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Complex drought patterns robustly 
explain global yield loss for major 
crops
Monia Santini1*, Sergio Noce1, Marta Antonelli1,2 & Luca Caporaso1,3

Multi-purpose crops as maize, rice, soybean, and wheat are key in the debate concerning food, land, 
water and energy security and sustainability. While strong evidence exists on the effects of climate 
variability on the production of these crops, so far multifaceted attributes of droughts—magnitude, 
frequency, duration, and timing—have been tackled mainly separately, for a limited part of the 
cropping season, or over small regions. Here, a more comprehensive assessment is provided on 
how droughts with their complex patterns—given by their compound attributes—are consistently 
related to negative impacts on crop yield on a global scale. Magnitude and frequency of both climate 
and yield variability are jointly analysed from 1981 to 2016 considering multiscale droughts, i.e., 
dry conditions occurring with different durations and timings along the whole farming season, 
through two analogous and standardized indicators enabling comparison among crops, countries, 
and years. Mainly winter wheat and then spring wheat, soybean and the main maize’s season reveal 
high susceptibility of yield under more complex drought patterns than previously assessed. The 
second maize’s season and rice present less marked and more uncertain results, respectively. Overall, 
southern and eastern Europe, the Americas and sub-Saharan Africa presents multi-crop susceptibility, 
with eastern Europe, Middle East and Central Asia appearing critical regions for the most vulnerable 
crop, which is wheat. Finally, yield losses for wheat and soybean clearly worsen when moving from 
moderate to extreme multiscale droughts.

Maize, rice, soybean, and wheat represent a significant share of the world’s agricultural production, and they 
are crucial to achieve both food and energy security1,2. The human consumption vs. animal feed competition 
nourished the debate about the environmental footprints due to land and water exploitation and to greenhouse 
gas emissions for growing crops3,4, and about synergies between sustainable and healthy diets5,6. Moreover, the 
same crops represent biomass-energy sources for biodiesel (maize, rice, wheat) and bioethanol (soybean)7, key 
under mitigation targets from the Paris Agreement8 and currently sharing 13% of global croplands6. The Paris 
Agreement also paid attention to adaptation, so that food and energy sustainability and security should be ana-
lysed not only under past conditions but considering a likely range of future climate outlooks9,10.

Better quantifying the climate effects on the yield of global major crops from historical data is propaedeutic 
to any estimate of future climate impacts on agriculture and its connected sectors and systems (food, energy). 
There is consolidated knowledge about associations between climate and crop yield anomalies11–23, in some cases 
projected along future time horizons24–28, adopting different approaches and climate predictors, taken either as 
primary variables11–15,18–25 or after combination into indices16,17,26–28. All these efforts are valuable but remain 
fragmented as they consider one or two drought attributes, only part of the cropping season, or they focus on 
limited regions.

Better understanding the role of compound drought attributes—magnitude, frequency, duration, and tim-
ing—is thus crucial before any projection the likely impacts of expected climate variability on crop yields, guiding 
countries in proper decisions and investments for agriculture under long-term strategic planning.

In this work, we complement the existing knowledge by considering complex patterns of droughts through 
their compound attributes. We consider the reference period 1981–2016, adopting the well-known Standard-
ized Precipitation Evapotranspiration Index (SPEI)29 to assess drought occurrence and formulating an analo-
gous new index on interannual yield anomalies, the Standardized Yield Index, SYI. The SPEI is fed by monthly 
precipitation and potential evapotranspiration balance, and it represents better than other precipitation-based 
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drought indicators the potential out-of-normal soil moisture conditions (excess or deficit), for which measured 
data are not so dense as for climate data. The suitability of SPEI to be used as proxy of soil moisture, including 
different layers, was assessed by several studies over different world’s regions30–34 as well as is supported by the 
latest (sixth) Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)35, which preferred 
SPEI over other indices also due to its sensitivity to evapotranspiration and its multi-scale and classification 
characteristics allowing to study the different drought attributes. In this work, the SPEI has been computed for 
different durations (one or more months) and timings along the farming season (encompassing pre-sowing 
conditions). Short to long duration SPEI can be considered closely related to the shallow and deep layer soil 
moisture dynamics, respectively, and are useful to include the effects of fast to slow drought variability27. The SYI 
is expressed in the same way than SPEI, but it is fed by yearly yield values thus referring to unique duration and 
timing (representative of the farming season and its end, respectively). The SYI was calculated using the yields 
values for the different cropping systems (i.e., seasons of farming) for the four major global crops mentioned 
before. Being standardized indices, SPEI and SYI allow looking at moisture and yield anomalies with respect to 
the considered reference period, focusing on interannual variability and after excluding the effect of long-term 
dynamics like global warming, CO2 increase, fertilizer inputs, know-how and technological improvements in 
farming practices. Also, countries are better comparable one another regardless of their typical climate patterns 
and/or yield regimes. Moreover, SPEI and SYI have been classified into equivalent magnitude levels or classes 
(from normal conditions to extreme anomalies) that have been analysed, in terms of co-occurrence frequency, 
for the different SPEI durations and timings. Building on such a categorical representation (i.e., into classes) of 
yield and moisture deviations, any significant association was searched between anomalous (either lower- or 
higher-than-normal) both moisture and yield. A contingency approach, to our knowledge never adopted in stud-
ies on moisture-yield relationships, was applied to first count the cases (frequency) of combined either analogous 
or opposite moisture and yield anomaly, exploiting macro-classification (lower-than-normal vs. higher-than-
normal) of moisture and yield deviations. Second, the attention was paid more on the attribute of drought and 
yield magnitude, exploring if lower-than-normal yields have been significantly associated to lower-than-normal 
moisture conditions with respect to normal or wetter-than-normal conditions, as well as if lower-than-normal 
moisture conditions were significantly more concentrated in years having registered lower-than-normal yields. 
Finally, the co-occurrences of drought and lower-than-normal yield were examined more in detail focusing on 
their moderate, severe and extreme classes of magnitude.

Results
The four crops and their cropping systems analysed reveal strong association between obtained yield and climate 
variability observed during the farming period. First, the role of duration and timing of anomalous (i.e. differ-
ent than normal) moisture conditions on the frequency and magnitude of co-occurring anomalous moisture 
and yield is analysed considering SPEI and SYI macro-classes, e.g. lower yields under drier conditions (LY_D), 
higher yields under wetter conditions (HY_W), higher yields under drier conditions (HY_D) and lower yields 
under wetter conditions (LY_W). Then, within the macro-class LY_D, focus is given to single anomalous classes 
of magnitude (moderate, severe, extreme) of SPEI and SYI and on their co-occurrence frequency.

