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Abstract

There is a molecular basis for many sleep patterns and disorders involving circadian clock

genes. In humans, “short-sleeper” behavior has been linked to specific amino acid substitu-

tions in BHLHE41 (DEC2), yet little is known about variation at these sites and across this

gene in mammals. We compare BHLHE41 coding sequences for 27 mammals. Approxi-

mately half of the coding sequence was invariable at the nucleotide level and close to three-

quarters of the amino acid alignment was identical. No other mammals had the same “short-

sleeper” amino acid substitutions previously described from humans. Phylogenetic analyses

based on the nucleotides of the coding sequence alignment are consistent with established

mammalian relationships confirming orthology among the sampled sequences. Significant

purifying selection was detected in about two-thirds of the variable codons and no codons

exhibited significant signs of positive selection. Unexpectedly, the gorilla BHLHE41

sequence has a 318 bp insertion at the 5’ end of the coding sequence and a deletion of 195

bp near the 3’ end of the coding sequence (including the two short sleeper variable sites).

Given the strong signal of purifying selection across this gene, phylogenetic congruence

with expected relationships and generally conserved function among mammals investigated

thus far, we suggest the indels predicted in the gorilla BHLHE41 may represent an annota-

tion error and warrant experimental validation.

Introduction

Sleep plays a vital function for survival in animals [1–3], especially vertebrates and even some

invertebrates [4]. It is essential in maintaining both physical and mental health, especially in

humans where sleep deprivation is linked to diabetes, high blood pressure, obesity, and

decreased immune function [5,6,7]. The timing and duration of sleep varies widely among

mammals [8] and is regulated by a plethora of intricate mechanisms including many circadian

clock genes [9].

Among the genes responsible for circadian regulation in mammals is the basic helix-loop-

helix family member e41 [5, 10, 11], also known as “differentially expressed in chondrocytes
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protein 2” (DEC2). It is an essential clock protein that acts as a transcription factor which main-

tains the negative feedback loop in the circadian clock by repressing E-box-mediated transcrip-

tion [5]. Specifically, by binding to the promoter region on the prepro-orexin gene, BHLHE41
acts as a repressor of orexin expression in mammals. Furthermore, disabling orexin results in

narcolepsy in mammals, confirming that orexin plays a vital role in sleep regulation [5].

BHLHE41 has several conserved functional domains including a bHLH region and the

“orange” domain. As a member of the bHLH family, BHLHE41 contains a ~60 amino acid

bHLH conserved domain that promotes dimerization and DNA binding [10]. Specifically, the

bHLH domain is composed of a DNA-binding region, E-box/N-box specificity site, and a

dimerization interface for polypeptide binding. The DNA-binding region is followed by two

alpha-helices surrounding a variable loop region. As a member of the group E bHLH family,

this protein specifically binds to an N-box sequence (CACGCG or CACGAG) based on

BHLHE41 amino acid site 53 (glutamate) [12]. The other well studied conserved domain in

BHLHE41 is the orange domain which provides specificity as a transcriptional repressor [13].

These domains are conserved between humans and zebrafish in both their amino acid compo-

sition and function [14]. Unfortunately, there is no 3D structure described for a mammalian

BHLHE41 in Genbank’s Protein Data Bank [15] to determine the spatial effects of amino acid

variants.

Because of its essential function in sleep regulation, anomalies in clock genes can lead to

abnormal patterns of sleep that can manifest in a wide variety of ways, ranging from insomnia

to oversleeping [1]. A rare point mutation in the BHLHE41 gene ofHomo sapiens (P384R in

NM_030762, also referred to as P385R as in [10]) confers a “short-sleeper phenotype”. The

mutation involves a transversion from a C to G in the DNA sequence of BHLHE41, which

results in a non-synonymous substitution from proline to arginine at amino acid position 385

of the BHLHE41 protein. Since proline (nonpolar) and arginine (electrically charged, basic)

have chemically dissimilar structures and since substituting these amino acids is relatively rare

