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Abstract

Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying
neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools
employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the
same time, phase synchronization between coupled neural ensembles is considered a mechanism implemented in the brain
to integrate relevant neuronal ensembles to perform a cognitive or perceptual task. Phase synchronization can be studied
by analyzing the effects of phase-locking between the brain signals. However, we should expect that there is no one-to-one
mapping between the observed phase lag and the time precedence as specified by physically interacting systems.
Specifically, phase lag observed between two signals may interfere with inferring causal relations. This could be of critical
importance for the coupled non-linear oscillating systems, with possible time delays in coupling, when classical linear cross-
spectrum strategies for solving phase ambiguity are not efficient. To demonstrate this, we used a prototypical model of
coupled non-linear systems, and compared three typical pipelines of inferring Granger causality, as established in the
literature. Specifically, we compared the performance of the spectral and information-theoretic Granger pipelines as well as
standard Granger causality in their relations to the observed phase differences for frequencies at which the signals become
synchronized to each other. We found that an information-theoretic approach, which takes into account different time lags
between the past of one signal and the future of another signal, was the most robust to phase effects.
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Introduction

Rhythmic activity generated by individual neurons or by

interactions between neurons is a widely observed phenomenon

in the brain [1]. Firing patterns of a group of neurons may become

synchronized [2]. Synchronized activity of neural ensembles may

lead to macroscopic oscillations [3], which can be detected with

measurements of local field potentials (LFP), electroencephalo-

graphic (EEG), or magnetoencephalographic (MEG) recordings.

From a mathematical point of view, the underlying neural

ensembles can be represented by single oscillators [4]. In turn,

different neural ensembles can be coupled with long-range

connections, forming a large-scale network of coupled oscillators.

Numerous studies have shown that cognitive function can be

explained in terms of synchronous dynamics of large neuronal

ensembles coupled within and across subsystems [5]. Encouraging

results were obtained in modeling the resting state network

dynamics wherein time delays play a crucial role in the generation

of realistic fluctuations in brain signals [6,7].

Phase synchronization between coupled neural ensembles is

considered a mechanism implemented in the brain to integrate

relevant neuronal populations at a given moment to construct

task-related functional networks [8]. Mathematical implementa-

tion of phase synchronization is driven by an idea that the

existence of relations between phases of coupled systems does not

necessarily imply the correlation between their amplitudes [9]. A

number of techniques have been employed to study synchroniza-

tion between oscillating brain signals (for a review see [10] or [11]).

Among others, analysis of phase-locking is a popular approach,

wherein the robustness of the phase differences (across trials or

time points) between pairs of sensors/regions is quantified in a

statistical sense [12,13]. Strong phase-locking effects can often be

observed in brain signals, for example, as a reaction to performing

a cognitive or perceptual task [8,14].

Another framework to gain insight into the mechanisms

underlying functional networks is to uncover the directionality of

interactions between coupled systems. The notion of Granger

causality was introduced based on an idea of asymmetry in signals’

ability to predict each other [15]. Under this framework, a process

X is considered a cause of another process Y , if the incorporation

of the knowledge about the past of X significantly improves the

prediction of the future of Y , compared to the prediction that is

based only on the knowledge about the past of Y . The asymmetry

in enhancement of predictive power between signals would

indicate the directionality of coupling between the presumably

coupled systems underlying the observed signals (see [16] for a

review).

The original concept of Granger causality was formulated in

terms of autoregressive processes. Excluding a translation from a

bivariate version to multivariate models, two extensions of
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Granger causality are proposed in the literature. The first one is a

spectral version of Granger causality that is based on the Fourier

transform of autoregressive models [17]. In such a case,

asymmetry in predictive power is frequency specific, providing

more information on the strength of mutual interdependencies

between brain waves for a given range of frequencies [18]. Such a

methodological perspective found a number of applications in the

analysis of neurophysiological signals, including LFP,EEG, MEG,

and functional magnetic resonance imaging (fMRI) [19–21].

Analytic tools provided by information theory are a way of

constructing non-linear versions of Granger causality in the time

domain. Under the information-theoretic approach, we do not

need to specify a priori a model of signals and their interactions.

Instead, the transfer of information from the past and present of

one process to the future of another process can be quantified in

terms of individual and joint entropies, which measures the

amount of uncertainty contained in the observed signals. The

transfer of information is essentially a conditional mutual

information [22]. Another statistic called transfer entropy [23] is

shown, under certain conditions, to be equivalent to the measure

of conditional mutual information [24]. The attractive ‘‘model-

free’’ property of information-based statistics has lead to numerous

applications in neuroimaging and neurophysiological studies.

Specifically, transfer entropy has been applied in both EEG [25–

27] and MEG data [28–30], as well in fMRI [31].

It should be emphasized that the notion of Granger causality is

based on the idea of temporal precedence where a cause precedes

its consequences. In the case of distinct harmonic components,

time delay, in general, cannot be converted into phase delay

without ambiguity due to shifting a wave backward or forward a

full cycle (3600). In the case of a linear transfer function, the slope

of the phase over a range of frequencies, which is the group delay,

can be used to overcome the phase ambiguity that exists at a

specific frequency [32,33]. However, the situation is different in

the case of a coupled non-linear system with a possible time delay

in coupling.