Anomalous yield and water stress.  Figure 1 summarizes results from in-depth statistical analysis of 
SPEI duration-timing contingency tables as described in “Methods”. The aggregated statistical significance 
among three tested assumptions is shown: (i) higher frequency of occurrence for LY_D against any other macro-
class (referred to as “Asymmetry > 50%”, see “Methods”) (Supplementary Fig. S1); (ii) differences in SYI mag-
nitude when SPEI ≤ − 1 with respect to when SPEI > − 1 (Supplementary Fig. S2); and (iii) differences in SPEI 
magnitude when SYI ≤ − 1 with respect to when SYI > − 1 (Supplementary Fig. S3). Supplementary Figure S4 is 
analogous to Fig. S1 but in case of asymmetry completely skewed towards HY_W, to capture potential associa-
tions between wet conditions and higher yields. Figure 1 is accompanied by Supplementary Table S1 presenting, 
besides global season lengths’ statistics for the different cropping systems, aggregated results on the asymmetry, 
quantifying the average prevalence of the LY_D macro-class occurrence with respect to any other macro-class 
(i.e., when the prevalence is always above 50%; see “Methods”).

By analysing SPEI duration-timing contingency tables for the main season of maize, Fig. 1a reveals that an 
interval extending up to 8 months before the harvesting month seems of interest for the connection between 
lower-than-normal yield and medium to long duration (more than 2 months) lower-than-normal moisture, with 
confidence at least 99.5%, confirming the importance of pre-sowing moisture regimes (looking at average season’s 

Figure 1.   Magnitude and frequency for co-occurring lower-than-normal both moisture and yield. SPEI 
duration-timing matrix of merged p-values measuring the overall aggregated significance among: (i) 
Asymmetry of contingency-tables fully skewed towards the co-occurrence of lower-than-normal both yield and 
moisture (LY_D); (ii) differences in SYI magnitudes under SPEI ≤ − 1 vs. SPEI > − 1; and iii) differences in SPEI 
magnitudes under SYI ≤ − 1 vs. SYI > − 1. Colors refer to p-value classification as reported in the legend. Lower 
p-values represent more significant asymmetry towards LY_D (i), significantly lower SYI values under drought 
vs. non-drought conditions (ii) and significantly lower SPEI values identified in cases of lower-than-normal vs. 
normal or higher-than-normal yields (iii). Grey cells represent no minimum sample reached to do either SPEI 
or SYI magnitude analyses or no asymmetry fully skewed toward LY_D. Diagonal lines indicate the case of 
overall higher SYI (or SPEI) under lower-than-normal moisture (or yield). SPEI ending (in Months before the 
Harvesting month, MBH) represents the timing and indicates the final month of the consecutive months period 
for SPEI durations longer than 1 month.
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duration in Table S1). Shorter duration droughts (less than 3 months) confirm a very strong influence before the 
last couple of season’s months and, even when occurring far (more than 4 months) before the harvesting month, 
reveal however a considerable impact (confidence at least 95%).

The second season of maize is less represented across the World’s countries and concentrated in the subtropi-
cal areas of America and Africa. From Fig. 1b it is evident how the effects of droughts longer than 2 months 
extend up to 5 and 6 months before the harvesting month at least at the 99% and 90% confidence level, respec-
tively, again entering the pre-sowing period. Interestingly, 95% confidence was found also in the case of one-
month anomalous moisture happening four months before the harvesting month but with asymmetry toward 
HY_W macro-class (Fig. S4b), suggesting that short wetter-than-normal conditions around or soon after planting 
could significantly benefit yields.

For the main season of rice, only in case of SPEI-03 ending four months before the harvesting month (so 
during the initial phases of the cropping season), a correspondence between drier-than-normal conditions and 
lower-than-normal yields in terms of frequency is found with 90% confidence (Fig. S1c). Looking at magnitude 
level, drier-than-normal both one- and two-month period (SPEI-01 and SPEI-02), one month before harvest-
ing month and at harvesting month, respectively, seem consistently leading to higher SYI if compared to when 
SPEI > − 1 (confidence level at least 95%), while lower SYI appears associated to drier-than-normal periods 
irregularly along the other durations and timings analysed (confidence between 90 and 99.5%) (Fig. S2c). Overall, 
lower-than-normal yields seem associated with 1-month drier conditions just before or at the very beginning of 
the cultivation season (confidence level between 95 and 99%, Fig. S3c). All that above prevents evincing either 
a clear or a significant behaviour for rice at global level (Fig. 1c).

For the rice’s second season, concentrated in south-east Asia and secondarily in central America and central 
Africa, asymmetry towards LY_D is never met, preventing any integrated analysis through Fig. 1d. Interestingly, 
lower-than-normal yields seem related to higher very short-duration SPEI (thus to less dry conditions) at the 
beginning of the cultivation season (Fig. S3d, confidence between 90 and 99%), while a 3-month wetter-than-
normal period, roughly covering the first half of the growing season, seems associated to higher-than-normal 
yields (Fig. S4d, confidence levels between 90 and 95%).

Concerning soybean, Fig. 1e shows that for eight months in total before the harvesting date, so including at 
least a couple of months before planting, long droughts (lasting 5–8 months) lead to lower-than-normal yields 
(confidence ≥ 99.5%), while medium duration droughts (from 3 to 4 months) have the highest significance 
of negative impacts if occurring around planting (or slightly earlier) up to at least 1 month before harvesting 
month. Shorter (from 1 to 2 months) droughts have impacts when happening around the season’s mid (confi-
dence ≥ 95%), while very short wetter-than-normal conditions slightly before this middle period seem favouring 
yields (confidence ≥ 99.5%, Fig. S4e). Such significant positive relationship between yield and moisture anomalies 
are well reflected in all the analysis components, with only short drier conditions around harvesting date or just 
before the harvesting month not allowing to evince significant or strong effects.

Looking at spring wheat, Fig. 1f shows how the medium-long term anomalous dry conditions (lasting 3 
to 7 months) negatively affect yields when encompassing stages before to soon after planting until harvesting 
(confidence ≥ 99.5%). Drought periods with shorter durations (1–2 months) have impacts if occurring around 
or soon after the mid of the growing season (confidence ≥ 99.5%), while a couple of wetter-than-normal months 
just before this middle period can favour yields (Fig. S4f). No significant effect is found for very short (1-month) 
anomalous moisture regimes close to the harvesting date (Figs. S1f, S2f, S3f), except one month before harvest-
ing, revealing lower SYI for drier-than-normal conditions and more frequent higher-than-normal yields under 
wetter-than-normal conditions (confidence 95–99%, Figs. S2f and S4f, respectively).

