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Evolution equation for quantum 
coherence
Ming-Liang Hu1 & Heng Fan2,3

The estimation of the decoherence process of an open quantum system is of both theoretical 
significance and experimental appealing. Practically, the decoherence can be easily estimated if the 
coherence evolution satisfies some simple relations. We introduce a framework for studying evolution 
equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the 
l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this 
FR, we further determine condition on the transformation matrix of the quantum channel which can 
support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by 
showing that it holds for many other related coherence and quantum correlation measures.

Quantum coherence, an embodiment of the superposition principle of states, lies at the heart of quantum 
mechanics, and is also a major concern of quantum optics1. Physically, coherence constitutes the essence of quan-
tum correlations (e.g., entanglement2 and quantum discord3) in bipartite and multipartite systems which are 
indispensable resources for quantum communication and computation tasks. It also finds support in the promis-
ing subject of thermodynamics4–8 and quantum biology9.

Clarifying the decoherence mechanism of an noisy system is an important research direction of quantum 
mechanics. But due to the lack of rigorous coherence measures, studies in this subject were usually limited to the 
qualitative analysis. Sometimes, coherence behaviors were also analyzed indirectly via various quantum corre-
lation measures3. However, coherence and quantum correlations are in fact different. Very recently, the charac-
terization and quantification of quantum coherence from a mathematically rigorous and physically meaningful 
perspective has been achieved10. This sets the stage for quantitative analysis of coherence, which were carried out 
mainly around the identification of various coherence monotones11–16 and their calculation17. Some other pro-
gresses about coherence quantifiers include their connections with quantum correlations18–20, their behaviors in 
noisy environments21,22, their local and nonlocal creativity23,24, their distillation25,26 and the role they played in the 
fundamental issue of quantum mechanics27–30.

One major goal of quantum theory is to find effective ways of maintaining the amount of coherence within 
a system. The reason is twofold. First, coherence represents a basic feature of quantum states, and underpins all 
forms of quantum correlations1. Second, coherence itself is a precious resource for many new quantum technol-
ogies, but the unavoidable interaction of quantum devices with the environment often decoheres the input states 
and induces coherence loss, hence damage the superiority of these quantum technologies31.

Looking for general law determining the evolution equation of coherence can facilitate the design of effective 
coherence preservation schemes. Remarkably, the evolution equations for certain entanglement monotones (or 
their bounds)32–40 and geometric discords41 were found to obey the factorization relation (FR) for specific initial 
states. Then, it is natural to ask whether there exists similar FR for various coherence monotones. In this work, we 
aimed at solving this problem. We first classify the general d-dimensional states into different families, and then 
prove a FR which holds for them. By employing this FR, we further identified condition on the quantum channel 
for freezing coherence. We also showed that this FR applies to many other coherence and correlation measures. 
These results are hoped to add another facet to the already rich theory of decoherence, and shed light on revealing 
the interplay between structures of quantum channel and geometry of the state space, as well as how they deter-
mine quantum correlation behaviors of an open system.

Results
Coherence measures. By establishing rigorously the sets   of incoherent states which are diagonal in the 
reference basis {|i〉 }i=1,…,d, and incoherent operations Λ  specified by the Kraus operators {El} which map δ ∈   
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into  , Baumgratz et al.10 presented the defining properties for an information-theoretic coherence measure C: 
(1) C(ρ) ≥  0 for all states ρ, and C(δ) =  0 iff δ ∈  . (2) Monotonicity under the actions of Λ , C(ρ) ≥  C(Λ (ρ)). (3) 
Monotonicity under selective incoherent operations on average, i.e., ρ ρ≥ ∑C p C( ) ( )l l l , where ρ ρ= †E E p/l l l l, 
and ρ= †p E ETr( )l l l  is the probability of obtaining the outcome l. (4) Convexity, ρ ρ∑ ≥ ∑p C C p( ) ( )l l l l l l , with 
pl ≥  0 and ∑ =p 1l l .

There are several coherence measures satisfying the above conditions. They are the l1 norm and relative 
entropy10, the Uhlmann fidelity12, the intrinsic randomness14, and the robustness of coherence42. In this work, we 
concentrate mainly on the l1 norm of coherence, which is given by ρ ρ= ∑ ≠C i j( ) i j  in the basis {|i〉 }i=1,…,d

10, 
and will mention other coherence measures if necessary.