(BLOSUM62 value of -2), it is not surprising that this mutation has a substantial phenotypic

effect. Subjects with this allele reported shorter daily sleep patterns than those with the wild

type allele, without reporting any other adverse effects [10]. The function of BHLHE41 in con-

trolling sleep and circadian clocks is conserved between humans and mice, but untested in

most other mammals [10]. In zebrafish, the BHLHE41 has similar structure (five exons sepa-

rated by four introns) and high sequence similarity to human homologue [14], but no varia-

tion at this residue. In Drosophila melanogaster, the most similar gene to BHLHE41 is

CG17100 (Clockwork Orange), but is only weakly similar (<11% amino acid identity; [16]).

However, transgenically introducing the short-sleeper allele P385R into Drosophila still

resulted in the short-sleeper phenotype [10] suggesting the existence of a similar regulatory

network. Another nonsynonymous substitution in BHLHE41 that correlates with altered sleep

behavior in humans is Y362H [17]. This mutation reduced the ability of BHLHE41 to suppress

CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro [17].

These short-sleeper variants could provide adaptive functions in other mammals. In such

case, we may detect the signature of positive selection on those codons. However, genes such

as BHLHE41 are essential for survival and reproduction and are therefore often highly con-

served and are more likely to show patterns of purifying selection. Purifying selection can be

manifested as higher rates of synonymous substitutions compared to rates of non-synonymous

substitutions (dN-dS) [18]. Negative overall dN-dS values indicate purifying selection and are

often evidence that a gene is involved in some essential function (like the circadian clock), yet

a codon-by-codon dN/dS analysis can detect signs of positive selection (e.g,. adaptation at the

molecular level) on specific codons. To date, no one has examined patterns of selection in

BHLHE41.
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In fact, very few nucleotide, nor amino acid comparisons have been made in mammals

beyond human vs. mouse. With the rapid accumulation of mammalian genome sequences, a

plethora of homologous sequences likely exist (see [12] for phylogenetic analysis of all bHLH,

but only includes two mammals—human and mouse; see [14] for a comparison of zebrafish

and human that calls for further sampling of mammals). Furthermore, the well-resolved mam-

malian phylogeny [19, 20] provides a robust foundation for which to test for homology and

confirm orthology. For most non-model mammalian species with whole-genome sequences,

genes are predicted using algorithms that locate open reading frames (e.g., [21]), yet rarely are

the predicted genes validated experimentally [22, 23]. Some algorithms compare putative open

reading frames with model-species to confirm length and expected sequence variation.

Accounting for any differences in the length of coding sequences can be a challenge, due to

both the existence of alternative mRNA isoforms and an increasing time of divergence [24]. A

comparative approach across a diversity of lineages can help elucidate any unusual patterns of

sequence variation.

In order to further explore the function of the BHLHE41 gene, we analyzed the evolutionary

relationships among the BHLHE41 coding sequence in humans and other mammals. There

are two clear aims of this study: (1) to utilize pre-existing data in Genbank to determine

whether any mammals other than humans have the “short-sleeper” allele or exhibit variation

at amino acid sites P385R and Y362H, and (2) to assess the degree of biochemical changes at

all amino acid substitutions and search for the footprints of selection (dN-dS). To address

these goals, we compared BHLHE41 sequences from 27 species of mammals and a reptilian

outgroup that came from sequenced cDNA and full genome sequencing projects. After creat-

ing a multiple sequence alignment, we used Bayesian and maximum likelihood analyses to

investigate the evolutionary relationships underlying this gene among mammals to confirm

orthology. Finally, we used the multiple sequence alignment to test for purifying and positive

selection across codons.

