 2020; Peyraud et al., 2011). Also, multiple
studies indicate that formaldehyde assimilation through the Serine cycle is insignificant (De
la Torre et al., 2015; Fu, Li & Lidstrom, 2017; He et al., 2020). Based on transcriptomic data
and metabolic flux measurements (De la Torre et al., 2015; Fu, Li & Lidstrom, 2017), we
restricted the distribution of formaldehyde assimilation between the RuMP cycle and the
tetrahydrofolate-associated pathways. In addition, the oxygen stoichiometry in pathways
related to direct coupling methane oxidation and the coupling with cytochrome c oxidase
have been set (1 mol Oxygen/mol pyrroloquinoline quinone and 0.5 mol Oxygen/mol
Cytochrome c) according to literature (De la Torre et al., 2015; Fu, Li & Lidstrom, 2017;
Lieven et al., 2018; Sugioka et al., 1988).

While applying mass balance constraints to genome-scale metabolic models can display
the net accumulation and consumption of metabolites within each microbial model, it
fails to account for the regulation of reaction fluxes. The limitation of this constraint is
better elucidated when focusing on reaction cycles that do not consume and produce
metabolites. Because of the absence of metabolite consumption and production, the
overall thermodynamic driving force of the cycles become zero and the cycle is incapable
of supporting any net flux, and thus deemed thermodynamically and biologically infeasible
(Schellenberger, Lewis & Palsson, 2011). These thermodynamically infeasible cycles in
our models were identified by inhibiting all nutrient uptakes to the cell and utilizing the
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optimization framework, Flux Variability Analysis (FVA), which maximizes andminimizes
each reaction flux within the model based on the mass balance constraints (Mahadevan
& Schilling, 2003). Reactions whose fluxes reached the defined lower and upper bounds
were determined to be unbounded reactions, group together based on stoichiometry, and
systematically corrected. These cycles were eliminated by removing duplicate reactions,
turning off lumped reactions, fixing reaction directionality, or selectively turning reactions
on or off based on cofactor specificities found from literature (Ishida et al., 1969; Dekker,
Lane & Shapley, 1971; Chen, Lee & Chang, 1991; Schomburg & Stephan, 1995; Achterholt,
Priefert & Steinbuchel, 1998; Hadfield et al., 1999; Hutter & Singh, 1999; Kai, Matsumura &
Izui, 2003; Feist et al., 2007; Dean, 2012; Flamholz et al., 2012; Lin et al., 2014; Christensen
et al., 2017). The FVA optimization algorithm is shown below.

Maximize/minimize(vj) vj
subject to∑
j∈J

Sij .vj = 0 ∀i∈ I (1)

LBj ≤ vj ≤UBj ∀j ∈ I (2)

vbiomass= vapp−obj,threshold (3)

Both metabolic models were checked for the ability to produce biomass and metabolites
theywere known to produce (Svenning et al., 2011;Kalyuzhnaya et al., 2015). Themetabolic
functionalities of the models were ensured by identifying and manually adding reactions
from biochemical databases, such as KEGG (Kanehisa & Goto, 2000) and Uniprot (UniProt
Consortium, 2018), to each model. Fully developed models of related organisms such
as Methylococcus capsulatus and Methanomonas methanica for both Methylobacter and
Methylomonas were utilized in help pinpoint absent enzymatic activity within our models.
The addition of these reactions was confirmed using the bioinformatic algorithm, BLAST,
which compares the genes of our organisms and related organisms and determines whether
they are found to be orthologous. It was then tested whether these reactions would increase
the number of thermodynamically infeasible cycles and promote for further curation of
the models.

Community model formation
Following the curation of each individual microbial model, both were implemented to form
a community model using the bi-level multi-objective optimization framework OptCom
(Zomorrodi & Maranas, 2012). OptCom simultaneously optimizes each individual
community member’s flux balance analysis problem as an inner-level optimization
problem and the community model objective as an outer-level optimization problem. The
maximization of the community biomass was set as the community objective function.
The mathematical framework of the OptCom procedure is the following.
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Maximize(orminimize)z =Community level objective

subject to,

maximize
vkj

vkbiomass

subject to,∑
j∈J k

Skij .v
k
j = 0 ∀i∈ I k (1)