For winter wheat, a clear signal (confidence ≥ 99.5%) is that strong negative effects on yields arise from very 
short to half year duration droughts if occurring or protracted at least until after the middle of the growing 
season (i.e., 3 months before harvesting month), or from exceptionally long droughts (7 to 8 months) if ending 
in the last season’s quarter (Fig. 1g). Good confidence is found (90–99%; Fig. 1g) for the negative impacts on 
yields from short-lasting drier-than-normal periods (2 to 3 months) when ending at harvesting, as well as from 
very short and medium-lasting anomalous periods (1 month and 4 to 6 months, respectively) ending before the 
growing season’s mid, when instead benefits on yields due to short (2–3 months) wetter-than-normal conditions 
are detected (Fig. S4g).

Country and year susceptibility.  To highlight the world’s countries where the farming season seems 
more susceptible to droughts occurring in a rather complex patterns (e.g., in different growing phases and/or 
with different lengths), Fig. 2 summarizes the mean counts of SPEI timing and duration combinations in case 
of drought conditions (SPEI ≤ − 1) for any annual occurrence of SYI ≤ − 1 (lower-than-normal yield). The con-
sidered countries are listed in Supplementary Table S2, while the cultivated surface per country and cropping 
system is reported in Supplementary Table S3, and the within country spatial distribution of crops is shown 
in Fig.  S5. For the main season of maize, especially the western side of the globe contributes to the classes 
with medium to very high susceptibility (i.e. more than 7 combinations on average for any anomalous yield 
occurrence) occupying around 268 000 km2 (24%) of lands where the crop is grown, with hotspots (high to 
very high susceptibility, i.e., more than 11 combinations) in western South America, Sub-Saharan Africa, and 
southern-eastern Europe. Most susceptible countries for the main rice season are concentrated in sub-Saharan 
Africa, South-Southeast Asia, and secondarily in the U.S. and Australia, with most concerned lands (medium 
to very high susceptibility) covering around 208,000 km2 (20%) of cultivated surface. For the second season of 
maize and rice, extending mostly within the tropical belt, countries more suffering from complex droughts are 
concentrated in Central Africa and in Central American Islands, respectively, and both revealing much less than 
200,000 km2 (however more than one third and one fourth, respectively) of cultivated lands from moderately to 
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very highly impacted. The most affected countries for soybean cultivation are in North America, in the extreme 
either south America or south Africa and in southern Europe, with moderately to very highly susceptible lands 
occupying around 460,000 km2, more than two thirds of territories growing the crop, and the highest class alone 
covering almost half (45%) of these territories. Spring wheat suffers from complex drought patterns especially in 
Central Asia, in the easternmost side of central and southern Africa, in U.S. and Australia, covering 50% of the 
total 600,000 km2 cultivated with this crop. Winter wheat yield appears from moderately to very highly exposed 

Figure 2.   Country susceptibility to drought-low yield association. Average occurrence, for each country, of 
SPEI duration-timing combinations with SPEI ≤ − 1 across all the years with SYI ≤ − 1. The values obtained from 
all cropping systems are classified into susceptibility classes considering five quantiles while zero is presented 
separately (light yellow) and distinguished from “no data” land areas (dark grey). Pie diagram represents the 
susceptibility classes’ share (within cultivated surface) among the coloured countries (i.e., excluding no data 
areas); the global cultivated area is reported below the pie in Km2.
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especially across the trans-Mediterranean region surrounded by North Africa, Middle East, central Asia, and 
many European countries extending from southern to central-eastern Europe, covering around two thirds of 
the total cultivated surface (1 Mil km2). Among nations hosting both wheat cropping systems, the conditions of 
Central Asia, Middle East and Eastern Europe seem particularly problematic. Looking at all crops together, the 
American continent, sub-Saharan Africa and both southern and eastern Europe reveal the highest vulnerability.

Figure 3 shows, for each cropping system, the distribution of the average annual counts of SPEI timing and 
duration combinations in case of droughts (SPEI ≤ − 1) for any occurrence of SYI ≤ − 1, at global level. It is clear 
how winter wheat reveals most frequently (i.e., well above the limit between low and medium susceptibility as 
classified for Fig. 2) complex drought arrangements along the farming season matching with anomalous lower-
than-normal yields, followed by soybean and the main maize’s season, and secondarily by spring wheat. Rice, and 
maize in its second season, presents the lowest combinations’ occurrences. Supplementary Table S4 details the 
split of such a susceptibility per crop system, country, and year, highlighting 1983/1984, 1992, 2000 significantly 
more susceptible than others, confirmed by crop aggregated analysis in Supplementary Table S5, and secondarily 
years 1989, 2003, 2008, 2011 and 2015.

Drought and lower yield co‑occurrence.  Table 1 summarizes how, within the LY_D macro-class, the 
co-occurrence of SYI magnitude classes equivalent or severer than SPEI classes prevails against the sum of all 
the co-occurrence between SYI and SPEI classes (i.e., dominance occurs when the share is above the threshold 
of 66.7%; see “Methods”). The share of co-occurrence of SYI magnitude classes severer than SPEI classes is also 
estimated, considering 50% as threshold to assume the dominance with respect to the total co-occurrences of 
not analogous classes (see “Methods”). For the former, the dominance is evinced for all cropping systems, being 
77% as weighted average function of contingency tables analysed for each cropping system and, except for the 
second maize season, dominance above the threshold is found for more than two thirds of the duration-timing 
contingency tables analysed (87% as weighted average). For the latter, the dominance is found, although weaker, 
for the majority of cropping systems, being 53% as weighted average and above threshold for a little less than two 
thirds (i.e., 64% as weighted average) of contingency tables analysed, exceeding this share for soybean (94%) and 
winter wheat (72%) more reliably than for the second rice season (100%), as the first two crops can rely on more 
contingency tables than the third one.