Materials and methods

Query sequence search

In order to find the complete mRNA coding sequence for BHLHE41 fromH. sapiens, we

searched ENTREZ using the “RefSeq” filter with the following query to the “Gene” database:

“DEC2 ANDH. sapiens [organism]”. We confirmed that the same sequence was obtained when

searching for “BHLHE41ANDH. sapiens [organism]”. We found a single hit for theHomo sapi-
ens BHLHE41 gene with the RefSeq accession number NM_030762 [25]. The coding sequence

for this gene is 1449 base pairs long. According to EMBL (ENSGGOT00000015550.3), there are

five introns (yet see [14] where they report only four introns). All subsequent analyses are based

solely on the coding sequence as determined by EMBL.

Locating homologous sequences with BLAST

After locating the accession number for our sequence of interest fromH. sapiens, we used

NCBI’s nucleotide BLAST [26] to find other mammalian homologues to theH. sapiens
BHLHE41mRNA. We searched the nucleotide collection (nr/nt) using Megablast with default

parameters (Word Size: 28, Match/Mismatch: 1, -2, Gap Costs: Linear). We downloaded

sequences with E-values < 10−3, local percent identity > 70%, and query coverages ~100% as

Genbank complete flatfiles.

In order to find an outgroup sequence, we performed another BLAST search using Discon-

tiguous Megablast with default parameters (Word size: 1, Match/Mismatch: 2, -3, Gap Exis-

tence/Extension Costs: 5, 2) except excluding mammals from the search results. We included
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the reptile, Pelodiscus sinensis or Chinese Softshell Turtle, as our outgroup based on the afore-

mentioned E-value, identity, and query coverage cut-offs. GenBank flatfiles for each species

coding sequence was downloaded and imported into Geneious Prime (Biomatters, New

Zealand).

Multiple sequence alignment

In order to create an alignment with sequences that represent homology to theH. sapiens
BHLHE4 mRNA, we used the Geneious Aligner within Geneious Prime. To prevent single

nucleotide gaps and ensure all remaining nucleotide gaps were in multiples of three, since this

is coding sequence, we applied a cost matrix of 70% similarity (match/mismatch of 5.0/-4.5), a

gap open penalty of 90, a gap extension penalty of one, and two refinement iterations.

Phylogenetic analyses

In order to test for homology and confirm we were comparing orthologous sequences, we con-

ducted maximum likelihood and Bayesian phylogenetic analyses. If the evolutionary relation-

ships of the BHLHE41 coding sequence reflects the known relationships among mammals,

then we can conclude homology and proceed with the tests for selection. In order to construct

a maximum likelihood tree, we used the RAxML v.4.0 [27] plugin in Geneious Prime. We

applied the GTR+CAT+I model of sequence evolution, with the Rapid Bootstrapping algo-

rithm, 1,000 bootstrap replicates, and a Parsimony Random Seed of one. This is the most com-

plex model of sequence evolution available for the RAxML plugin in Geneious Prime. It

accounts for six rates of nucleotide substitution with categories for rate variation instead of a

gamma distribution for efficiency, while simultaneously estimating the proportion of invariant

sites [27].

To compare our maximum likelihood results with another method, we constructed a phylo-

genetic tree using the MrBayes v.2.2.4 [28] plugin from within Geneious Prime. For this analy-

sis, we used the GTR (General Time Reversible) model of sequence evolution with “gamma”

rate variation. The search ran for 2,000,000 generations, subsampling every 1,000 generations

after 1,000,000 generations of burnin. Two parallel runs were conducted using four chains

each with a heated chain temp of 0.2. In order to confirm sufficient number of generations

were sampled in the Bayesian analysis, we recorded the standard deviation of split frequencies

comparing the two runs. Furthermore, we examined the trace depicting the maximum likeli-

hood value at each generation to ensure there was no slope (S1 Fig). After both maximum like-

lihood and Bayesian trees were generated, we rooted them with the reptilian outgroup, P.

sinensis (Chinese Softshell Turtle).