FR for quantum coherence. Consider a general d-dimensional state in the Hilbert space , with the den-
sity matrix

ρ = + ⋅





d

x X1 1
2

, (1)d

where d is the d ×  d identity matrix, = … −
��x x x x( , , , )d1 2 12 , = … −

��
X X X X( , , , )d1 2 12 , xi =  Tr(ρXi), and Xi ∝  Ti. 

Here, {Ti} are generators of the Lie algebra SU(d). They can be represented by the d ×  d traceless Hermitian matri-
ces which satisfy δ= + ∑ +=

−T T d if d T/2 ( ) /2i j ij d k
d

ijk ijk k1
12 , with fijk (dijk) being the structure constants that  

are completely antisymmetric (symmetric) in all indices43,44. If one arranges = …
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where j, k ∈  {1, 2, … , d} with j <  k, and l ∈  {1, 2, … , d −  1}. Clearly, {Xi} satisfy δ=′ ′
†X XTr( ) 2i i ii . Moreover, the 

notation i appeared in vjk is the imaginary unit.
For ρ represented as Eq. (1), ρC ( )l1

 can be derived as

∑ρ = +
=

−C x x( ) ,
(3)l

r

d

r r
1

2 1
2

2
2

1

0

where d0 =  (d2 −  d)/2, and xl related to wl which is diagonal in the basis {|i〉 }i=1,…,d do not contribute to ρC ( )l1
.

To investigate evolution equation of coherence, we suppose the system S of interest interacts with its environ-
ment E, then by considering S and E as a whole for which their evolution is unitary, the reduced density matrix for 
S is obtained by tracing out the environmental degrees of freedom, ρ ρ ρ= ⊗ †t U t U t( ) Tr { ( )( (0) (0)) ( )}E E . In 
terms of the master equation description, the equation of motion of ρ can be written in a local-in-time form31

ρ ρ=


t t( ) ( ), (4)

with  being the Louville super-operator which may be time independent or time dependent.
As it has been shown that for any master equation which is local in time, whether Markovian, non-Markovian, 

of Lindblad form or not, one can always construct a linear map which gives ρ ρ=t( ) [ (0)]  (the opposite case 
may not always be true), and the linear map can be expressed in the Kraus-type representations45. If the map   is 
completely positive and trace preserving (CPTP), then one can explicitly construct the Kraus operators {Eμ} such 
that

 ∑ρ ρ= = + ′ ⋅
µ
µ µ

�� ��†E E
d

x X( ) 1 1
2

,
(5)

d

where elements of ′��x  for ρ( )  are given by ρ′ =x XTr[ ( ) ]i i .
For convenience of later discussion, we turn to the Heisenberg picture to describe   via the map 

 = ∑µ µ µ
† †X E X E( )i i , which gives ρ′ = †x XTr[ ( )]i i . As an Hermitian operator  on  ×d d can always be decom-

posed as = ∑ =
− r Xi

d
i i0

12
  ∈r( )i , † X( )i  can be further characterized by the transformation matrix T defined via

 ∑=
=

−
† X T X( ) ,

(6)
i

j

d

ij j
0

12

where = †T X XTr[ ( ) ]/2ij i j , and here we denote by =X d2/ d0 . Clearly, T00 =  1, and T0j =  0 for j ≥  1. This 
further gives ′ = ∑ =

−x T xi j
d

ij j0
12

.
To present our central result, we first classify the states ρ into different families: ρ ρ= ˆ{ }n , with

ρ χ= + ⋅
��

ˆˆ

d
n X1 1

2
, (7)

n
d
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and = … −n̂ n n n( , , , )d1 2 12  is a unit vector in  −d 12
, while χ is a parameter satisfying χ ≤ −d d2( 1)/  as 

ρ χ= +ˆ dTr( ) /2 1/n 2 2 . By this classification scheme, different families of states are labeled by different unit 
vectors n̂, while states belong to the same family are characterized by a common n̂, and can be distinguished by 
different multiplicative factors χ (see Fig. 1). That is to say, ρn̂ represents states with the characteristic vectors ��x  
along the same or completely opposite directions but possessing different lengths.