Figure 4 focuses on the distribution of anomaly magnitude for ranges of lower-than-normal yields (SYI ≤ − 1; 
SYI ≤ − 1.5; SYI ≤ − 2) across different classes of SPEI, showing how there is high significance for winter wheat 
and soybean for which the severer is the moisture deviation from normal conditions the higher is the negative 
anomaly of yields. Confidence is lost only in case of extreme lower-than-normal yield (SYI ≤ − 2) between close 
classes of moderate and severe drier-than-normal conditions for winter wheat, and between the moderate class 
and either the severe or the extreme one for soybean, the latter however represented by a limited sample. The 
spring wheat follows in results’ significance, with cases of SYI ≤ − 1 losing confidence in the difference between 
severe and extreme SPEI classes, while those under SYI ≤ − 2 showing significance only in the divergences 
between moderate and severe SPEI classes. For maize in its main season, some confidence is found only for 

Figure 3.   Yearly crop susceptibility to drought-low yield association. Average global occurrence, for each 
year and cropping system, of SPEI duration-timing combinations with SPEI ≤ − 1 across all the occurrences of 
SYI ≤ − 1. Single points (some of which overlapping) represent each one year, the box limits indicate the 25th 
and 75th percentile while the internal horizontal line is the median. The whiskers represent the minimum and 
maximum after exclusion of outliers (i.e., values outside 1.5 times the interquartile range from the 25th and 75th 
percentile, respectively). Red line is the 2nd quantile among occurrence values assumed, as in Fig. 2, as the limit 
between Low and Medium susceptibility.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5792  | https://doi.org/10.1038/s41598-022-09611-0

www.nature.com/scientificreports/

SYI ≤ − 1 and SYI ≤ − 1.5 in the difference between moderate and severe SPEI classes, while the extreme class 
presents no significant differences from the others or, in one case under SYI ≤ − 1, an opposite behaviour, i.e., 
significant higher SYI for the SPEI extreme drought class with respect to the severe one.

For rice in its main season, as well as for the second season of both maize and rice, contrasting results are 
found, with few significant cases and sometimes with overall higher SYI under lower SPEI classes; the general 
low confidence can be also due to less populated samples for these cropping systems.

Discussion and conclusions
We considered duration, timing, frequency, and magnitude of lower-than-normal moisture conditions to investi-
gate the possible impact of droughts, under more complex patterns than previously investigated, on the produc-
tivity of world’s key crops. We exploited the Standardized Precipitation Evapotranspiration Index (SPEI) and an 
analogous indicator of yield interannual variability (Standardized Yield Index, SYI) enabling robust comparison 
among cropping systems, countries, and years.

Our consideration of drought at multiple timescales (durations and timings) during the farming season 
(encompassing pre-sowing until harvesting) complements the usual practice of considering, for global scale 
evaluations, either the SPEI or other climate indicators only for a few, short and/or fixed periods (e.g. the growing 
season, several months before harvesting—the reproductive period—or 1 year)13,14,16,17,26, while neglecting sow-
ing antecedent moisture conditions which are also important for the soil workability and crop development36,37.

The strong relationships among multiscale SPEI and crop yield was already observed in some global to 
regional studies38–40. In particular, the association between moisture and yield anomaly variability was high-
lighted at (sub)regional scale using SPEI and the standardized yield residual series (SYRS) (41), e.g. for Eastern 
Europe41–43, Spain44, North America45,46 and China47–49. While these works have mainly explored the correlation 
between moisture and yield anomaly magnitudes using different regression models, focusing on crop- and site-
specific calendars for the considered regions and thus reducing the drought durations and timings analysed, we 
provide here a wider analysis integrating drought magnitude, frequency, duration, and timing under a global 
view with national-level detail mostly driven by the spatial granularity of crop calendars. Moreover, our approach 
differs from those that combined the SPEI and the SYRS due to the identical detrending, standardization and 
classification procedure we applied to the SPEI and the adopted SYI.

We show how the yield of the main crops analysed is susceptible to more complicated drought patterns than 
evidenced by previous valuable studies for specific crops and regions, and that such a complex drought-low 
yield connection is a consistent feature at global scale. In particular, we reinforce earlier findings about the high 
vulnerability to drought of wheat, soybean, and maize, as well as former conclusions about no substantial or clear 
impacts on rice, for which the temperature regime seems the most important driver and whose water demand 
is mostly covered through irrigation11,14,16,22,38,47. The shorter SPEI scale (up to 3–4 months) is confirmed a good 
indicator of yield loss as formerly found for maize43,48,50,51, soybean51, and spring and winter wheat43,46,52,53. 
Moreover, we strengthen the previous scattered findings on how medium- to long-term droughts (lasting more 
than 6 months) have a noteworthy influence on crop yield, although their association with lower-than-normal 
yield is significant mainly when such extended droughts protract until the second part of the growing season. 
Indeed, on one side, the reproductive and grain development stages are more sensitive than early vegetative 
phases to shorter term low moisture conditions as shown for North America38,46, China40,48,49 and Iberia44,52. 
On the other side, the crop yields also pay for the accumulation of water deficit due to longer scale droughts 
encompassing previous seeding emergence and vegetative stages, especially for wheat44,46,48,49,52,54 but also for 
maize54. For maize and wheat, earlier and later stages in particular were already found vulnerable to short- and 
long-term droughts, respectively (41,42). Long-lasting drought encompassing the winter wheat growing season 
plus 90 days (around 3 months) before sowing was found highly correlated with negative yield anomalies55. In 
case of very short duration and severe droughts at nearly weekly scale it was assessed that, if occurring during 
the seeding period, they negatively affect winter wheat production56. All that confirms the key role of moisture 

Table 1.   Aggregated results, per cropping system, in terms of average dominance—across contingency tables 
analysed (second column)—in the co-occurrence of SYI magnitude classes equal or severer (third column), or 
only severer (fourth column), than SPEI classes within the lower-than-normal both moisture and yield macro-
class (LY_D). Enter brackets, the share of duration-timing contingency tables presenting above threshold 
dominance is reported as calculated over the total number of contingency tables analysed.

Cropping system N. of contingency tables analysed

% of co-occurrence where SYI class ≥ SPEI class [and % 
of contingency tables with co-occurrence > 66.7% among 
all classes]

% of co-occurrence where SYI class > SPEI class [and 
% contingency tables with co-occurrence > 50% among 
non-analogous classes]

Maize main 42 77% [95%] 51% [52%]

Maize 2nd season 25 71% [60%] 46% [44%]

Rice main season 33 74% [73%] 46% [45%]

Rice 2nd season 12 84% [92%] 68% [100%]

Soybean 33 82% [97%] 64% [94%]

Wheat (spring) 25 76% [80%] 52% [48%]

Wheat (winter) 85 78% [95%] 54% [72%]

Average 77% [87%] 53% [64%]
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conditions at (pre)sowing stage as we also highlighted, although the sub-monthly time scale was not explored 
in our study. We also found that the severer the drought, the severer—or even amplified—the yield anomaly; 
this matches with some previous findings that, in general, droughts of higher magnitude have greater impacts 
on winter wheat yield during critical growth stages56.