Molecular evolution

By comparing the rates of nonsynonymous (dN) and synonymous (dS) substitutions, we tested

for selection at the molecular scale. In MEGA7 [29], we used the codon-based Z-test of selec-

tion to test for pairwise dN-dS values, using “In Sequence Pairs” as the scope, “Positive Selec-

tion” as the test hypothesis, the “Nei-Gojobori method (Proportional)” as the model [30], and

“Pairwise Deletion” to account for gaps without removing sites entirely. We then repeated this

process using “Purifying Selection” as the test hypothesis. Purifying selection was represented

by negative dN-dS values, positive selection was represented by positive dN-dS values. dN-dS

values of zero represent neutrality. For the codon-based Z-test of selection, p-values under

0.05 were considered significant.

In order to determine if there was directional selection on any specific codons, we used

HyPhy [31] from within MEGA7. We used a “Neighbor-Joining tree”, “Maximum Likelihood”
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statistical method, “Syn-Nonsynonymous” substitution, and the “General Time Reversible”

model of sequence evolution to analyze the alignment codon-by-codon. We applied the partial

deletion option if <70% of the sequences had a gap. After running HyPhy, we removed invari-

ant codons where dN and dS could not be calculated and examined the remaining codons

with significant P-values. Values greater than 0.95 were considered significant evidence of

purifying selection. We estimated the average dN-dS values for both conserved domains com-

pared to the remaining codons outside the conserved domains.

Results

Locating homologous sequences with BLAST

From the results of the BLAST search using BHLHE41 from H. sapiens, we downloaded 27

mammalian sequences (including the query) and one reptile sequence as an outgroup for a

total alignment of 28 species.The E-values for all sequences were 0.0 and the local identity

scores from the BLAST report ranged from 87.50% to 100% (Table 1). The coding sequences

ranged in length from 1368 (P. sinensis) to 1569 (Gorilla gorilla gorilla) base pairs. The query

coverage from the BLAST report ranged from 38% to 100% (Table 1).

Multiple sequence alignment

All sequences in the multiple sequence alignment are complete from start codon (AUG) to

stop codon (all use TGA) (S3 Table). Indels ranged from three base pairs to 318 base pairs—

always in multiples of three. Of the 1,794 bp nucleotide alignment for mammals, 986 bp were

identical (55.0%). The average nucleotide pairwise identity among the mammalian sequences

was 92.2%. At the amino acid level, of the 598 residues for mammals, 71.7% were identical.

The pairwise percent identity in amino acids was 94.8% (S4 Table).

There are no amino acid substitutions in our alignment at either residue previously

described to confer alternative sleep behaviors in humans (Y362H and P385R, site numbers

refer to human sequence). In our multiple sequence alignment, Y362H is at amino acid align-

ment position 476 (S4 Table) and nucleotide alignment positions 1423-1425bp (S3 Table).

There is also no nucleotide variation for this codon. Alternatively, P385R is at amino acid

alignment position 498 (S4 Table) and nucleotide alignment positions 1489-1491bp (S3

Table). Although there are no amino acid substitutions at this residue, there is synonymous

variation. All but four sequences have the codon CCG, which codes for proline. The exceptions

are synonymous substitutions in Sus scrofa (CCA), Rousettus aegyptiacus (CCC), and P. sinen-
sis (CCC)—all of which still code for proline. However, in the G. gorilla gorilla sequence, both

residues 362 and 385 fall within the 195 base pair deletion described above.

Sequence length variation in gorilla

There are two large indels in the gorilla sequence (Fig 1; S3 and S4 Tables). The first 318 base

pairs are only present in accession XM_031000846.1—a predicted protein from the G. gorilla
gorilla genome sequence [32]. Additionally, the sequence for G. gorilla gorilla has a 195 base

pair deletion starting at nucleotide alignment site 1,360 and ending at 1,555bp. Both of these

indels are multiples of three and therefore maintain the reading frame throughout the coding

sequence yielding a predicted G. gorilla gorilla BHLHE41 amino acid sequence 522 residues.

The average non-gorilla mammalian amino acid sequence is 482aa long.