While ρn̂ is fully described by χn̂, and the action of   on it can be written equivalently as the map: χ χ
ˆ ˆn n( ), 

a measure Q may only be function of χn̂s, i.e., ρ χ= ˆˆQ Q n( ) ( )n s , with = …
α

n̂ n n n( , , , )s
k k k1 2

 (α ≤  d2 −  1). Then 
as one can always make Qmax ≥  1 (otherwise, one can normalize it by multiplying a constant to it), we have the 
following lemma.

Lemma 1. For any quantum measure of ρ χ= ˆˆQ Q n( ) ( )n s  that can be factorized as χ χ=ˆ ˆQ n f g n( ) ( ) ( )s s , and quan-
tum channel   that gives the map  χ χ=ˆ ˆn n( ) ( )s s , the FR

ρ ρ ρ=ˆ ˆ ˆQ Q Q[ ( )] ( ) [ ( )], (8)
n n

p
n 

holds, where f(χ) and ˆg n( )s  are functionals of χ and n̂s, respectively, and ρ χ= + ⋅
��

ˆˆ d n X/ /2p
n

d p  is the probe state, 
with χp solution of the equation χ =ˆf g n( ) ( ) 1p

s .
The proof is given in Methods. Equipped with this lemma, we are now in position to present our central result.

Theorem 1. If the transformation matrix elements Tk0 =  0 for k ∈  {1, 2, … , d2 −  d}, then the evolution of  ρ ˆC [ ( )]l
n

1
 

obeys the following FR

ρ ρ ρ=ˆ ˆ ˆC C C[ ( )] ( ) [ ( )], (9)l
n

l
n

l p
n

1 1 1
 

with ρ ˆ
p
n the probe state, and χ = ∑ += −n n1/ ( )p r

d
r r1 2 1

2
2
2 1/20 .

The proof is left to the Methods. Here, we further show an implication of it. As Tk0 =  0 for k ∈  {1, 2, … , d2 −  d}, 
we have  = ∑ =

−† X T X( )k j
d

kj j1
12

, hence  =† XTr[ ( )] 0k . On the other hand,  = ∑µ µ µ
† †X X E ETr[ ( )] Tr( )k k . This, 

together with Eq. (2), requires that all the nondiagonal elements of = ∑µ µ µ
†A E E  must be zero.

Corollary 1. If the operator = ∑µ µ µ
†A E E  is diagonal, then the evolution of  ρ ˆC [ ( )]l

n
1

 obeys the FR (9).
This corollary means that in addition to the usual completeness condition ∑ =µ µ µ

†E E d of the CPTP map31, 
the FR (9) further requires ∑µ µ µ

†E E  to be diagonal. We denote this kind of channels F. Clearly, they include the 
unital channel U [i.e.,  =d d( / ) /d dU ] as a special case.

From a geometric perspective, Theorem 1 indicates that for all states of the same family ρn̂, namely, states with 
the characteristic vectors ��x  along the same or opposite directions, their coherence dynamics measured by the l1 
norm can be represented qualitatively by that of the probe state ρ ˆ

p
n, as the magnitude of  ρ ˆC [ ( )]l

n
F1

 equals the 
product of the initial coherence ρ ˆC ( )l

n
1

 and the evolved coherence  ρ ˆC [ ( )]l p
n

F1
. This simplifies greatly the assess-

ment of the decoherence process of an open system. Moreover, the FR (9) provides a strong link between amount 
of the coherence loss of a system and structures of the applied quantum channels. Particularly, as ρn̂ with the 
vectors ��x  along the same or opposite directions fulfill the same decoherence law, the approach adopted here may 
offer a route for better understanding the interplay between geometry of the state space and various aspects of its 

Figure 1. States of the same family ρn̂ are represented by the characteristic vectors x along the same or 
opposite directions (left). When ρn̂ traverse a quantum channel   (right), their decoherence process can be 
described qualitatively by that of ρ ˆ

p
n with the unit vector n̂ (the bottommost golden one).
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quantum features. It might also provides a deeper insight into the effects of gate operation in quantum computing 
and experimental generation of coherent resources in noisy environments, as  ρ ˆ( )n

F  can specify the actions of 
environments, of measurements, or of both on the states ρn̂.

When some restrictions are imposed on the quantum channels, the FR (9) can be further simplified.