In a network, wherein each coupling between two nodes can be

characterized by its own connection strength, directionality, and

time delay in coupling, the true temporal precedence between two

signals may materialize as either phase delays or phase advances at

specific frequencies. Furthermore, one can hypothesize that the

effects related to what is observed as a phase delay may counteract

the effects related to the temporal precedence. This might be of

special relevance to inferring the directionality of coupling based

on spectral decomposition of the original signals. In this study, we

controll the parameters of coupling to show that, given the same

directionality of coupling, as specified by the underlying model, we

can observe either phase delay or phase lead between the driver

and the response. In turn, this phase lag affects the estimation of

Granger statistics. Three measures of causality are compared in

this study, namely the standard and spectral Granger causality as

well as its information-theoretic version, in their relations to the

observed phase differences for frequencies at which the signals

become phase-locked to each other. At the same time, the phase-

locking index is used to assess phase relationships between the

signals.

Materials and Methods

Granger causality
Suppose that the dynamics of two processes X1 and X2 are

described by an autoregressive model:

X1(t)~
X?
j~1

a11(j)X1(t{j)z
X?
j~1

a12(j)X2(t{j)zE1(t)

X2(t)~
X?
j~1

a21(j)X1(t{j)z
X?
j~1

a22(j)X2(t{j)zE2(t),

ð1Þ

which, in case of finite time series, is reduced to a model based on

p lagged observations:

X1(t)~
Xp

j~1

a11(j)X1(t{j)z
Xp

j~1

a12(j)X2(t{j)zE1(t)

X2(t)~
Xp

j~1

a21(j)X1(t{j)z
Xp

j~1

a22(j)X2(t{j)zE2(t)

ð2Þ

Figure 1. Scenario 1: causality and phase synchronization.
Relations between the reconstructed causality and effects of phase-
locking and phase differences in the case where there is no phase shift
at the main frequency (10 Hz): (A) measure of spectral Granger causality
as a function of frequency; (B) transfer entropy as a function of the time
lag d between the past of one signal and the future of the other; (C)
phase-locking index and (D) phase shift as functions of frequency.
doi:10.1371/journal.pone.0053588.g001

Causality and Phase
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where E1(t) and E2(t) are the prediction errors for each time time

series. According to [15], if the variance of E2(t) is reduced by

including the terms a21(j) in the second equation of (2), compared

to keeping a21(j)~0 for all j, then X1(t) is thought to be causing

X2(t).

Formally, an enhancement of predictive power can be

quantified as follows. Suppose that var(E(21)
2 ) is the variance of

noise E2(t) derived from a model with a21(j)~0 for all j. Also, let

var(E2) be the variance of the same residuals derived from the full

model (2). The Granger causality F1?2(f ) from 1 to 2 is then

defined as

F1?2~ln
var(E(21)

2 )

var(E2)
: ð3Þ

In a similar way, we can define F2?1, which quantifies causality

from X2(t) to X1(t). The asymmetry in two measures, F1?2 and

F2?1, may indicate the directionality of coupling between X1(t)
and X2(t):

DF~F2?1{F1?2: ð4Þ

Thus, if DF is positive, the directionality of coupling is thought to

be as X2(t)?X1(t), and vice versa.

Spectral Granger causality
In this section, we describe a measure of spectral Granger

causality [17]. Suppose that the dynamics of two processes X1 and

X2 are described by an autoregressive model as specified in (2)

with the noise covariance matrix S. An interpretation of Granger

causality in the frequency domain can be derived through the

Fourier transformation of the autoregressive model in the time

domain:

A11(f ) A12(f )

A21(f ) A22(f )

� �
|

X1(f )

X2(f )

� �
~

E1(f )

E2(f )

� �
, ð5Þ

where Akm~dkm{
Pp

j~1 akm(j)e{2pif , dkm~0, if k~m, and

dkm~1, if k=m. In terms of the transfer functions Hkm, the

model (5) reads as

X1(f )

X2(f )

� �
~

H11(f ) H12(f )

H21(f ) H22(f )

� �
|

E1(f )

E2(f )

� �
:H(f )|

E1(f )

E2(f )

� �
: ð6Þ

The spectral matrix S(f ) is defined as S(f )~H(f )SH�(f ), where

H�(f ) is the conjugate transpose of H(f ). The spectral Granger

causality G1?2(f ) from 1 to 2 is then defined as

G1?2(f )~{ln 1{
S11{ S2

21=S22

� �
DH21(f )D2

2

 !
: ð7Þ

In a similar way, the spectral Granger causality G2?1(f ) from 2 to

1 can be defined. The difference between G1?2(f ) and G2?1(f )
may indicate the directionality of coupling between X1(t) and

X2(t) at a specific frequency:

DG(f )~G2?1(f ){G1?2(f ): ð8Þ

Thus, if DG(f ) is positive, the directionality of coupling at

frequency f is reconstructed as X2(t)?X1(t), and vice versa.