We reveal concurrent susceptibility for key crops across years and countries. Some of the top 10 producing 
nations (according to FAOSTAT​57 for the period 2015–2019) appear particularly vulnerable (Fig. 2): Argentina, 
Canada and Romania for maize; North America, Paraguay, Argentina, and India for soybean; North America, 
Brazil, Argentina, Ukraine, France for wheat, and Thailand, Myanmar, and Philippines for rice, although this crop 
presents less clear results. All that threatens the global breadbaskets as already identified for recent decades22,58, 
which registered an increasing trend of chronically drought-prone lands59 and with global grain production areas 
presenting drying trends especially in developing countries60.

Our results reveal as globally susceptible to complex drought patterns, with different significance, the years 
1983/1984 (maize and rice), 1989 (winter wheat), 1992 (maize, rice, and soybean), 2000 (maize), 2003 (maize and 
winter wheat), 2008 (wheat), and 2011 and 2015 (rice). Interestingly, these years were interested by weak to strong 
El Niño (1992, 2003 and 2015) and strong La Niña (2000) and by consecutive El Niño and La Niña (1983/1984, 
1989, 2008, 2011), already recognized affecting yield in some world areas, in different ways function of the crop 
considered13. In particular, our work consolidates these years as critical for yields especially in terms of complex 
drought patterns and at global level, which is important for the food system given that food consumption is not 
only based on local production, but international trade has strong importance61.

The expected drought regime for the future, in terms of simultaneous rising of the frequency, duration and 
magnitude of short, medium to long term droughts (35,62–64), will likely worsen the susceptibility as also evinced 
for the same crops under future climate considering different indicators and approaches24–27.

In particular, the latest IPCC Sixth Assessment Report (AR6)35 mentions a medium confidence in the 
observed increase of agricultural droughts in all continents, as well as high both confidence and likelihood that 
with global warming from 1.5 to 4 °C the land areas affected by increasing drought frequency and severity will 
expand, due by decreasing precipitation and increasing atmospheric evaporative demand. Concerning soil mois-
ture drought duration, in the Mediterranean regions—which is revealed particularly critical in our study—it is 
expected to increase under + 1 °C to + 3 °C in a range from 41 to 125 days, representing + 46% and + 346% than 
in the late XX Century35.

Under raising food demand to nourish growing and increasingly urbanized populations65, future drought pat-
terns will likely affect agricultural productivity growth66 and thus food security, international trade, and volatile 
food price and provision, potentially leading also to criticalities in terms of conflicts, livelihood insecurity and 
migrations67–71, as well as exacerbating competition for bioenergy investments under climate change mitigation 
targets72,73.

Potential limitations of this study should be addressed in future research.
First, other drought indices could be more representative for some world regions or countries. Indicators 

considering only precipitation are suitable for subtropical areas (39), although those based on soil moisture could 
better represent the water budget component key for crop growth. However, the possible use of soil moisture 
indicators suffers from several drawbacks function of the data source considered (https://​clima​tedat​aguide.​ucar.​
edu/​clima​te-​data/​soil-​moist​ure-​data-​sets-​overv​iew-​compa​rison-​tables). If relying on ground-based soil moisture 
measurements, related networks are very sparse and cover very short or discontinuous periods. If monitored 
through remote sensing, gaps in soil moisture coverage are due to satellite orbits and to the fact that sensors can-
not see soil where vegetation is dense, leading to relevant spatial gaps. Physically based land surface models, with 
and without data assimilation, retrieve soil moisture using meteorological variables as input (e.g., precipitation, 
radiation, wind, temperature, humidity), but they are prone to systematic errors mostly due to model physics, 
soil and vegetation datasets used for model initialization, parameterization and/or validation. Our study is in 
line with the IPCC AR6 that relies on indicators based on precipitation and potential evapotranspiration (PET) 
for assessing agricultural (soil moisture) droughts. Indeed, while it is true that precipitation- and PET-based 
drought indicators, as the SPEI exploited here, could overestimate soil moisture deficit in water limited regions, 
they are good for (sub)humid regions (where actual evapotranspiration is not limited by soil moisture and tend 
to PET), and allow to also consider hydrological drought in terms of irrigation providing water bodies whose 
surface resource is not limited, as well as to account for crop water consumption in irrigated lands, common in 
semi-arid areas. Due the limits of temperature-based PET estimates, we considered here a dataset relying on the 
formulation based on the Penman Monteith equation, the same recommended in the IPCC AR6 (35).

Second, a level of inherent uncertainty is related to that of input data and related processing (see “Methods” 
and references therein). Climate data derive from an interpolation of station measurements, each having dif-
ferent lengths of available time series, also for the different variables, affecting the accuracy of monthly series 

Figure 4.   SYI values under drought related SPEI classes. Distribution of SYI values when SYI ≤ − 1 (left panel, 
yellow box plots), SYI ≤ − 1.5 (central panel, blue box plots) and SYI ≤ − 2 (right panel, green box plots) for 
− 1.5 < SPEI ≤ − 1, − 2 < SPEI ≤ − 1.5 and SPEI ≤ − 2. The box boundaries indicate the 25th and 75th percentile, 
the whiskers the 10th and 90th percentiles, and the red bar the median. Numbers enter parentheses indicate 
the sample available under each SPEI class and SYI range, across the years, countries and SPEI timings and 
durations considered. The letters with the same style (bold capital, underlined capital, or lowercase) indicate (if 
different) that in the pair-wise comparison between SPEI classes the related SYI values are significantly different 
at the 95% confidence level (p-value ≤ 0.05), the asterisk meaning instead a confidence level between 90 and 95% 
(0.05 < p-value ≤ 0.1).