Corollary 2. If a channel   yields =† X q t X( ) ( )k k  for = … β
X{ }k k k k, ,1

 (β ≤  d2 −  d), with q(t) containing information 
on  ’s structure, then the FR

ρ ρ=C q t C[ ( )] ( ) ( ), (10)l l1 1


holds for the family of states ρ = + ∑ + ∑= = − +
−βd x X x X/ /2 /2d k k

k
k k l d d

d l l1
1

1 2
2 .

The proof of this corollary is direct. As  =† X q t X( ) ( )k k, the parameters ′xk for  ρ( ) are given by ′ =x q t x( )k k. 
Therefore, by Eq. (3) we obtain ρ ρ=C q t C[ ( )] ( ) ( )l l1 1

 . Clearly, its evolution is solely determined by the product 
of the initial coherence and a noise parameter |q(t)|.

There are many quantum channels satisfying the condition of Corollary 2. For instance, the Pauli channel PL  
and Gell-Mann channel GM  given in ref. 41, and the generalized amplitude damping channel GAD

31. Notably, PL  
covers the bit flip, phase flip, bit-phase flip, phase damping, and depolarizing channels which embody typical 
noisy sources in quantum information, while GAD covers the structured reservoirs with Lorentzian and 
Ohmic-type spectral densities.

One can also construct quantum channel G  under the action of which  ρC [ ( )]l G1
 obeys the FR (10) for arbi-

trary initial state. The Kraus operators describing G are given by

= + − + −

=
−

=
− + −

E
d

d d q d q

E
q

d
X E

dq d q
d

X

1 1 ( ) ( 1) ,

1
2

,
1 ( 1)

2
,

(11)

d

k k l l

0
G 2

0

G 0 G 0

with k ∈  {1, … , d2 −  d}, and l ∈  {d2 −  d +  1, … , d2 −  1}, while q and q0 are time-dependent noisy parameters. 
Clearly, G  reduces to the depolarizing channel when q0 =  q.

N-qubit case. A general N-qubit state can be written as ρ = + ⋅
�� ��
y Y/2 /2N

N
2N , with = … −

��
Y Y Y Y( , , , )1 2 4 1N , 

and

σ σ σ= ⊗ ⊗ … ⊗−Y 2 , (12)j
N

j j j
(1 )/2

N1 2

here, σ =0 2, and σ1,2,3 are the usual Pauli matrices, while jk takes the possible values of {0, 1, 2, 3} other than the 
special case jk =  0 for all k. In the Methods section, we have proved that for every family of the N-qubit states 

ρ χ= + ⋅
��

ˆˆ m Y/2 /2N
m N

2N , with = … −m̂ m m m( , , , )1 2 4 1N  being a given unit vector, one can construct an auxil-
iary channel aux such that ρ ρ=ˆ ( )N

m
Naux . This, together with Eq. (9), gives:

Corollary 3. For any N-qubit state ρN, there exists an auxiliary channel aux  such that

   ρ ρ ρ= ˆC C C[ ( )] [ ( )] [ ( )], (13)l N l N l N p
m

F aux aux F ,1 1 1

with ρ χ= + ⋅
��

ˆˆ m Y/2 /2N p
m N

p, 2N , χ = ∑ += −m m1/ ( )p r
d

r r1 2 1
2

2
2 1/20 , d0 =  (4N −  2N)/2, and = ∑m a mi j ij j, with aij 

being determined by the transformation between {Yj} and {Xi}: = ∑X a Yi j ij j.
This corollary generalizes the FR (9) for the N-qubit states. It shows that coherence of the evolved state under 

the actions of two cascaded channels F aux   is determined by the product of the coherence for the evolved probe 
state under the action of F  and the coherence for the generated state by aux . As every Yj can always be decom-
posed as linear combinations of the generators {Xi}, the above result applies also to the qudit states with d =  2N. As 
an explicit example, the transformation between {Yj} and {Xi} for N =  2 is given in the Methods section, from 
which aux  and {aij} can be constructed directly.