Figure 2. Scenario 1: time series and spectral power. Characteristics of the driver and response in the case where there is no phase delay (0:40)
between them at 10 Hz (see Fig. 1): (A) simulated signals (two seconds of a randomly chosen realization); and (B) mean spectral density and cross
power spectral density, averaged across realizations. The errorbars represent the standard error computed across realizations.
doi:10.1371/journal.pone.0053588.g002
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Information-theoretic causality
Now we consider a non-linear causal statistic that works in the

time domain. Suppose that we observe two processes, Xt and Yt,

and our goal is to reconstruct the directionality of couping between

them, if any. Following [22] and [24], a statistic can be designed

using a combination of information-theoretic tools and concepts

from non-linear dynamics. In contrast to (1), using information

theory, there is no need to assume that there exists a specific model

describing the processes Xt and Yt. However, we assume that Xt

and Yt are realizations of two non-linear dynamic models,

underlying the observed signals.

In this case, we need to reconstruct, from a time series of

observations, the dynamics in the multi-dimensional state space of

the underlying model. This can be done with time delay

embedding

x1(t)~ X1(t),X1(t{t1),:::,X1 t{t1(d1{1)ð Þ½ �T

x2(t)~ X2(t),X2(t{t2),:::,X2 t{t2(d2{1)ð Þ½ �T
ð9Þ

where d1 and d2 are embedding dimensions, and t1 and t2 are

embedding delays measured in multiples of the sampling interval.

Thus, the time series X1(t) and X2(t) are converted to a sequence

of vectors in an m-dimensional space.

The coupling directed from 2 to 1, I2?1, can be quantified by

estimating the extra amount of information about the future values

x1(tzd):xd
1 of X1(t), contained in the delay vector x2 provided

that the knowledge about the past of x1 is excluded. This extra

information can be quantified as the conditional mutual informa-

tion I(xd
1,x2Dx1) between xd

1 and x2 given x1. It can be estimated in

terms of individual H(:) and joint entropies H(:,:) and H(:,:,:) of

the processes x2, x2, and xd
1 as follows:

I2?1(d):I(xd
1,x2jx1)~H(xd

1,x1)

zH(x2,x1){H(xd
1,x2,x1){H(x1),

ð10Þ

where the time lag d between the future and the past of a signal is

typically measured in multiples of the sampling interval. It can be

shown that under certain conditions, I(xd
1,x2Dx1) is equivalent to

the measure called transfer entropy [23,24].

In a similar way, we can define the coupling from 1 to 2, I1?2,

as the mutual information between the future of X2(t) and the past

of x1, e.g. between xd
2:x1(tzd) and x1, given that we exclude the

knowledge about the past of x2:

I1?2(d):I(xd
2,x1jx2)~H(xd

2,x2)

zH(x1,x2){H(xd
2,x1,x2){H(x2):

ð11Þ

Similar to (8), the difference in two measures, I2?2(d) and I1?2(d),
may indicate the directionality of coupling between X1(t) and

X2(t) at a specific time lag d:

DI(d)~I2?1(d){I1?2(d): ð12Þ

Thus, if DI(d) is positive, the directionality of coupling at the time

lag d is inferred as X2(t)?X1(t), and X1(t)?X2(t), if negative.

Phase locking and phase delay
The phase-locking index (PLI) is known in the literature under

different names such as mean phase coherence [12] or phase

synchronization index [13]. The PLI is able to quantify phase

synchronization between signals in a statistical sense, and emerged

from studying coupled non-linear systems [9]. In turn, phase

synchronization is based on an idea that the existence of relations

between phases of coupled systems does not necessarily imply the

correlation between their amplitudes.

Suppose that there are n realizations of two processes X1(t) and

X2(t). Phase-locking between channels across realizations can be

computed using the concept of frequency-specific phase difference

between the signals. Specifically, the cross spectrum C12(f ) as a

function of frequency f between two signals X1 and X2 has the

form of

C12(f )*ei w12(f ) ð13Þ

where w12(f ) is the cross phase spectrum. The function w12(f )
represents the phase shift between the two signals at a specific

frequency f .

With f fixed, n realizations of w12(f ) can be described as a

distribution of the radius vectors of unit length in the complex

space. The phase locking index R12(f ) is computed as the length of

Figure 3. Scenario 2: causality and phase synchronization.
Relations between the reconstructed causality and phase-related effects
in the case where the phase shift between the driver and response is

w12(f )~{44:2o : (A) measure of spectral Granger causality as a function
of frequency; (B) transfer entropy as a function of the time lag d; (C)
phase-locking index and (D) phase shift as functions of frequency.
doi:10.1371/journal.pone.0053588.g003
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the mean vector obtained by averaging the radius vectors

w(k)
12 (f )

n on

k~1
in the complex space across realizations. Specifical-

ly,

R12(f )~
1

n

Xn

k~1

e
i w

(k)
12

(f )

�����
����� ð14Þ

The phase locking index represents a frequency-specific

measure to quantify the amount of phase synchrony inherent in

two given signals. By design, the statistic R12(f ) is limited between

0 and 1. When the cross phase distribution is highly concentrated

around its mean, the PLI is close to one. The PLI is close to zero

for the uniformly distributed phase differences across realizations.

Together with the PLI, we can compute the mean phase delay

w12(f ) between two signals, averaged across the realizations.

However, there is an ambiguity in cumulative phase shift between

harmonic signals as, in general, it is unknown how many cycles the

phase completed. In this study, we define the observed phase delay

or phase lead in a such a way that the phase difference w12(f )
between {900 and 00 implies that the signal X1(t) (response) is

delayed with respect to X2(t) (driver) at frequency f .