LBkj ≤ vkj ≤UBkj ∀j ∈ J
k (2)

vkuptake,i= rkuptake,i ∀i∈ I
k
uptake(4)

vkexport,i= rkexport,i ∀i∈ I
k
export(5)


∀k ∈K

∑
k

rkuptake,i+e
c
i =

∑
k

rkexport,i+u
c
i ∀i∈ Ishared(6)

rkuptake,i,r
k
export,i,e

c
i ,u

c
i ≥ 0 ∀i∈ Ishared, ∀k ∈K

The inner-level optimization problem(s) represents the steady-state FBA problem
for each community member k and limits the exchange (uptake and export) fluxes
of shared metabolites between the individual species using the outer-level optimization
problemparameters rkuptake,i and r

k
export,i, respectively. The outer-level optimization problem

constraint characterizes the mass balance for every shared metabolite in the extracellular
environment within the shared metabolite pool. Metabolic interactions, with constraints,
were confirmed with prior experimental research involving both community members or
one member with a related organism found in the Lake Washington community (Yu et al.,
2016).

Formaldehyde inhibition constraint
Formaldehyde production can be inhibitory towards the growth of Methylomonas
and Methylobacter (Bussmann, Rahalkar & Schink, 2006). Methylobacter is able to
uptake formaldehyde excreted from Methylomonas to alleviate the inhibitory effects on
Methylomonas growth. A constraint based upon the minimum and maximum inhibitory
concentrations of formaldehyde was implemented to simulate formaldehyde’s inhibitory
effects onMethylobacter (Hou, Laskin & Patel, 1979; Costa, Dijkema & Stams, 2001). While
formaldehyde production is not forced in the model simulations, this constraint accounts
for the resulting growth inhibition if there is any amount of formaldehyde excreted. The
minimum formaldehyde concentration required for growth inhibition was found to be 1
mM (Hou, Laskin & Patel, 1979) and the formaldehyde concentration required for total
growth inhibition (maximum formaldehyde concentration) was found to be 7 mM (Costa,
Dijkema & Stams, 2001).

vMethylobacter
biomass ≤ vMethylobacter

maxbiomass × (1−R×v
Methylobacter
formaldehydeuptake)

The parameter R was derived by finding the rate of change of biomass growth by the
change in formaldehyde concentration.

Islam et al. (2020), PeerJ, DOI 10.7717/peerj.9464 8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.9464


Table 1 Model statistics forMethylobacter andMethylomonas.

Models Methylobacter Methylomonas

Genes 704 658
Reactions 1,404 1,391
Metabolites 1,329 1,378
Blocked reactions 660 672

Bridging metabolic network gaps
Automated draft reconstructions are limited as many reaction networks possess gaps
due to missing reactions and blocked reactions. These are defined as reactions that lack
production/consumption of its reactants/products. Major metabolic pathways were added
based upon the literature of each organism (Kalyuzhnaya et al., 2015). Gaps were filled
by referencing genetically related organisms to find missing metabolic capabilities. The
presence of these possible reactions in the models were validated by cross referencing the
relevant amino acid sequences between the reference organism and our models via pBlast.
The reactions were then checked for the formation of thermodynamically infeasible cycles
before being accepted.

Computational resources
The General Algebraic Modeling System (GAMS) version 24.8.5 with IBM CPLEX solver
was utilized to run the optimization algorithms. The optimization frameworkswere scripted
inGAMS and then run on a Linux-based high-performance cluster computing system at the
University of Nebraska-Lincoln. The downloaded models fromModelSEED with curations
were parsed from System-Biology Markup Language (SBML) level 2 documentation using
general-purpose programming language Python to generate the input files necessary for
GAMS and subsequent manual curations.

RESULTS
Genome-scale metabolic models of Methylobacter and Methylomonas
The draft genome-scale models of Methylobacter and Methylomonas are reconstructed
using the ModelSEED database (Henry et al., 2016). The manual curation process ensures
that there is no chemical and charge imbalance present in either of the models and there
is no reaction with unrealistically high fluxes (infeasible reactions) without any nutrient
uptake. The manual curation also reconnects a significant number of blocked metabolites
to the network in both models (i.e., 107 metabolites forMethylobacter and 109 metabolites
forMethylomonas). This enhancement of network connectivity is performed using available
literature pertaining to major metabolic pathways that are known to be present in both the
microbes (Kanehisa & Goto, 2000; Kalyuzhnaya et al., 2015). The draft models were lacking
some reactions in the important metabolic pathways i.e., the methane oxidation, pentose
phosphate pathway, nitrogen fixation, cofactor, and amino acid production, which are
curated at this stage. The model statistics are shown in Table 1. Data S2 and S3 contain the
model files forMethylobacter andMethylomonas, respectively.
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Table 2 High and limiting nutrient conditions for community simulation.