Frozen coherence. By Theorem 1 we can also derive conditions on the quantum channel for which the l1 
norm of coherence is frozen. To elucidate this, we return to Eq. (9), from which one can see that  ρ ˆC [ ( )]l

n
1

 is 
frozen if the coherence of the probe state remains constant 1 during the evolution, i.e., ρ ≡ˆC [ ( )] 1l p

n
1
 . For later 

use, we denote by TS the submatrix of T consisting Tij with i ranging from 1 to d2 −  d and j from 1 to d2 −  1. Then 
by Theorem 1 and the reasoning in its proof, we obtain the fourth corollary.

Corollary 4. If Tk0 =  0 for k ∈  {1, 2, … , d2 −  d}, and TS is a rectangular block diagonal matrix, with the main diag-
onal blocks

=









∈ …− − −

−
T

T T
T T

r d( {1, , }),
(14)

r
S r r r r

r r r r

2 1,2 1 2 1,2

2 ,2 1 2 ,2
0
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being orthogonal matrices, i.e., =T T( )r
S T

r
S

2, the l1 norm of coherence for ρn̂ will be frozen during the entire 
evolution.

The proof is given in Methods. It enables one to construct channels   for which the l1 norm of coherence is 
frozen. As an explicit example, we consider the one-qubit case, with   being described by ε σ= ∑ =Ei j ij j0

3 , i ∈   
{0, 1, 2, 3} and ε ∈ij . Then by Corollary 4, one can obtain that when εi0 =  εi3 =  0, and ε ε∑ | ± | =ii i i1 2

2   
ε ε ε ε∑ | | − | | + ∑ =⁎[ ( )] 4[ Re( )] 1i i i i i i1

2
2

2 2
1 2

2 , or when εi1 =  εi2 =  0, and ε ε ε ε∑ ± = ∑ −[ ( )]i i i i i i0 3
2

0
2

3
2 2 

ε ε+ ∑ =⁎4[ Im( )] 1i i i3 0
2 , with Re(·) and Im(·) representing, respectively, the real and imaginary parts of a num-

ber, the l1 norm of coherence will be frozen. There are a host of {εij} that fulfill the requirements, e.g., ε01 =  q(t), 
ε = ± − q t1 ( )02

2 , εk1 =  εk2 =  0, or ε00 =  q(t), ε = ± −i q t1 ( )03
2 , εk0 =  εk3 =  0, with k ∈  {1, 2, 3}, and q(t) con-

tains the information on  ’s structure and its coupling with the system.
Moreover, for certain special initial states, the freezing condition presented in Corollary 4 may be further 

relaxed. In fact, for ρn̂ with certain n2r−1 =  0 (or n2r =  0), =T T( )r
S T

r
S

2 simplifies to + =−T T 1r r r r2 1,2
2

2 ,2
2  (or 

+ =− − −T T 1r r r r2 1,2 1
2

2 ,2 1
2 ). For instance, when considering the channel PL

41, the l1 norm of coherence for ρn̂ with 
n2 =  0 is frozen during the entire evolution when q1 =  1 (i.e., the bit flip channel). Similarly, for ρn̂ with n1 =  0, it is 
frozen when q2 =  1 (i.e., the bit-phase flip channel). These are in facts the results obtained in ref. 21. Needless to 
say, when =T T( )r

S T
r
S

2, the l1 norm of coherence is also frozen for ρn̂ with certain n2r−1 =  0 or n2r =  0.

Outlook. The FR (9) presented here can be of direct relevance to other issues of quantum theory. For example, 
the l1 norm of coherence is a monotone of the entanglement-based coherence measure for one-qubit states12. Its 
logarithmic form ρdClog [ ( )]l2 1

 is lower bounded by the relative entropy of coherence Cr(ρ) which has a clear 
physical interpretation, while ρ ρ≥C C( ) ( )l r1

 for arbitrary ρ has also been conjectured46. Further study shows that 
ρC ( )l1

 also bounds the robustness of coherence, i.e., ρ ρ ρ− ≤ ≤−d C C C( 1) ( ) ( ) ( )l l
1

RoC1 1
42. It is also connected 

to the success probability of state discrimination in interference experiments29 and the negativity of quantum-
ness21,47. Thus, our results provide a route for inspecting the interrelations between decay behaviors of coherence, 
quantumness, and entanglement.