A model of coupled oscillators
To study the influence of phase locking and phase delay on

causality estimation, a system of coupled Rössler oscillators is used.

Such a model represents a relatively simple non-linear system able

to generate self-sustained non-periodic oscillations. It should be

noted that oscillatory behavior of the brain rhythms have been

extensively studied as a plausible mechanism for neuronal

communication [5,8]. Under this context, the coupled Rössler

oscillators can be viewed as a prototypical example of oscillatory

networks. Coupled Rössler systems were used to study collective

dynamics in oscillatory networks as a simple case of periodic

systems perturbed by a noise that has a deterministic rather than

stochastic nature [34].

Explicitly, the model reads

dx1

dt
~{v1y1{z1zEx2(t{T)

dx2

dt
~{v2y2{z2

dy1

dt
~v1x1z0:15y1

dy2

dt
~v2x2z0:15y2

dz1

dt
~0:2zz1(x1{10)

dz2

dt
~0:2zz2(x2{10)

ð15Þ

where v1 and v2 are the natural frequencies of the oscillators, E is

the coupling strength, and T denotes the delay in coupling.

Roughly speaking, each Rössler system represents an oscillatory

trajectory in the x{y plane, with spike-like behavior in the z

direction. Further analysis is based on an assumption that only the

dynamics of the variables x1(t) and x2(t) can be observed.

Estimation
All cases considered in this study were based on the model (15)

with v1~v2~1:2 and the directionality of coupling X2?X1.

Numerical solutions of Eqs. (15) were obtained using the dde23

Matlab function (the Mathworks, Natick, MA) with a subsequent

resampling of the time series with a fixed step 0:1 s. The dynamics

were solved on the interval ½0,500�s, subsequently discarding the

interval ½0,300�s to avoid transitory effects. Thus, each time series

had 2000 data points. The time axis was then re-scaled as t/t=50,

defining the new sampling interval of 2 ms. Thus, the generated

signals were designed to have the length of 4 s with the sampling

Figure 4. Scenario 2: time series and spectral power. Characteristics of the driver and response in the case of a negative phase difference
({44:20) between them at 10 Hz (see Fig. 3): (A) simulated signals (two seconds of a randomly chosen realization); and (B) mean spectral density and
cross power spectral density, averaged across realizations. The errorbars represent the standard error computed across realizations.
doi:10.1371/journal.pone.0053588.g004
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rate of 500 Hz, and represent oscillations approximately at 10 Hz.

Then, the time series were normalized to have the mean of zero

and variance of one. Gaussian noise (zero mean, variance of 0.3)

was added to the signals.

Each case was characterized by a pair of the model parameters,

the coupling strength E and the time delay in coupling T . For a

given pair of E and T , 50 realizations of the model (15) were

generated. For each realization, we generated a corresponding

pair of surrogate time series, which are artificial data that mimic

some properties of the original data. Surrogate data are

constructed in a way such that some linear properties of the

original signals remain unchanged, but causal relationships are

destroyed. We generated surrogate signals according to a method

designed to test pseudo-periodic data [35]. Thus, for each pair of E
and T , two ensembles of the original and surrogate time series

were created, based on 50 realizations of the model of coupled

oscillators.

For given E and T , the phase-locking index and mean phase

shift between harmonic components of the two signals were

computed at the frequencies 1{25 Hz. In addition, analyses of

standard Granger causality, spectral Granger causality and

transfer entropy were performed, separately for each realization,

creating two ensembles of the test statistics for the original and

surrogate data. By design, the measure DF produced one value for

each simulation. Depending on our purpose, we computed the

measures DG and DI either as functions of frequency f and the

time lag d (three cases considered further), or as cumulative

statistics, averaging across a range of f and d, respectively.

Bayesian information criterion [36] was used to determine an

optimal order of the autoregressive model (2). The spectral statistic

was estimated for frequencies 1{25 Hz. Transfer entropy was

estimated for the time lags d~1{51 data points with the step of 5
data points. The embedding delay was t1~t2~1 data point, and

the embedding dimension was d1~d2~5. It should be noted that

the dimension of the state space of systems with time delays is, in

general, infinite. We used relatively large values for d1 and d2,

however, the results reported in this study were qualitatively robust

with respect to a wide range of the embedding delay and

dimension (not shown). The individual and joints entropies were

estimated by computing the corresponding correlation integrals, as

proposed by [37], and tested, with regards to inferring causal

relations, using linear and non-linear models [25,26,38]. Cross-

power spectral density of the time series was estimated using

Welch’s averaged, modified periodogram method of spectral

estimation [39].

Results

Synthetic data
Three scenarios. Figures 1, 2, 3, 4, 5, 6 represent three

scenarios, showing an interplay between causality estimation and

phase differences, with the parameters defining the system (15), as

follows: E~0:07 and T~0:1083 (Fig. 1 and 2); E~0:07 and

T~0:1208 (Fig. 3 and 4); and E~0:07 and T~0:0958 (Fig. 5 and

Fig. 6). Specifically, Figures 1, 3, and 5 show: (a) spectral Granger

causality DG(f ), (c) phase locking index R12(f ) and (d) phase

difference w12(f ) as functions of frequency f , and (b) transfer

entropy DI(d) as a function of the time lag d. Figures 2,4, and 6

show the corresponding simulated signals (two seconds of

randomly chosen realizations), and power spectra as well as

cross-spectrum. As can be seen from panels (c), in all the cases, the

signals become phase-locked at 10 Hz. As a note here, 20 Hz

represents a higher harmonic of the oscillations of 10 Hz. In all the

panels, a solid line represents the mean of causal statistics under

consideration, averaged across 50 realizations for the original data.