Condition Methane uptake
(mmol/gDCW.hr)

Oxygen uptake
(mmol/gDCW.hr)

Nitrogen uptake
(mmol/gDCW.hr)

A (high C, high O, high N) 100 100 100
B (high C, limiting O, high N) 100 50 100
C (high C, high O, limiting N) 100 100 40
D (limiting C, high O, high N) 20 100 100

Community dynamics under variable environmental conditions
The individual models are integrated into a community model using available multi-
objective computational optimization framework (Zomorrodi & Maranas, 2012). The
metabolic interactions between Methylobacter and Methylomonas are described using
inter-organisms flow constraints. The community, as a whole, consumes methane,
oxygen, and nitrogen, which is then shared between Methylobacter and Methylomonas. In
addition,Methylobacter consumes formaldehyde produced byMethylomonas under certain
conditions, which alleviates the formaldehyde toxicity onMethylomonas growth (Bussmann,
Rahalkar & Schink, 2006). At the same time, bothMethylobacter andMethylomonas export
carbon di-oxide to the environment. The community is simulated under four conditions
in which methane, oxygen, and nitrogen are supplied to the community at various levels.
These conditions are denoted as A, B, C, and D in Table 2 and correspond to the panels
in Fig. 1. It should be noted that the amount of each nutrient consumed by the members
are not necessarily equal to the amount of nutrient supplied as only one of the nutrients
acts as a limiting reagent in each limiting condition. The community model is illustrated
in Fig. 1.

The community biomass flux is the highest when all the nutrients are highly abundant
(Fig. 1A). Methylomonas dominates the community in nutrient-rich condition. It is
observed that a limited uptake of oxygen also imposes some restriction on the carbon
and nitrogen utilization by the community, which results in reduced biomass fluxes
for both Methylomonas and Methylobacter (Fig. 1B). When oxygen uptake is limited,
methane utilization by Methylomonas is still higher compared to Methylobacter despite
an overall decrease in methane consumption by the community. An overall conservative
nature of metabolism is observed in the community, as manifested by the least amount
of carbon-di-oxide production and no formaldehyde production. In nitrogen-limited
growth (Fig. 1C), Methane uptake by Methylomonas decreases further and a high rate
of respiration is observed, with the highest production of carbon-di-oxide. In Methane-
limited condition (Fig. 1D), while the metabolism in Methylobacter remains mostly
unaffected,Methylomonas growth is severely hindered by the scarcity of Methane. In all the
nutrient-limited conditions, Methylobacter is observed to dominate the community. The
observations fromOptcom simulations are consistent with the shifts in possible flux ranges
under different conditions, as estimated by Flux Variability analysis. These observations
indicate that the inherent degeneracy of metabolic fluxes in Flux Balance Analysis or
Optcom does not affect the conclusions obtained in this work. The detailed results are
presented in Data S4.
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The total community biomass and community composition under methane and oxygen
gradients are simulated to model the methane-oxygen counter gradient that exists in
Lake Washington (Yu et al., 2016). In general, the total community biomass is observed
to increase with both oxygen and methane uptake, as is expected from the increased
abundance of nutrients. The community is completely dominated byMethylobacter under
lowmethane/low oxygen conditions. An increase of methane at low oxygen conditions does
not change the dominance of Methylobacter. Furthermore, the increase of oxygen under
low methane conditions has minimal impact in changing the community composition,
as can be seen from very slowly increasing ratio of Methylomonas to Methylobacter across
the entire range of oxygen uptake at low methane uptake condition (Fig. 2). The biggest
charge in community composition is observed under high carbon and high oxygen
conditions in which the community biomass is composed of 32% Methylobacter and
68% Methylomonas, as compared to 99%Methylobacter and 1% Methylomonas in the
low methane/low oxygen condition (Fig. 2). The switch in community composition is
consistent with the observations in nutrient rich condition. The complete numerical
results are included in Data S4.