We searched the Gorilla gorilla gorilla chromosome 12 whole genome shotgun sequence

(NC_018436) between bp 58,885,949 and 58,889,015 and found that although the unusual

318bp upstream from the mammalian start codon exists, the gorilla annotation actually
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identified the correct start codon (no 318bp insertion on the 5’ end). Yet, regarding the 195bp

deletion near the 3’ end, we found 224 N’s between exon 5 and exon 6 which likely includes

both intron 5 and the missing 195bps of exon 6. In this case, the gorilla annotation is clearly

different from the predicted mRNA.

Phylogenetic analyses

Both maximum likelihood and Bayesian phylogenetic analyses were highly congruent. There

were 20 significantly supported branches in both the maximum likelihood phylogenetic analy-

sis (Fig 2) and in the Bayesian phylogenetic analysis (S2 Fig). In both trees,H. sapiens and Pan
troglodytes are strongly supported sister species (bootstrap = 97%, posterior probability = 0.99).

Additionally, the Great Apes are monophyletic in both phylogenetic analyses. While the two

trees support the same evolutionary relationships, they have one minor differences in terms of

support values. In the tree generated using Bayesian analysis, two of the Old World monkeys

(Cercocebus atys and Theropithecus gelada) are sister species with a strong posterior probability

Table 1. Sequences used in creating the multiple sequence alignment and their BLAST scores using the mRNA from the human basic helix-loop-helix family mem-

ber e41 as the query.

Latin name Accession number Query coverage (%) Identity (%)

Bos indicus x Bos taurus XM_027541573 64 91.97

Callorhinus ursinus XM_025879601 82 92.94

Cebus capucinus XM_017507035 94 96.60

Cercocebus atys XM_012093655 46 98.21

Chlorocebus sabaeus XM_007967990 99 97.96

Delphinapterus leucas XM_022577811 95 87.54

Homo sapiens1 NM_030762 100 100

Gorilla gorilla gorilla XM_031000846.1 89 98.92

Lagenorhynchus obliquidens XM_027129408 89 87.27

Lipotes vexillifer XM_007446307 38 93.63

Macaca fascicularis XM_005570417 100 98.25

Macaca mulatta XM_015151321 49 98.13

Macaca nemestrina XM_011759130 100 98.08

Marmota flaviventris XM_027934162 52 92.03

Microcebus murinus XM_012739537 93 93.71

Orcinus orca XM_004270956 51 89.93

Ovis aries XM_015093964 67 92.73

Panthera pardus XM_019452268 60 92.65

Pan troglodytes XM_520805 49 99.15

Pelodiscus sinesis 2 XM_006127674 49 88.53

Physeter catodon XM_024128992 85 87.50

Piliocolobus tephrosceles XM_023209042 100 97.17

Pongo abelii XM_002823045 48 98.98

Rousettus aegyptiacus XM_016119294 92 91.98

Sus scrofa XM_003355541 79 92.49

Theropithecus gelada XM_025402281 94 97.23

Tursiops truncatus XM_019936346 95 87.54

Zalophus californianus XM_027593397 87 92.89

1 Query sequence
2 Reptile outgroup

https://doi.org/10.1371/journal.pone.0223203.t001

PLOS ONE Mammalian BHLHE41 evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0223203 April 14, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0223203.t001
https://doi.org/10.1371/journal.pone.0223203


Fig 1. Multiple sequence alignment of the BHLHE41 mRNA for 27 mammals and one reptile outgroup. Sequence

identity is shown immediately below the consensus (green = 100% identical; gold = 25–99% identical; red< 25%

identical). The two amino acid variants known to affect sleep behavior in humans (P385R and Y362H) are indicated

with arrows. The alignment shows two unexpected findings in the gorilla sequence: a 318 base pair insertion on the 5’

end and a 195 base pair gap starting at bp 1360.

https://doi.org/10.1371/journal.pone.0223203.g001

Fig 2. Maximum likelihood phylogenetic analysis of mammalian BHLHE41 coding sequence. We used the GTR

+CAT+I parameter settings with 100 bootstrap replicates which are indicated next to the branches. The tree is rooted

with the reptilian outgroup, Pelodiscus sinensis.

https://doi.org/10.1371/journal.pone.0223203.g002
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value of 0.99, while in the tree generated using maximum likelihood, these species have boot-

strap values of 68%, which is just below the frequently used cut-off for reliability of 70% [33].