The limits of the dark grey area are defined by the 0:05- and 0:95-

quantiles computed using the corresponding surrogate data.

In the scenario shown in Fig. 1 and 2, the parameters E and T

were chosen such that the phase difference at 10 Hz was close to

zero. In such a case, the measure of DG(f ) is positive for

frequencies 1{15 Hz, reaching a peak around 11 Hz (Fig. 1a).

Positive values for DG(f ) imply that the directionality of coupling

is reconstructed like 2?1. At the same time, the measure of

transfer entropy was also positive for all time lags d, implying that

the dominant transfer of information is going from system 2 to

system 1.

In Fig. 3, the phase difference w12(f ) between signals x1(t) and

x2(t) at 10 Hz is about {44o, interpreted as the phase advance of

the driving signal x2(t) with respect to the responding x1(t). In this

scenario, the time precedence, as specified by the modeled

directionality of coupling concurs with the phase precedence, as

detected from the phase-locking analysis (Fig. 4). In such a case,

similar to Fig. 1, the measure of spectral Granger causality is

positive, reaching a peak around 10 Hz. Positive values of DG(f )

Figure 5. Scenario 3: causality and phase synchronization.
Relations between the reconstructed causality and phase-related effects
in the case of a positive phase difference (45:10) between them at
10 Hz: (A) measure of spectral Granger causality as a function of
frequency; (B) transfer entropy as a function of the time lag d; (C) phase-
locking index and (D) phase shift as functions of frequency.
doi:10.1371/journal.pone.0053588.g005

Causality and Phase
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imply that the causal relations are reconstructed as 2?1. Note that

the peak in DG(f ) at 10 Hz is higher in Fig. 3, compared to that at

11 Hz in Fig. 1. Tranfer entropy produced similar results,

implying the directionality of coupling as 2?1.

Fig. 5 and 6 represent the scenario where the effects associated

with phase precedence counteract the effects related to the causal

relations as implemented in system (15). Specifically, the phase

difference w12(f ) between the two signals at 10 Hz is about 45o,

which is interpreted as the phase delay of the driver x2(t) with

respect to the response x1(t). The effects related to the phase shift

are relatively strong compared to the inherent causality between

x1(t) and x2(t). As can be seen from Fig. 5a, the measure of

spectral Granger causality switches to negative values. Thus the

causal relations are reconstructed as 1?2, which represents a

false-positive case. The measure of transfer entropy is also sensitive

to the phase shift, being either positive or negative, depending on

the value of the time lag d. It should be noted that the transfer

entropy DI(d) is more resistant to the phase-locking effects, as the

mean value DI(d) averaged across d is positive (2?1).

Notably, the performance of the standard Granger causality was

similar to that of the spectral statistic. For no phase shift at 10 Hz,

the mean DF averaged across the realizations was 0:0168, whereas

the confidence interval of DF that was based on the corresponding

surrogate data and defined by the 0:05- and 0:95-quantiles, was

½{0:0066 0:0059�. In the case of w12(f ) close to 45o at 10 Hz, we

had DF~0:0574 with the confidence interval of

½{0:0060 0:0055� for surrogate data. However, when w12(f ) is

about {44o, the analysis produced DF~{0:0125, whereas the

confidence interval for surrogate data was found to be

½{0:0050 0:0048�. Thus, the standard Granger causal statistic

was significantly affected by the differences in phase between the

two signals.

Aggregated performance. In the previous section, consid-

ering three scenarios, we showed how the effects related to phase

advance or phase delay can facilitate or counteract the

reconstruction of causal relations. In this section, we focus on

the aggregated performance of the causal measures DG and DI ,

averaged across frequencies f ~1{25 Hz and time lags

d~1{51, respectively. The measures DG and DI as well as DF
are considered as the functions of the time delay T or the strength

of coupling E. The results of these simulations are reported in Fig. 7

and 8. The solid lines represent the mean values of DF , DG and

DI , computed for the original data and averaged across

realizations. The dark grey area reflects the variability of DF ,

DG, and DI , computed for the surrogate data. Specifically, the

confidence intervals are defined by the corresponding 0:05- and

0:95-quantiles. The phase difference w12 was computed at 10 Hz.

Fig. 7 show the results from the simulations wherein the

coupling strength was kept constant E~0:07, whereas the time

delay T covered the range between 0:060 and 0:148. The choice

of such values of the parameter T ensures that the phase

differences at 10 Hz cover the entire period from {180o to 180o,

as plotted in Fig. 7c. In turn, the spectral Granger statistic and

transfer entropy are given in Fig. 7a and Fig. 7b, respectively, as

the functions of w12 at 10 Hz. For all the time lags d, the measure

DI based on information transfer is positive, correctly identifying

the causal relations 2?1. In contrast to DI , the standard Granger

DF and its spectral version DG produced false-positive results

(1?2) for w12 approximately between 10o and 100o. Such values

for w12 are interpreted as the phase delay of the driver x2(t) with

respect to the response x1(t).