The FR also applies to other related coherence measures, as well as quantum correlations which are relevant to 
coherence. Some examples are as follows (see Methods section for their proof): (i) the coherence concurrence for 
one-qubit states14, and the trace norm coherence for one-qubit and certain qutrit states13,46; (ii) the genuine quan-
tum coherence (GQC) defined via the Schatten p-norm for all states48, which is related to quantum thermody-
namics and the resource theory of asymmetry; (iii) the robustness of coherence for the one-qubit states and 
d-dimensional states with X-shaped density matrix, and its lower bound ρ ρ− ∆( ) 2

2 which is a measure of the 
GQC for all states42; (iv) the K coherence defined based on the Wigner-Yanase skew information11, although it is 
problematic in the framework of coherence by Baumgratz et al.49, it may be a proper measure of the GQC48;  
(v) the purity of a state which is complementary with quantum coherence28; (vi) the geometric discord50–54 and 
measurement-induced nonlocality55,56; (vii) the maximum Bell-inequality violation57, and average fidelity of 
remote state preparation58 and quantum teleportation59. All these manifest the universality of the FR formulated 
in this paper, and will certainly deepen our understanding of the already rich and appealing subject of quantum 
channels or the CPTP maps.

Recently, Jing et al. studied quantum speed limits to the rate of change of quantumness measured by the 
non-commutativity of the algebra of observables60. We note that the coherence quantifiers can also be consid-
ered as a measure of quantumness, but it is different from the notion of quantumness considered in ref. 60 and 
references therein, although they both characterize global quantum nature of a state, and are intimately related 
to quantum correlations such as discord. The coherence monotones characterize quantumness of a single state. 
It is basis dependent, and vanishes for the diagonal states. The quantumness based on the non-commutativity 
relations measures the relative quantumness of two states. It is basis independent, and vanishes only for the max-
imally mixed states. Of course, it is as well crucial to study evolution equation of it in future work.

Discussion
We have established a simple FR for the evolution equation of the l1 norm of coherence, which is of practical rel-
evance for assessing coherence loss of an open quantum system. For a general d-dimensional state, we determined 
condition such that this FR holds. The condition can be described as a restriction on the transformation matrix, 
or on the operator ∑µ µ µ

†E E , of the quantum channel. By introducing an auxiliary channel, we further presented 
a more general relation which applies to any N-qubit state. With the help of the FR, we have also determined a 
condition the transformation matrix should satisfy such that the l1 norm of coherence for a general state is 
dynamically frozen, and constructed explicitly the desired channels for one-qubit states. Finally, we showed that 
the FR holds for many other related coherence and quantum correlation measures. We hope these results may 
help in understanding the interplay between structure of the quantum channel, geometry of the state space, and 
decoherence of an open system, as well as their combined effects on decay behaviors of various quantum 
correlations.

Methods
Proof of Lemma 1. As   gives the map χ χ=ˆ ˆn n( ) ( )s s  , and ρ χ= ˆˆQ Q n( ) ( )n s  fulfills χ χ=ˆ ˆQ n f g n( ) ( ) ( )s s , we 
have
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ρ χ χ

ρ χ χ

= =

= = .

ˆ ˆ

ˆ ˆ

ˆ

ˆ
Q Q n f g n

Q Q n f g n

[ ( )] [ ( )] ( ) [ ( )],

[ ( )] [ ( )] ( ) [ ( )] (15)

n s s

p
n

p
s

p
s

Hence, it is evident that  ρ ρ ρ=ˆ ˆ ˆQ Q Q[ ( )] ( ) [ ( )]n n
p
n  when χ =ˆf g n( ) ( ) 1p

s .
If Qmax ≥  1, the equation χ =ˆf g n( ) ( ) 1p

s  with respect to χp is always solvable as χ ρ=ˆ ˆf g n Q( ) ( ) ( )p
s

p
n . If 

Qmax <  1, one can normalize it by simply introducing a constant N such that ′ = =Q NQ 1max max , with Q′  obeying 
the FR of Eq. (8).

Proof of Theorem 1. First, by using Eq. (3) and the fact that χ=�� ˆx n, we obtain

∑ρ χ= + .
=

−
ˆC n n( )

(16)l
n

r

d

r r
1

2 1
2

2
2

1

0

which corresponds to ρ χ= ˆˆC f g n( ) ( ) ( )l
n s

1
, with f(χ) =  χ and = ∑ += −ˆg n n n( ) ( )s

r
d

r r1 2 1
2

2
2 1/20 .