Molecular evolution and variation around conserved domains

Among the species, there were no significant pairwise dN-dS values in the test for positive

selection (all comparisons had p = 1.0). On the other hand, the Z-test for purifying selection

revealed 96.8% of the pairwise species comparisons had dN-dS values significantly less than

zero (S1 Table). The mean dN-dS value was -6.13 suggesting strong purifying selection.

After removing invariant codons and those with a gap in >70% of the sequences, we found

227 of 343 codons had significantly higher dS than dN values (66.2%) indicating strong purify-

ing selection (S2 Table; Fig 3). The dN-dS value for the “short-sleeper” allele (P385R [10]) had

a dN-dS value of -3.02 (p< 0.01), consistent with strong purifying selection. When compared

to all 343 codons, P385R had the 45th most negative dN-dS value. Another variant known to

affect sleep behavior in humans, Y362H [17], exhibited no variation in the codon and therefore

no p-value could be calculated (S2 Table).

Although 3D structures are an integral part of determining a protein’s function, there was

no known 3D structure forH. sapiens BHLHE41 protein. To confirm that there were no

homologous sequences with known 3D structures in other species or sequences with alterna-

tive gene annotations, we conducted a BLAST search using the human BHLHE41 sequence

and filtered for results with known 3D structures. The best-hit had an E-value of 0.042, which

is substantially above the commonly used threshold for homology (<10−3; [34]), thus we con-

clude that no 3D structures for BHLHE41 are currently available.

Instead, we compared variation in the two conserved domains from theH. sapiens
BHLHE41 protein GenBank flat file—the bHLH domain and the orange domain. There is no

variation in the amino acid alignment across the 59 amino acids in the bHLH domain (S4

Fig 3. Codon by codon comparison of dN-dS across the mammalian alignment of BHLHE41. Positive dN-dS values

represent positive selection, negative dN-dS values represent purifying selection, and zero dN-dS values represent

neutrality. Codon # comes from the HyPhy output and does not include codons removed because>70% of sequences

in the alignment had gaps (e.g., the first 106 amino acids in gorilla). All the codons with significant p-values (red) have

dN< dS. Blue points have dN-dS that are not significantly different from zero. There are no codons with significant

dN> dS. Conserved domains in theHomo sapiens BHLHE41 protein are indicated with black bars above the graph

representing the codon positions for bHLH and the orange domain. Invariant codons are not shown because a p-value

could not be calculated.

https://doi.org/10.1371/journal.pone.0223203.g003
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Table). The average dN-dS value for these codons is -0.891 suggesting purifying selection. All

the p-values of variable codons in this region are <0.01 (S4 Table; Fig 3). The orange domain

spans amino acids in the human coding sequence 129–175 (amino acids 235–281 in our align-

ment, S4 Table). There are two variable sites at human amino acid sites S147A (variants appear

in pig, whales, dolphins, sheep and cow; dN-dS = 0.50) and P157Q (variants appear in leopard,

northern fur seal and California sea lion; dN-dS = -0.141). The average dN-dS for the 47

codons in the orange domain is -0.811 (Fig 3). Of the 27 p-values that could be calculated in

the orange domain, all but five have p-values <0.05. In general, there are large stretches of

invariant amino acids among the mammalian samples (e.g., residues 148 to 252 of our align-

ment). Furthermore, there are seven poly-alanine residues ranging from four to 16 amino

acids in length between amino acid alignment positions 407 and 547.