In nutrient-rich condition (shown in Fig. 3),Methylobacter is the dominant community
member and consumes the major portion of all of the shared the metabolites i. e., methane,
oxygen, and nitrogen.Methylomonas consumes themajor share ofmethane (80%) andmost
of it is accumulated in biomass with a small amount of formaldehyde (0.1 mmol/gDC.hr)
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being produced.Methylomonas also has a more active serine cycle converting formaldehyde
into the metabolites in the central carbon metabolism. While the TCA cycle in both
Methylobacter and Methylomonas is active in nutrient-rich condition, the activity of
alpha-ketoglutarate dehydrogenase was very low.

Under the oxygen limiting condition (Fig. 4), the flux through the methane oxidation
pathway decreases by 20% in Methylobacter. Methylomonas consumes the majority (60%)
of the total methane uptaken by the community under the oxygen limiting condition
(Fig. 1B). Methylomonas diverts central carbon compounds to produce pyruvate via the
assimilation of carbon di-oxide and acetaldehyde under the oxygen limited condition
(Fig. 4B). A small fraction of carbon di-oxide downstream of this reaction is secreted
into the environment, which is the lowest among all the conditions. In this condition,
Methylomonas has a complete TCA cycle activity.

The methane oxidizing pathway and TCA cycle reactions inMethylobacter do not show
any significant change in nitrogen limited condition (Fig. 5A). Methylobacter excretes
more carbon di-oxide than nutrient-rich condition while consuming more oxygen than
Methylomonas. On the other hand, the activity of the methane oxidation pathway of
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Methylomonas decreases (the lowest in any non-carbon limiting conditions). Furthermore,
succinyl-CoA in Methylomonas is produced from alpha-ketoglutarate in the TCA cycle,
similar to oxygen limited conditions (Fig. 5B). Methylomonas, similar to Methylobacter,
also excretes significantly high amount of carbon-di-oxide in nitrogen-limited condition.

In the carbon limited growth condition, Methylomonas takes up very small amount of
methane, while Methylobacter takes up most of the methane supplied to the community
(Fig. 6). The central metabolism of Methylobacter is not altered under this carbon
limited condition (Fig. 6A). However, in Methylomonas, carbon di-oxide is scavenged
by assimilating succinyldihydrolipoamide and carbon di-oxide to succinyl-CoA (Fig. 6B).
This reaction is inactive in the oxygen limiting condition. Methylomonas also displays
minimal activity in its serine cycle under carbon limiting condition.

Dynamic shifts in metabolism under sediment incubated microcosm
and synthetic co-culture composition
Previous studies have shown inconsistencies between the microcosm incubated from
Lake Washington sediments and synthetic community cultured in the lab. In the natural
community (microcosm incubated from the lake sediments), Methylobacter has been
shown to be dominant under both low methane/high oxygen and high methane/low
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oxygen conditions (Beck et al., 2013). However,Methylomonas outcompetedMethylobacter
in both low methane/high oxygen and high methane/low oxygen conditions in synthetic
co-cultures (Yu et al., 2016). To elucidate the metabolic flux distributions and the extent
of inter-species interactions that gives rise to the observed community composition in
the two conditions, the experimentally observed species abundance ratio was imposed on
the growth rates of Methylobacter (MB) and Methylomonas (ML) as a constraint in the
community optimization framework. For the sediment-incubated community, a MB:ML
ratio of 9.3:1.0 and for the synthetic community, a MB:ML ratio of 0.05:1.0 were used.

The vast majority of reactions in Methylomonas has lower flux values in the sediment-
incubated community compared to the synthetic community (Fig. 7). This occurs because
Methylomonas constitutes a smaller portion of the total community biomass in the
sediment-incubated community. There are alternate pathways to produce pyruvate which
has increased flux (Fig. 7A). These pathways produce pyruvate by assimilating carbon
di-oxide and acetaldehyde and by the assimilation of cysteine and mercaptopyruvate.
However, Methylomonas produces less pyruvate overall even with the increased flux in
these pathways, since other pyruvate producing pathways decrease in flux. Primarily,
the flux through L-serine and ammonia assimilation to produce pyruvate is high in the
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synthetic condition but decreases in sediment-incubated condition. Under sediment-
incubated conditions, Methylobacter uses methane as its primary carbon source and
does not consume any formaldehyde produced by Methylomonas. On the other hand,
Methylobacter takes up some of the secreted formaldehyde fromMethylomonas as a carbon
source in addition to methane under the synthetic condition (Fig. 7B).