Second, when the transformation matrix elements Tk0 =  0 for k ∈  {1, 2, … , d2 −  d}, we have

∑χ χ′ = =
=

−
x T n n( ),

(17)
k

j

d

kj j k
1

12



and therefore χ χ=ˆ ˆn n( ) ( )s s  .
From Eqs (16) and (17) one can see that both the l1 norm of coherence and the quantum channel   fulfill the 

requirements of Lemma 1, and the probe state ρ χ= + ⋅
��

ˆˆ d n X/ /2p
n

d p , with χp being solution of the equation 
χ =ˆf g n( ) ( ) 1p

s , which can be solved as χ = ∑ += −n n1/ ( )p r
d

r r1 2 1
2

2
2 1/20 . This completes the proof.

Proof of Corollary 3.  Suppose aux  is described by the Kraus operators ε=µ µ µE Yaux ,  with 
µ ∈ … −{0, 1, , 4 1}N . Then, by employing the anticommutation relation of the Pauli operators σ1,2,3, we obtain

∑ ε=ν
µ

νµ µ ν
=

−
† Y c Y( ) ,

(18)
aus

0

4 1N



where = −νµ
ξ− ∑ νµ

=c 2 ( 1)N1 k
N

k1 , with ξ =νµ 0k  if vkμk(vk −  μk) =  0, and ξ =νµ 1k  otherwise. This formula is equiva-
lent to  =ν ν ν

† Y q Y( )aux , with ε= ∑ν µ νµ µq c  encoding the information of aux.
To solve εμ, we define coefficient matrix = νµĉ c( ), and column vectors ε ε ε ε= … −ˆ ( , , , )T0 1 4 1N , 
= … −q̂ q q(1, , , )T1 4 1N , then =ν ν ν

† Y q Y( )aux  becomes ε =ˆ ˆ ˆc q, hence ε can be derived as ε = −ˆ ˆ ˆc q1 , with c−1 
denoting the inverse matrix of c. Finally, by choosing χ=ν ν νq m y/ , we obtain ρ ρ=ˆ ( )N

m
Naux , thus completes the 

proof.
The transformation between generators {Yj} for the two-qubit states and {Xi} for the qudit states with d =  4 are 

as follows:

= ± = ± = ±

= ± = ± = ±

= + = ±

Y X X Y X X Y X X

Y X X Y X X Y X X

Y X X Y X X X

1
2

( ), 1
2

( ), 1
2

( ),

1
2

( ), 1
2

( ), 1
2

( ),

6
3

1
3

, 1
2

1
6

1
3

,
(19)

1,13 1 11 2,14 2 12 4,7 3 9

5,10 7 5 9,6 6 8 8,11 4 10

12 14 15 3,15 13 14 15

where = …


X u v u v u v w w w{ , , , , , , , , , }12 12 13 13 34 34 1 2 3 , and elements σ σ= ⊗−Y 2j j j
1/2

1 2
 of 
��
Y  are arranged with 

(j1j2) in the sequence (01), (02), (03), (10), (11), (12), (13), … , (33).

Proof of Corollary 4. As the submatrix TS is rectangular block diagonal, the elements Tij in the off-diagonal 
blocks are all zero. This, together with Tk0 =  0 for k ∈  {1, 2, … , d2 −  d}, yields

∑

∑

′ = = +

′ = = +

−
=

−

− − − − −

=

−

− −

n T n T n T n

n T n T n T n

,

,
(20)

r
j

d

r j j r r r r r r

r
j

d

r j j r r r r r r

2 1
0

1

2 1, 2 1,2 1 2 1 2 1,2 2

2
0

1

2 , 2 ,2 1 2 1 2 ,2 2

2

2

for r ∈  {1, 2, … , d0}. Moreover, the requirement that =T T( )r
S T

r
S

2 yields

+ = + =
+ = .

− − − −

− − − −

T T T T
T T T T

1,
0 (21)

r r r r r r r r

r r r r r r r r

2 1,2 1
2

2 ,2 1
2

2 1,2
2

2 ,2
2

2 1,2 1 2 1,2 2 ,2 1 2 ,2
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By using the above two equations, it is straightforward to see that ′ + ′ = +− −n n n nr r r r2 1
2

2
2

2 1
2

2
2 , and therefore from 

Eq. (16) we have ρ ≡ˆC [ ( )] 1l p
n

1
 . This, together with Theorem 1, implies  ρ ρ=ˆ ˆC C[ ( )] ( )l

n
l

n
1 1

, and hence com-
pletes the proof.