The phase shift at the frequency when the signals are phase-

locked to each other depends not only on the time delay in

coupling, but also on the coupling strength E. Specifically, Fig. 8

shows the results based on the simulations wherein the time delay

Figure 6. Scenario 3: time series and spectral power. Characteristics of the driver and response in the case of a positive phase difference (45:10)
at 10 Hz (see Fig. 5): (A) simulated signals (two seconds of a randomly chosen realization); and (B) mean spectral density and cross power spectral
density, averaged across realizations. The errorbars represent the standard error computed across realizations.
doi:10.1371/journal.pone.0053588.g006
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T was kept constant T~5:415, whereas the coupling strength E
varied from 0 to 0:1. The statistics DF , DG and DI as well as the

phase difference w12 estimated at 10 Hz are shown as the functions

of E. As can be seen from Fig. 8d, w12 estimated at 10 Hz can be

either positive (phase delay) or negative (phase lead of driver x2(t)
with respect to the response x1(t)).

It is interesting to note that the information-theoretic statistic DI

is a monotonic function of E (Fig. 8c). Furthermore, DI is able to

correctly infer the causal relations, producing insignificant values

for small coupling strengths, whereas it is indistinguishable from

DI based on the surrogate data. At the same time, both standard

Granger and spectral Granger statistics, DF are DG, are very

sensitive to the phase delay. Specifically, for E~0 and E~0:008
when we observe a phase delay of 5{70 of x2(t) with respect to

x1(t) (Fig. 8d), both DF and DG are small, but statistically different

from the corresponding populations based on surrogate data

(Fig. 8a,b). In other words, the effects related to the phase locking

and phase delay are relatively strong compared to the effects

associated with modeled causality. If the inherent causal effects are

relatively strong (for example, when the coupling strength E is

between 0:025 and 0:0075, which also corresponds to the phase

delay of x2(t) with respect to x1(t) - see Fig. 8c), the standard

Granger and spectral Granger statistics correctly identify the

directionality of coupling.

Neurophysiological data
Data acquisition. To illustrate the effects similar to those

observed in the simulated data, we used an electrocorticography

(ECoG) data set provided by the sharing resource NeuroTycho

(neurotycho.org). Here we give a brief description of data

acquisition and experimental task ( see [40] and [41] for further

details). An array of 128 electrodes uniformly covered almost the

entire lateral cortex of a monkey brain, from the occipital pole to

the temporal and frontal poles. The monkey was sitting in front of

a monitor with its head fixed. The data were recorded as a

reaction to a visual grating task: a grating pattern which moved in

eight directions was presented on a screen. There was no fixation

required. Blank and stimulus patterns alternated every 2 sec. In

total, there were 160 trials with a monkey watching a black screen,

Figure 7. Influence of time delay in coupling. (A) Standard Granger causality; (B) spectral causality; (C) transfer entropy as functions of the
observed time diffrence at 10 Hz; and (D) phase difference at 10 Hz as a function of the time delay in coupling, given that the strength of coupling
was unchanged.
doi:10.1371/journal.pone.0053588.g007
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and 20 trials for each of eight directions associated with presenting

a visual grating pattern. One cycle of the sinusoid grating pattern

covered the distance of 27 mm, moving with a speed of 108 mm/

sec, which corresponds to 4 Hz of presentation rate. The distance

between the monkey and screen was 490 mm. The ECoG data

were sampled at 1 KHz.

In this study, we used the data recorded in reaction to the visual

patterns moving horizontally. First, we applied a 50 Hz notch

filter. Then, the data were band-pass filtered between ½0:150�Hz.

The time series were normalized to have a zero mean and unit

variance. We applied analyses of spectral Granger causality,

transfer entropy, and phase locking effects for a pair of electrodes.

One electode recorded the signal from the prefrontal polar cortex,

close to dorsal prefrontal area 46 (variable 1), whereas the other

electrode was localized at the primary visual cortex V1 (variable 2).

Analysis. Considering trials as realizations, similar to how it

was performed in the case of simulated data, one surrogate time

series was created from one observed time series for each trial.

Spectral statistics as well as the phase-locking index and phase

differences were computed for frequencies 1{50 Hz. Transfer

entropy was estimated for the time lags d~1{50. Relations

between the spectral Granger causality, transfer entropy, and

phase-locking effects are shown in Fig. 9. Spectral and cross-

spectral power of the signals are shown in Fig. 10. Similar to Fig. 1,

3, and 5, the solid lines represent the mean of the causal statistics,

whereas the shaded area is defined by 0:05- and 0:95-quantiles

based on the corresponding surrogate data.

As can be seen from Fig. 9, the signals become strongly phase-

locked at 21 Hz, reaching a peak of 0:8 in the phase-locking index.