Discussion

Strong purifying selection on BHLHE41 in mammals

Through this study, we explored patterns of molecular evolution in the sleep-related, circadian

clock gene BHLHE41 in mammals. Overall, this gene is highly conserved among mammals

consistent with its essential function. For example, the bHLH conserved domain shows no

amino acid variation among mammals (and even the reptilian outgroup) (amino acid align-

ment positions 152–210 in S4 Table). Furthermore, the evolutionary history of this gene

among mammals is consistent with well-established species-level phylogenetic relationships

[19, 20].

In general, the consequences of purifying selection (aka background selection) have been

described as “poorly understood [35].” We know that this type of selection arises when the rate

of nonsynonmous substitutions (dN) is substantially lower than the rate of synonymous sub-

stitutions (dS) [18]. The difference in substitution rates occurs because most nonsynonymous

substitutions in genes under purifying selection are deleterious and are removed from the pop-

ulation in order to preserve the biological function of the protein. Purifying selection explains

amino acid sequence conservation across long evolutionary time periods [35]. Purifying selec-

tion by definition reduces genetic diversity at both the codons under direct selection and those

linked to codons under selection [35]. Genes under purifying selection tend to be essential for

biological function, highly expressed, and employed in vital developmental pathways [36] like

sleep regulation. The strong footprint of purifying selection that we detected in the sleep

related gene, BHLHE41, is consistent with its essential role in sleep regulation [5]. Yet, the

expectations under purifying selection lie in stark contrast with observed non-synonymous

substitutions recorded in humans [10,17] that originally inspired this study (i.e. “short sleeper

allele). For example, at least two nonsynonymous substitutions found in humans (P385R and

Y362H) are not lethal and in fact confer altered sleep patterns that may even be adaptive under

certain circumstances [10,17].

Unexpected length variation in gorilla BHLHE41
Unexpectedly, we found two large indels in the gorilla homologue for BHLHE41. The 318 base

pair insertion at the 5’ end of the coding sequence suggests a start codon 106 amino acids

upstream from the remaining mammalian start codons. It is noteworthy that the gorilla

sequence still contains AUG at the site where the remaining sequences start translation. Addi-

tionally, the gorilla sequence contains a 195 base pair deletion near the 3’ end of the coding

sequence. This predicted deletion includes both short-sleeper variants previously described

(Y362H and P385R)—essential amino acids for proper circadian clock function [10, 14].

Although these indels may reflect novel function of BHLHE41 in gorilla, these animals are not
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known to have particularly unusual sleep patterns, nor disrupted circadian clocks as would be

expected from the addition of 106 amino acids on the 5’ end and the deletion of 65 amino

acids from near the 3’ end.

The existence of these indels seems especially unlikely given the widespread pattern of puri-

fying selection on this gene across mammals (>97% of pairwise species comparisons) and

across codons (~50% of codons). The 5’ insertion is especially suspicious because it is unique

among the 27 mammal sequences investigated and without it, the sequence aligns perfectly

with the rest of the mammalian start codons. Although this insertion does not immediately

affect the bHLH conserved domain, such a large insertion within 50 residues seems very likely

to disrupt protein folding in this region. Without a known 3D structure, confident determina-

tion of the effects of these indels on the 3D structure and therefore function remain unknown.

The gorilla BHLHE41 sequence was produced during whole-genome sequencing and was

predicted using an annotation pipeline [32]. There is no literature discussing this unusual gorilla

BHLHE41 sequence. Unfortunately, there is no cDNA sequence for this gene from gorilla in

Genbank release 233.0 (April 2019). Therefore, we suggest that there may have been an error in

the identification of the start codon by the open reading frame search algorithm [37].

An error in the open reading frame detection algorithm may account for the incorrectly

identified start codon. It is noteworthy that He et al. [10] suggested only four introns, yet

EMBL identified five introns. Furthermore, EMBL indicates this gorilla amino acid sequence

is only 419aa long compared to the Genbank accession which measures 522 residues (S3 Fig).

Experimental determination of the length of the gorilla BHLHE41 protein by sequencing

cDNA or RNA-Seq will be necessary in order to determine the true start codon in gorilla (or

start codons if there are multiple isoforms of this gene) and the validity of the 195bp deletion

near the 3’ end of the coding sequence.