DISCUSSION
Aerobic methane oxidation in freshwater lakes around the world is a key metabolic process
that significantly affects the carbon cycle by acting as a major sink of methane. Lake
Washington provides an wonderful opportunity to study the methane cycling, with up
to 20% of the organic carbon being released as methane through decomposition and
consuming up to 10% of the dissolved oxygen in the lake water (Kuivila et al., 1988). With
the goal to understand the dynamics of the methane cycling Lake Washington community,
we integrated high-quality manually curated and refined genome-scale metabolic models
of highly abundant, functionally important, and representative community members using
multi-level optimization-based frameworks. While this community have been studied
by many researchers in the previous years with in vivo tools like synthetic co-cultures,
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metagenomics, and metatranscriptomics (Hernandez et al., 2015; Oshkin et al., 2015; Yu
et al., 2016; Krause et al., 2017), an in silico approach like the one used in this work is
needed to have a deeper understanding of the underlying mechanisms that govern the
inter-species interactions and in turn, the community structure, function and dynamics
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in Lake Washington. As the global carbon transactions are changing and the release of
greenhouse gases in the atmosphere is consistently getting worse every year, it is imperative
for us to put our best efforts in mitigating the harmful effects. To do that, the use of
genome-scale metabolic modeling tools to understand how the microbial communities are
involved in these metabolic processes function in natural environments is essential.

To make the community model a good representation of the naturally occurring
methane cycling community, we selected two highly abundant and functionally important
microbial species. Following the manual curation process of both metabolic models, it was
found that Methylobacter was more efficient than Methylomonas at producing biomass
when simulated under the same standard growth environment and biological constraints
in the LakeWashington, except at highly nutrient-rich conditions. SinceMethylobacter and
Methylomonas are competitors for the sole carbon source, methane, the overall metabolic
efficiency is an important factor in the methane utilization ratio of the two species. While
there is no direct literature evidence that suggests that one of them is more efficient in
utilizing methane for growth compared to the other, it is highly possible that they might be
limited by other small molecules that inhibit high methane consumption. For example, the
community was tested under carbon, oxygen, and nitrogen limited conditions to observe
how its central metabolic pathway and the community composition varied, and we observe
the dominance of Methylobacter in the community in all of the limited growth conditions
(Fig. 4 through 6) but the dominance ofMethylomonas in the nutrient-rich condition. This
is observed even during the oxygen limited growth condition, whereMethylobacter is unable
to consume as much methane asMethylomonas. In this condition,Methylomonas takes up
more methane than Methylobacter butMethylobacter can still maintain its dominance.

Each of the nutrient limited conditions shows variable differences within the methane
oxidation pathway, the serine cycle, and the TCA cycle. While, based on the simulation,
we did not observe a noticeable flux through the serine cycle in either Methylomonas or
Methylobacter in all nutrient-limited conditions, it was significantly active inMethylomonas
in nutrient rich condition. In oxygen limiting condition, the community was also observed
to conserve as much resource as possible. For example, whileMethylomonas excretes some
amount of carbon dioxide in all conditions, it routes most of it back to central carbon
metabolism through the direction reversal of pyruvate decarboxylase. Although there is
currently no experimental studies pointing to this phenomenon, studies in other organisms
suggest a high oxygen sensitivity of this enzyme (Eram &Ma, 2013). Therefore, a possible
explanation of the shifts in pyruvate metabolism is the oxygen sensitivity of this enzyme,
which needs to be further studied.