The phase difference at 21 Hz is estimated to be around 390, that

is, variable 2 (visual cortex) is phase-delayed with respect to

variable 1 (prefrontal cortex). Transfer entropy is not sensitive

enough to find causality, if any, between the two brain areas. At

the same time, the measure of spectral statistic alone indicates the

presence of causal effects. The standard Granger statistic reveals

similar results, with the mean DG~{0:0091 and the confidence

interval of ½{0:0052 0:0042�. However, this could be explained by

the influence of a phase difference at 21 Hz, similar to the results

reported in Fig. 5. Thus, caution should be exercised when

interpreting the outcome from a causality analysis alone. In the

case where the inherent causal coupling, if any, is quite weak,

relatively strong phase effects are able to significantly affect a

Figure 8. Influence of coupling strength. (A) Standard Granger causality; (B) spectral causality; (C) transfer entropy as functions of phase
difference at 10 Hz; and (D) phase difference at 10 Hz as a function of the coupling strength, with the time delay in coupling kept constant.
doi:10.1371/journal.pone.0053588.g008
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causal statistic, producing spurious results. Possibly, strong phase-

locking effects with a noteable phase delay is an indication of the

presense of causality, in a general sense, between the two brain

areas. However, when it comes to Granger-type causality, an

asymmetry in predictive power should not be directly interpreted

as ‘‘causality’’, as it could be reduced to another effect.

Discussion

The key idea guiding this study is that temporal precedence

between harmonic components contributing to the observed

signals, which is the basis for Granger causality, does not always

imply a corresponding phase advance observed between them. On

the contrary, due to ambiguity of phase as a function of time, a

phase shift between signals at specific frequencies can be observed

either as a phase lead or phase delay. The situation is made worse

if the phase shift is not only a function of the time delay in

coupling, but also depends on the connection strength. We should

expect that in a network with many mutually connected nodes,

observed phase differences would be a result of intrinsic

combinations of all the connections and time delays in coupling

of the network. In turn, the phase difference can have a strong

effect on estimation of the driver-response relations, as there exist

situations interpreted as the phase delay of the driver with respect

to the response.

Two effects can contribute to a causal statistic. The first one is

the ‘‘true causality’’ viewed as a result of physical interactions

between coupled systems. Statistically, it can be associated with the

difference in complexity between the signals at the time scales

sensitive to the information exchange [30]. The second effect

related to a possible phase difference between signals at specific

frequencies can be considered an artifact, which can either

intensify or counteract the true causality effects. Depending on the

strength of the effects associated with phase difference, the

inherent causal effects can be partly neutralized or even totally

suppressed. This can be explicitly observed in the scenarios

wherein signals become phase-locked to each other at some

frequencies, which could have a dominant influence on estimated

causal statistics. Note, however, our paper considers the role of

phase shifts in the context of non-linear coupled systems, in

contrast to the case of linear time-invariant systems. In the

scenario of linear transfer functions, the spectrum of the signal is

not limited to a single harmonic component but spans several

frequencies. In the frequency domain, the slope of the phase

(group delay) produces an estimate for the time delay between the

signals, which may be used to solve the ambiguity of phase

differences at a specific frequency [32,33]. As can be seen in

Fig. 1D, 3D, and 5D, the strategy based on estimating the slope of

the phase would be inefficient in the cases we presented.

In this study, we chose a prototypical non-linear model from a

wide class of coupled oscillators with time delays in coupling. This

was inspired by encouraging results obtained in modeling the

resting state network dynamics wherein time delays play a crucial

role in the generation of realistic fluctuations in brain signals [6,7].

We explored how different combinations of the parameters of

coupling, the coupling strength, and the time delay in coupling,

can lead to either phase lead or phase delay between the driver

and the response, which in turn may affect the reconstruction of

the directionality of coupling.

The phase differences were considered in the context of phase

synchronization and phase-locking, wherein the amount of phase

synchrony inherent in two given signals at specific frequencies can

be quantified. The directionality of coupling was reconstructed

using three measures of Granger causality. First, we used the

standard Granger causality, based on autoregressive models that

describe both the signals themselves and interactions between

them. The second method employs a measure of spectral Granger

causality, based on Fourier transform of the autoregressive models.

The third approach is a non-linear variant of Granger causality,

wherein the asymmetries in the predictive transfer of information

between two processes are computed using information-theoretic

tools.

In general, we found that all the statistics tested in this study are

sensitive to phase differences. However, in our examples, the

standard and spectral measures produced statistically significant,

but spurious results. The directionality of coupling was identified

incorrectly if phase differences between two signals at frequencies

where the signals become phase-locked, were approximately in the

first quadrant (between 00 and 900), which was interpreted as the

phase lead of the response with respect to the driver. On the

contrary, the information theoretic measure performed reasonably

well in the same situations, correctly reconstructing the underlying

relations as specified by the model.

Figure 9. ECoG data: causality and phase synchronization. (A)
Estimated spectral causality; (B) transfer entropy; (C) phase-locking
index; and (D) phase differences, computed using local field potentials
recorded from a pair of ECoG electrodes. Solid lines represent the mean
of statistics under investigation, averaged across trials. The shaded area
represents the variability (0:05- and 0:95-quantiles) of the correspond-
ing statistics based on surrogate data.
doi:10.1371/journal.pone.0053588.g009
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As can be seen from Fig. 7, the standard Granger causality

performed slightly better than its spectral version. A key difference

between the two tested statistics is that the standard Granger

statistic is estimated in the time domain, whereas the spectral

measure works in the frequency domain. Thus, the latter explicitly

depends on the phase differences between harmonic components

of tested signals. On the contrary, causality is ultimately based on

interactions between different frequency components. In some

sense, inferring the directionality of coupling at a specific

frequency can be viewed as an extreme case of filtering the signals

with a narrow band-pass filter. The effects of different filtering

techniques on the performance of several causality measures have

been explored [42]. It was found that, without strong assumptions

about the artifacts to be removed, filtering disturbs the information

content and leads to missed or spurious results.