There is no evidence of alternative splice variants for BHLHE41 in Gorilla according to

EMBL (ENSGGOG00000015498; accessed June 13, 2019). Furthermore, although there are 11

paralogues in EMBL, all are less than 37% identical to BHLHE41 indicating significant

sequence divergence and unlikely to be mistaken for BHLHE41. If these were paralogous

sequences, they would most likely show incongruent relationships with the well-established

mammalian phylogeny. The status in the UNIPROTKB database indicates it is still only a pre-

dicted protein with an Annotation Score of 2/5 (G3RHJ7_GORGO). It is noteworthy that the

EMBL transcript protein sequence contains neither the early start codon, nor the 195bp dele-

tion in the coding sequence (ENSGGOT00000015550.3). However, the Genbank Annotation

Release 101 of the Gorilla gorilla gorilla genome (Nov 4 2016) still contains these two large

indels. A very recent, new genome sequence of a different gorilla individual (Kamilah,

GCA_000151905.3, Aug. 28, 2019) no longer exhibits the 195bp deletion near the 3’ end of the

coding sequence. No annotations were available for this genome, but hopefully it eventually

includes a start codon that matches the rest of mammals.

The annotation of protein-coding genes is currently based on gene prediction algorithms

[37]. Gene prediction algorithms have been through several revolutions since their initial

application [38,39]. Majoros et al. [40] evaluated the quality of gene prediction algorithms. An

evaluation of gene finders based on hidden markov models (HMMs) was done by Knapp &

Chen [41]; the authors reported that no significant improvement in the quality of de novo

gene prediction methods occurred during the previous 5 years. Bakke et al. [42] evaluated

three second-generation gene annotation systems on the genome of the archaeon Halorhabdus
utahensis from the performance of the gene-prediction models to the functional assignments

of genes and pathways. Comparison of gene-calling methods showed that 90% of all three

annotations share exact stop sites with the other annotations, but only 48% of identified genes

share both start and stop sites [42]. Palleja et al. [43] performed an interesting investigation of
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overlapping CDS in prokaryotic genomes. They compared overlapping genes with their corre-

sponding orthologues and found that more than 900 reported overlaps larger than 60 bp were

not real overlaps, but annotation errors. Given that BHLHE41 is just one of the 46,653 coding

sequences predicted in gorilla, we are cautious about making any widespread conclusions

about the remaining loci.

To avoid annotation mistakes, Armengaud [44] recommends using proteomics in associa-

tion with translations in all six reading frames. Prasad et al. [38] provide a method combining

transcriptome and proteomics to aid in genome annotation. However, genes that are expressed

only under special conditions or in rarely sampled tissues, or whose expression is below the

detection level, pose a challenge even for proteomic and cDNA validation.

Conclusions

We sought to determine if there was a footprint of positive selection on BHLHE41 in mammals

in light of its effect on sleep behaviors. We found that the majority of the BHLHE41 coding

sequences exhibit a history of purifying selection (especially the conserved domains), indicating

the gene has an essential function for survival and reproduction. In particular, if adaptive sleep

behaviors are conferred by BHLHE41, we predicted residues 362 and/or 385 to show a history

of positive selection. Both sites were invariant across mammals consistent with strong purifying

selection on the underlying codons. The evolutionary history of BHLHE41 is largely congruent

with the well-established mammalian phylogeny indicative of homologous comparisons. From

the single sequences we used per species for a limited number of mammals, we found no other

species (besides humans) that exhibited the two “short-sleeper” variants [10]. These sites are

likely undergoing strong purifying selection in most mammalian species. Additional popula-

tion-level sampling across a broader diversity of mammals would be required to accurately

determine if these variants are truly unique to humans. During our investigation, we discovered

an unusually annotated sequence for G. gorilla gorilla. We suggest that the early start codon and

deletion near the 3’ end are annotation errors that warrant experimental verification.
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