▸

https://climatedataguide.ucar.edu/climate-data/soil-moisture-data-sets-overview-comparison-tables
https://climatedataguide.ucar.edu/climate-data/soil-moisture-data-sets-overview-comparison-tables
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provided in gridded format. The crop yield dataset is based on model estimates, and it is not free from error due 
to imperfect modelling, inaccurate inputs, misreporting in agricultural census statistics, and use of time-constant 
information; in this context, the use of a standardized indicator limits misleading conclusions sensitive to the 
choice of the input dataset. Another potential way to exploit yield time series is selecting alternative detrending 
methods, as well as different methods according to (sub)country peculiarities. Moreover, the beginning and end-
ing years of the dataset (i.e., 1981 and 2016, respectively) have many missing values in the Southern Hemisphere 
because crop growing season in the region often span two calendar years and yields cannot be estimated due to 
this incomplete season duration; this could be one of possible reasons of not having found significance in the 
multi-scale drought counts after the very strong and long El Niño event spanning 2015–2016. The dataset on 
the fraction of harvested area has the main limit of not distinguishing crop systems and of being not temporally 
explicit but an average around year 2000, which could neglect changes (restrictions, expansions) in cultivation 
areas along the analysis period to be associated to the multi-year yield dataset. Finally, due to the global scale 
addressed, the country-level detail cropping systems’ calendars could affect the spatial accuracy of the analysis, 
in particular for very extended countries and/or less representative cropping systems. For example, while the 
second maize season seems regarding only some world’s regions and at the same time it constitutes a limited share 
of total maize yield, the second rice season represents instead a significant share of rice total yield (16), and even 
a third season for rice seems occurring in the highly producing China (74). Moreover, the distinction of winter 
and spring wheat in the crop calendar, as well as of main and second season, requires caution (75). To reliably 
reproduce possible calendars, recent efforts highlighted the need of considering, in addition to crop biological 
requirements for heat, chilling, and moisture, the field workability due to snow cover and heavy rainfall as well 
as multi-cropping patterns (76), as well as satellite-derived phenology products (75).

Third, other factors potentially impacting crop yield in the analysed period should be considered: on the 
short-term, disturbances like pests or pathogens, although proper assessment is prevented by lack of data (22); on 
the long term, crop variety, ozone exposure (77) or CO2 fertilization effects deserve attention, although elevated 
CO2 seems offering no benefit for winter wheat during drought years in Europe (78). Last, our study does not 
account for irrigation practice and its interaction with drought; this depends on the lack of global data about 
actual irrigation amount, although useful information exists on equipped area (79), and on the consideration that 
the contribution of irrigation to yield increment remains uncertain and it is also function of performances and/or 
continuous investments related to hydraulic engineering for water diversion and cross-basin water transfer (80).

Overall, our comprehensive analysis could add valuable information to deal, in a harmonized way, with 
drought impacts on the global agricultural production for multipurpose (food and energy security) crops. The 
recognition of more complex drought patterns associated with global yield losses can help to target the deploy-
ment of early warning and decision support systems under short-term predictions and long-term projections of 
climate regime, e.g. to identify lower yield probability based on future drought patterns using identification and 
sampling approaches as done for other impacts81 or embedding drought indicators as modifiers in crop simula-
tion models82. In turn, the approach used in our study can contribute to supporting agriculture development and 
related management options in the context of climate mitigation and adaptation policies, like fine-tuning crop 
calendars or implementing other measures as alternative cultivars, additional irrigation, and crop migration83–85, 

 

 
 

-3.00

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(739)

-2<SPEI≤-1.5 
(301)

SPEI≤-2        
(61)

SY
I

A a* B A A b*
-3.00

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(290)

-2<SPEI≤-1.5 
(124)

SPEI≤-2        
(22)

SY
I

A a B A* B* b

-3.00

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(48)

-2<SPEI≤-1.5 
(29)

SPEI≤-2          
(9)

SY
I

A a B A A a

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(2522)

-2<SPEI≤-1.5 
(1191)

SPEI≤-2      
(201)

SY
I

A a B A B b
-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(897)

-2<SPEI≤-1.5 
(461)

SPEI≤-2      
(126)

SY
I

A a B A* B* b

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-1.5<SPEI≤-1 
(146)

-2<SPEI≤-1.5 
(107)

SPEI≤-2        
(46)

SY
I

A a A A B b

Wheat spring SYI ≤ -1.5 Wheat spring SYI ≤ -2 

Wheat winter SYI ≤ -1 

Wheat spring SYI ≤ -1 

Wheat winter SYI ≤ -1.5 Wheat winter SYI ≤ -2 
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while also guiding governments, businesses and international institutions toward more effective contingency 
plans, crop reserve management and/or trade strategies22.

Methods
Datasets and data analysis.  All the input datasets used in the study have been elaborated to enable con-
sistent comparison across countries and along years from 1981 to 2016, as detailed in the paragraphs below.

Crop cover and spatial weighting strategy.  The extent of lands interested by cultivation of the four 
major crops analysed (maize, rice, soybean, wheat) has been extracted from the dataset “Harvested Area and 
Yield for 175 Crops year 2000”86, originally available on a regular grid spacing of 5’ (≈ 0.0833°). Such data rep-
resent the average fractional proportion of a grid cell that was harvested for the considered crop during the 
1997–2003 period (circa year 2000). Based on the final country scale of the analysis (see also next paragraphs), 
these datasets were first resampled by keeping, for each new coarser resolution (0.5°) pixel, the average value 
among the 36 (6 × 6) finer resolution (≈ 0.0833°) pixels therein (FC, Eq. 1).

where FC stands for fraction cover and the subscript c refers alternatively to maize, rice, soybean, or wheat, based 
on the crop considered, while i represents each of the 36 finer resolution pixels belonging to the new coarse 
resolution pixel j.

Successively, these average FC were summed within each country (Sum_FC, Eq. 2) and this value was used 
to extract a weight (W_FC, Eq. 3) to be then applied to the gridded values of the considered climate variability 
indicator (see later) to obtain a country-average of it.

where n is the number of coarser resolution (0.5°) pixels j in the country cnt. The map of the countries was derived 
from the Global Administrative Areas Database (GADM; https://​gadm.​org/) and converted into a 0.5° × 0.5° grid 
assigning an ID to each country (see Table S2 in Supplementary Information for the countries’ ID).

Crop calendar and spatial aggregation.  The planting and harvesting dates for each crop considered 
have been accessed through the Crop Calendar Dataset75, available at both 5’ and 0.5° grid spacing. The latter 
resolution, derived from the re-gridding of the former, has been considered here due to the spatial resolution 
of the analysis driven by climate and yield data (see next paragraphs). Calendar dataset refers to seven different 
cropping systems for the four crops analysed: main and second season for both maize and rice, winter and spring 
sown for wheat, and only one system for soybean.

Among the Crop Calendar Dataset parameters, both planting and harvesting start, end and average dates 
are reported expressed as Julian day of the year, while planting and harvesting intervals, as well as the total crop 
season length, are reported as total number of days. The average dates for planting and harvesting have been 
considered here and converted into a value from 1 to 12 corresponding to the calendar month the dates belong 
to; the month-based values have been then averaged (keeping the nearest integer value) over the country, so to 
have a single representative planting and harvesting month per country.