Notably, from a general perspective, the spectral causal statistic

seems to produce more output, in comparison to the standard

Granger causality, in a sense that the directionality of coupling is

reconstructed over a range of frequencies of interest. However,

there is always a trade off between how much information a

statistic can reveal and how reliable that information can be. In

this context, a statistic, which works in a time domain and

integrates the causal effects across all the frequencies, is able to

indicate only the dominant frequency-nonspecific directionality of

coupling. On the contrary, the spectral statistics can be more easily

mislead in their attempt to capture smaller details in the relations

between signals. Even transfer entropy considered as a function of

the time lag d between the past of one signal and the future of

another, produced spurious results for some d.

Nevertheless, transfer entropy performed better than the

standard Granger statistic, although both measures work in the

time domain. A key difference between these two pipelines is that

the transfer entropy was averaged across the time lags d with the

aim of decreasing the variability of estimated statistics and

increasing the robustness of the results [22]. Specifically, a

common practice for computing transfer entropy is to estimate

this measure for a range of the time lags d, for example, from 1 to

51 data points, as used in this study. In turn, this time lag d defines

the phase difference between the future of a signal and its past.

Thus, depending on specific values of d, we may observe either

phase delay or phase advance of the future of a signal with respect

to its past, similar to what we discussed earlier in the context of two

signals. If the range of d is relatively large to cover the entire

period, averaging across d would smooth out the phase effects.

Finally, the findings that an observed measure of causality

depended on an intrinsic interplay between inherent causal

relations driven by an underlying physical system and an artifact

due to differences in phase dynamics, may play a crucial role in

testing the significance of connectivity between brain regions in a

population. Suppose that we identified two regions of interest or

two locations of neural activity in the brain for a group of subjects,

and the goal is to estimate the influence one region exerts over the

other. One can further assume that the time delay in coupling

between two presumably coupled neural systems is the same across

subjects, depending approximately on the distance between the

regions and propagation speed. Even under such an assumption,

the variations in the coupling strength would lead to either the

existence of phase delay or phase advance of neural activity in one

brain area with respect to another. In the case of weak coupling

between the neural systems, the mean causal statistic averaged

across subjects might be statistically indistinguishable from zero,

even in the best scenario. In the worst case, it could indicate the

directionality of coupling opposite to the true relations between

given sources of neural activity.

Acknowledgments

We thank Maria Tassopoulos and Tanya Brown for their assistance in

preparing this manuscript.

Author Contributions

Conceived and designed the experiments: VV OK. Performed the

experiments: VV. Analyzed the data: VV. Contributed reagents/

materials/analysis tools: BM OK GB AM. Wrote the paper: VV.

Figure 10. ECoG data: spectral power. Mean spectral density and cross power spectral density of two ECoG channels, averaged across trials. The
errorbars represent the standard error computed across trials.
doi:10.1371/journal.pone.0053588.g010

Causality and Phase

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e53588



References

1. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York.

2. Zeitler M, Daffertshofer A, Gielen C (2009) Asymmetry in pulse-coupled
oscillators with delay. Physical Review E 79: 065203(R).

3. Nunez P (1995) Neocortical dynamics and human brain rhythms. Oxford
University Press.

4. Haken H (1996) Principles of brain functioning. Springer.

5. Singer W (1999) Neuronal synchrony: A versatile code for the definition of
relations? Neuron 24: 4965.

6. Ghosh A, Rho Y, McIntosh A, Ktter R, Jirsa V (2008) Cortical network
dynamics with time delays reveals functional connectivity in the resting brain.

Cognitive Neurodynamics 2: 115–120.

7. Deco G, Jirsa V, McIntosh AR, Sporns O, Ktter R (2009) Key role of coupling,
delay, and noise in resting brain fluctuations. Proceedings of the National

Academy of Sciences 106: 10302–07.
8. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase

synchronization and large-scale integration. Nature Reviews Neuroscience 2:
229–239.

9. Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic

oscillators. Physical Review Letters 76: 1804.
10. Stam C (2005) Nonlinear dynamical analysis of EEG and MEG: review of an

emerging field. Clin Neurophysiol 116: 2266–301.
11. Pereda E, Quiroga R, Bhattacharya J (2005) Nonlinear multivariate analysis of

neurophysiological signals. Progress in Neurobiolgy 77: 1–37.

12. Mormann F, Lehnertz K, David P, Elger EC (2000) Mean phase coherence as a
measure for phase synchronization and its application to the eeg of epilepsy

patients. Physica D: Nonlinear Phenomena 144: 358–69.
13. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, et al. (1998) Detection

of n:m phase locking from noisy data: Application to magnetoencephalography.
Physical Review Letters 81: 3291.

14. Lachaux EP, Rodriguez E, Martinerie J, Varela F (1991) Measuring phase

synchrony in brain signals. Human Brain Mapping 8: 194–208.
15. Granger C (1969) Investigating causal relations by econometric models and cross

spectral methods. Econometrica 37: 428–38.
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