In most of the simulation conditions, Methylobacter and Methylomonas were observed
to assimilate most of the consumed carbon though the Entner-Doudoroff (ED) pathway.
This was evident from the high flux of fructose-6-phospahte to 6-phophogluconate
and thereafter pyruvate. In contrast, the Embden-Meyerhof-Parnas (EMP) variant of the
glycolytic pathwaywas predicted to be the dominant pathway in some othermethanotrophs
like M. buryatense through model simulations (De la Torre et al., 2015; He, Fu & Lidstrom,
2019; Kalyuzhnaya et al., 2013). It should be noted that studies measuring glycolytic fluxes
experimentally in Methylobacter and Methylomonas species are sparse in literature. A
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recent 13C tracer analysis by Fu, Li & Lidstrom (2017) suggested that the flux partition
between EMP and ED variants is unresolved since they both manifest fully labeled
downstream molecules. Another interesting observation from this study is the activity
levels of alpha-ketoglutarate dehydrogenase enzyme in all conditions. The presence and
expression of alpha-ketoglutarate dehydrogenase in methanotrophs has been a matter
of debate for quite some time (Zhao & Hanson, 1984; Theisen & Murrell, 2005), which is
manifested as the inability of methanotrophs to grow on multi-carbon substrates (Smith,
Trotsenko & Murrell, 2010). In this study we observe very negligible (<2% of the TCA cycle
flux) alpha-ketoglutarate dehydrogenase activity in all conditions. At this point it is not
straightforward to decipher what exactly might be the regulating factor to this enzyme and
warrants further experimentation.

Finally, the community model was simulated with fixed abundance ratios of the two
members to reflect the composition in synthetic co-culture and sediment-incubated
community. The changes in community composition as oxygen and carbon levels change
are more consistent with behaviors in sediment samples than synthetic co-cultures
(Hernandez et al., 2015; Yu et al., 2016).Methylobacter is able to utilize methane to produce
biomass at a more efficient level than Methylomonas. However, when the synthetic co-
culture condition is imposed on the species abundance ratio, i.e., favoring Methylomonas
biomass, Methylobacter takes up formaldehyde produced by Methylomonas in addition
to methane consumption, which allows it to bypass the oxygen-intensive reaction of
oxidizing methane to methanol to some degree. This commensal relationship helps
Methylobacter to enhance its biomass even when the uptake of the original carbon source
(methane) is low while protecting Methylomonas from the toxicity and growth inhibitory
effects of formaldehyde (Hou, Laskin & Patel, 1979; Costa, Dijkema & Stams, 2001). In our
optimization formulation, the inhibitory formaldehyde constraint placed onMethylobacter
makes the consumption of formaldehyde detrimental towards biomass production, but it
can simultaneously act as a carbon source and compensates for its inhibitory effects. This is
contradictory to what was observed in the co-culture experiments (Yu et al., 2016). Similar
to formaldehyde, methanol export was also not observed in the simulations although some
previous studies have reported ethanol production(Krause et al., 2017; Zheng et al., 2018).
This lack of excretion of intermediate carbon molecules is often observed in steady-state
Flux Balance Analysis models without any enzyme kinetic information, where pathways
upstream of biomass consumes most of the intermediates. However, it should be noted
that, the synthetic co-culture experiments reported in literature involved other community
members, whose metabolic interactions with Methylobacter and Methylomonas are not
well characterized to date. Some studies have indicated co-operative relationships between
Methylobacter and other microbial species from Methylophilaceae family (Beck et al.,
2013), which might potentially impact that community dynamics in synthetic co-cultures.
Moreover, despite the dominance of Methylomonas in the synthetic community at a
species level (Soni et al., 1998; Hoefman et al., 2012), further assessment of community
composition at a higher taxonomic level indicated a consistency with naturally observed
composition (Yu et al., 2016). We hypothesize that this discrepancy is possible, given that
there is high functional redundancy present in Lake Washington community, similar to
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any naturally occurring microbial ecosystem (Galand et al., 2018; Louca et al., 2018; Islam
et al., 2019; Jia & Whalen, 2020).

CONCLUSION
In thiswork,we attempted to enhance ourmechanistic understanding of the dynamics in the
methane cycling Lake Washington community through genome-scale metabolic modeling
of the representative and functionally important community members, Methylobacter
tundripaludum 21/22 and Methylomonas sp LW13. The understanding of this community
behavior will be a foundation for future studies that aim at the long-term goal of creating
a complex synthetic community capable of carrying out certain desired functions through
the consumption of methane, thus mitigating the harmful effects of methane release in the
atmosphere. One should be aware of the fact that the in silico results need to be further
tested and confirmed through relevant experiments before any engineering strategies
can be successfully employed. The community metabolic model, in that regard, should be
expanded to include othermajor players of the LakeWashington community, i.e., members
of Bacteroidetes and Proteobacteria phyla. Including these organisms in our community
metabolic model will enable us to explain currently unidentified inter-species metabolite
exchanges/interactions that play important role in the cycling of methane as well as other
nutrients.
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