Climate variability indicator and input datasets.  The climate variability indicator adopted is the 
Standardized Precipitation Evapotranspiration Index (SPEI29), used in general to quantify the deviations from 
normal potential soil moisture conditions (deficit or surplus) by combining thermal and humidity regimes. This 
index is similar to the well-known Standardized Precipitation Index (SPI87) but it merges monthly series of pre-
cipitation (P, mm) and potential evapotranspiration (PET, mm) rather than using P alone, and thus it indirectly 
considers temperature and other variables, depending on how PET is calculated. While SPI is a multi-scalar indi-
cator suitable for meteorological drought assessments, SPEI is valuable to better represent combined air, soil, and 
vegetation processes and thus four different attributes of agricultural droughts. First, the duration: the balance 
precipitation minus evapotranspiration (P-PET) at the basis of SPEI can be calculated for one or several consecu-
tive months. Second, the magnitude: given a climatological reference period, the SPEI quantifies for each month 
or consecutive months in the period how much the potential soil moisture (P-PET) deviates from the normal, 
standardizing the values for each month and location using log-logistic distributions and classifying them as 
normally, moderately, severely, or extremely dry/wet (Table 2). Third, the timing: the duration can be assumed 
starting (or ending) in any month of the year, representing drought onset (or cessation). Finally, the frequency: 
over the climatological period, the occurrence of each magnitude class, for a given duration considered and for 
any onset (or cessation) can be calculated.

For the purpose of the present work, the high-resolution Climate Research Unit Time Series (CRU-TS) 
dataset version 4.03 was exploited88. CRU-TS4.03 is available from 1901 to 2018 in monthly series at 0.5° grid 
spacing and, among variables, P and PET are provided, the latter calculated according to the Penman Monteith 
formula89. From these data, years from 1981 to 2016 were extracted to match the availability of yield data (see 
below paragraph). The SPEI was calculated using the SPEIbase R-package (https://​zenodo.​org/​record/​83446​

(1)FCc,j =
1

36

∑36

i=1
FCc,i

(2)Sum_FCc,cnt =

∑n

j=1
FCc,j

(3)W_FCc,j =
FCc,j

Sum_FCc,cnt

https://gadm.org/
https://zenodo.org/record/834462#.X8Zq381KhPY
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2#.​X8Zq3​81KhPY) and it differs from the database currently available from the same authors under the same 
CRU dataset (https://​spei.​csic.​es/​datab​ase.​html) as in the present work the reference period is made of 36 years 
(1981–2016) rather than 118 (1901–2018) and the P-PET has been here linearly detrended to disentangle the 
global warming effect on evapotranspiration and concentrate rather on interannual variability of precipitation 
and other meteorological variables14,16–18,20,21,23. Detrending was applied directly on the monthly P-PET time 
series, and not on the single P and PET time series to avoid losing physical consistency between the two variables.

The SPEI was calculated for each land cell of the CRU-TS4.03 grid with values different than no data (i.e., 
except Antarctica) along the 36 years. All the possible ending months m within a year (1 to 12, called hereafter 
timing) have been considered and each SPEI has been dated according to the ending month of the duration 
considered (e.g., the 3-month SPEI—SPEI-03—covering months from January to March, is dated as March). 
Then, given the maximum length of 12 months found for crop seasons among the cropping systems and across 
the world (i.e., winter wheat for central-western Russia), and aiming at considering the soil moisture also before 

Table 2.   SPEI classification into classes and macro classes.

Value classification Class description Macro class

SPEI ≤ − 2 Extremely Dry (ED)

Dry (D)− 2.0 < SPEI ≤ − 1.5 Severely Dry (SD)

− 1.5 < SPEI ≤ − 1.0 Moderately Dry (MD)

− 1.0 < SPEI < 1.0 Normally Dry to Wet (N) Normal (N)

1.0 ≤ SPEI < 1.5 Moderately Wet (MW)

Wet (W)1.5 ≤ SPEI < 2.0 Severely Wet (SW)

SPEI ≥ 2.0 Extremely Wet (EW)

Table 3.   SYI classification.

Value classification Class description Macro class

SYI ≤ − 2 Extremely lower yield (ELY)

Lower yield (LY)− 2.0 < SYI ≤ − 1.5 Severely lower yield (SLY)

− 1.5 < SYI ≤ − 1.0 Moderately lower yield (MLY)

− 1.0 < SYI < 1.0 Normal yield (NY) Normal yield (NY)

1.0 ≤ SYI < 1.5 Moderately higher yield (MHY)

Higher yield (HY)1.5 ≤ SYI < 2.0 Severely higher yield (SHY)

SYI ≥ 2.0 Extremely higher yield (EHY)

Jan Feb Mar AprPM May Jun Jul AugHM Sep Oct Nov Dec 
SPEI-1    a m j j a     
SPEI-2    ma am mj jj ja     
SPEI-3    fma mam amj mjj jja     
SPEI-4     fmam mamj amjj mjja     
SPEI-5      fmamj mamjj amjja     
SPEI-6       fmamja mamjja     
SPEI-7        fmamjja     
SPEI-8             
SPEI-9       
SPEI-10             
SPEI-11             
SPEI-12             
SPEI-13             
SPEI-14             

Figure 5.   Example (yellow cells) of the sub-set of SPEI durations and timings considered if assuming harvest 
in August and a 5-month season length (i.e., planting in April). The superscripts PM and HM represent the 
planting and harvesting month, respectively. In each yellow cell, the small letters represent the consecutive 
months considered in the SPEI-d calculation and in particular: f = February, m = March, a = April, m = May, 
j = June, j = July, a = August.

https://zenodo.org/record/834462#.X8Zq381KhPY
https://spei.csic.es/database.html
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the planting period to take into account potential anomalous climate conditions during soil working operations, 
SPEI was calculated for durations d from 1 to 14 consecutive months along the period 1981–2016.

Then, for each crop c, SPEI values have been averaged at country level weighting each cell in the country cnt 
(Eq. 4) according to its actual crop fraction cover (see Eq. 3, also for the explanation of subscripts).

Crop yield data.  Gridded crop yield data are available at 0.5° grid spacing in the recent Global Dataset of 
Historical Yield (GDHY) for major crops from 1981 to 201690. This hybrid dataset merges agricultural census 
statistics and satellite remote sensing data. Crop yields are already weighted according to the respective crop 
fraction in the cell and estimates are available, consistently with the above-mentioned crop calendar dataset used 
as input, separately for the cropping systems and also for the overall crop category by weighting the single crop-
ping systems. Here, the cropping system yields were considered and a linear detrending was applied to remove 
possible effects of improvements in the agricultural practices and technologies14,16–18,20–23,26. Then, a Standard-
ized Yield Index (SYI) was derived, using the same approach previously described for SPEI in case of 12-month 
duration (as yields refer to yearly values), and gridded SYI were averaged within countries (Eq. 5).

where c here is extended to represent the cropping system, not just the crop, and n is the number of coarser 
resolution (0.5°) pixels j with the cropping system c in the country cnt.

The use of SYI provided standardized yield values comparable among countries, i.e., regardless of the typical 
yield regime, and enabled classification into normal to anomalous lower or higher yield as in Table 3.

Data sampling and analysis.  Both SYI and SPEI have been calculated along 36 years and for the world’s 
countries for which described agricultural datasets were simultaneously available, i.e., countries without culti-
vated surface or yield/calendar data for one crop or cropping system have been excluded from the respective 
study (Table S3 in Supplementary material reports the harvested area calculated for each cropping system in 
each country). According to the cropping system’s calendar in each country, a subset of SPEI durations and tim-
ings was kept to cover the period from the harvesting month (HM) and back to cover up to two months before 
planting month (PM). An illustrative example is provided in Fig. 5.

To consider the role of frequency of drought, for each SPEI duration and timing, the occurrences for all the 
combinations between SPEI and SYI classes have been counted and organized in a contingency table like in Fig. 6.

Climate and yield anomalous conditions.  To consider the role of drought frequency, an index called 
Asymmetry (Eqs. 6–9) was calculated that, when greater than 50%, means that occurrences are skewed towards 
LY_D rather than towards other macro-classes. After some tests (not shown) with different minimums of sample 
size up to 177 (number of countries), showing no significant difference in results, a minimum of 36 values in 
each the contingency table was assumed enough to calculate the Asymmetry, foreseeing the possibility to have at 
least 1 count for each anomalous class combination in Fig. 6.

(4)SPEIc,cnt,d,m =

∑n

j=1
SPEIj,d,m ∗W_FCc,j

(5)SYIc,cnt =
1

n

∑n

j=1
SYIj

(6)AsymmetryLY_DvsHY_W = 100%×
LY_D

LY_D +HY_W

(7)AsymmetryLY_DvsLY_W = 100%×
LY_D

LY_D + LY_W

SPEI classes 
D N W 

ED SD MD MW SW EW 

SYI 
classes 

LY
ELY a b c 
SLY d e f 
MLY g h i 

NY 

HY
MHY 
SHY 
EHY 

Figure 6.   Contingency table among SPEI (columns) and SYI (rows) (macro)classes, see Tables 2 and 3 for 
acronyms in bold. Small letters in the orange side supported more in-depth analyses of the combination between 
LY and D macro classes.
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Replacing LY_D with HY_W in Eqs. (6–9) allows replicating the analysis focusing on higher-than-normal 
yields when wetter periods occur, to have a more comprehensive view of affine yield and moisture anomalous 
conditions.

Then, still from each contingency table, the differences in the frequencies of macro-classes’ occurrences have 
been evaluated using Fisher’s exact test (one-sided) in Real Statistics v7.4, distinguishing when Asymmetry for 
LY_D (Eq. 9) and for HY_W is greater than 50%. The null hypothesis in the test is that the differences in the 
frequencies are not significant.

To consider drought magnitude, for each duration and timing the differences between the SYI values in case 
of SPEI ≤ − 1 vs. SPEI > − 1 have been evaluated through the two-sided Wilcoxon rank sum test for independ-
ent samples using Real Statistics v7.4. In practice, we tested the null hypothesis that the statistical distributions 
of yield deviations from the normal are similar in case of drought (SPEI ≤ − 1) and non-drought (SPEI > − 1) 
conditions. The same was done for the differences between the SPEI values in case of SYI ≤ − 1 and SYI > − 1, 
i.e., testing the null hypothesis that the statistical distributions of moisture deviations is similar between cases 
of lower-than-normal (SYI ≤ − 1) and higher-than-normal (SYI > − 1) yields.

In all the above tests, the lower the p-values, the higher the evidence to reject the null hypotheses.
A SPEI duration vs. SPEI timing matrix was finally built by merging p-values from the three above mentioned 

tests (Fisher’s test and two Wilcoxon tests). The p-value aggregation was conducted using scaling of arithmetic, 
geometric and harmonic means of the three p-values following the approaches summarized in Vovk and Wang 
(91), and the most conservative results (worst combined p-value) was finally considered.

Drought and yield loss conditions.  Focus was then moved on the LY_D macro class to investigate its 
internal counts of co-occurrence between classes (a, b, c, d, e, f, g, h, i in Fig. 6). Two Dominance indices were 
considered to measure, for each duration and timing, how much frequently a magnitude class within the drought 
(D) macro class is associated with: equivalent or severer (higher) magnitude classes within the lower-than-nor-
mal yield (LY) macro class with respect to total classes’ co-occurrences under LY_D (Eq. 10); and only severer 
(higher) magnitude classes within the lower-than-normal yield (LY) macro class with respect to total co-occur-
rences of not analogous classes under LY_D (Eq. 11).

Symbols and “≥” and “>” refer to equal or higher and higher, respectively, severity magnitude of LY vs. D 
classes. To derive mean Dominance indices per cropping system, outcomes of Eqs. (10 and 11) were averaged 
across all the duration-timing contingency tables analysed; dominance was assumed to occur for values above 
66.7% (from Eq. 10) and above 50% (from Eq. 11).

Finally, for each duration and timing, the differences in the whole sub-series of SYI ≤ −  1 when 
− 1.5 < SPEI ≤ − 1 (c + f + i), − 2 < SPEI ≤ − 1.5 (b + e + h) and SPEI ≤ − 2 (a + d + g) have been evaluated through a 
two-sided Wilcoxon rank sum test for independent samples. The same has been done comparing the differences 
in the whole sub-series of SYI ≤ − 1.5 when − 1.5 < SPEI ≤ − 1 (c + f), − 2 < SPEI ≤ − 1.5 (b + e) and SPEI ≤ − 2 (a + d) 
and in the whole sub-series of SYI ≤ − 2 when − 1.5 ≤ SPEI < − 1 (c), − 2 < SPEI ≤ − 1.5 (b) and SPEI ≤ − 2 (a).

Data availability
All dataset used in the manuscript are publicly available as reported in “Methods”. All new data generated from 
these sources, and related scripts or worksheets, are available from the corresponding author upon request.
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