Frozen coherence of one qubit. Suppose the required channel   is described by the Kraus operators 
ε σ= ∑ =Ei j ij j0

3 , with i ∈  {0, 1, 2, 3}, and the values of ε ∈ij  should satisfy certain constraints such that the 
requirement of Corollary 4 is satisfied. First, the completeness condition of the CPTP map, namely, ∑ =†E Ei i i

31, 
requires

∑

∑

ε ε ε ε

ε ε ε ε ε ε ε ε

± + ± =

+ − + =⁎ ⁎ ⁎ ⁎

i

i i

( ) 1,

[Re( ) Im( ) Re( ) Im( )] 0,
(22)

i
i i i i

i
i i i i i i i i

0 3
2

1 2
2

0 1 3 2 0 2 3 1

where ε ⁎
ij  represents conjugation of εij, and the notation i before εi2, Re(·), and Im(·) is the imaginary unit.

Second, Corollary 4 requires T10 =  T20 =  0, and TS to be a rectangular block diagonal matrix which corre-
sponds to T13 =  T23 =  0. This yields

∑ ∑σ σ σ σ σ σ= + = +† †E E T T E E T T, ,
(23)i

i i
i

i i1 11 1 12 2 2 21 1 22 2

from which one can obtain

∑ ∑ε ε ε ε ε ε ε ε+ − = − − =⁎ ⁎ ⁎ ⁎i i[( )( )] 0, [( )( )] 0,
(24)i

i i i i
i

i i i i0 3 1 2 0 3 1 2

and

∑ ∑ε ε ε ε ε ε ε ε= ± − = . 

⁎ ⁎T T[ ], 2 [Re( ) Im( )]
(25)i

i i i i
i

i i i i11,22 0
2

1
2

2
2

3
2

12,21 1 2 3 0

By comparing Eqs  (22) and (24), one can note that the equalities are satisfied when εi0 =  εi3 =  0, 
ε ε∑ ± =i 1i i i1 2

2 , or when εi1 =  εi2 =  0, ε ε∑ ± = 1i i i0 3
2 . Under these two constraints, Eq. (25) simplifies, 

respectively, to

∑ ∑ε ε ε ε= − = − = = ⁎T T T T( ), 2 Re( ),
(26)i

i i
i

i i11 22 1
2

2
2

12 21 1 2

and

∑ ∑ε ε ε ε= = − = − = − .⁎T T T T( ), 2 Im( )
(27)i

i i
i

i i11 22 0
2

3
2

12 21 3 0

Finally, the requirement that =T T( )r
S T

r
S

2, corresponds to

+ = + = + =⁎ ⁎T T T T T T T T1, 1, 0, (28)11
2

21
2

12
2

22
2

11 12 21 22

and from Eqs (26) and (27), one can see that the third equality of Eq. (28) is always satisfied, while the first two 
equalities are equivalent. Therefore, to freeze the l1 norm of coherence, εij should satisfy one of the following two 
conditions:

(i) εi0 =  εi3 =  0 for i ∈  {0, 1, 2, 3}, and

∑ ∑ ∑ε ε ε ε ε ε± = − + =⁎i [ ( )] 4[ Re( )] 1,
(29)i

i i
i

i i
i

i i1 2
2

1
2

2
2 2

1 2
2

(ii) εi1 =  εi2 =  0 for i ∈  {0, 1, 2, 3}, and

∑ ∑ ∑ε ε ε ε ε ε± = − + = .⁎[ ( )] 4[ Im( )] 1
(30)i

i i
i

i i
i

i i0 3
2

0
2

3
2 2

3 0
2

Other measures fulfilling the FR. (i) The coherence concurrence for the one-qubit states14, and the trace 
norm coherence for the one-qubit and certain qutrit states13,46, coincide with the l1 norm of coherence. Hence, 
the FR applies to them.

(ii) For the GQC measure ρ ρ ρ= − ∆G ( ) ( )D p presented in ref. 48, we have

ρ χ χ χ= ⋅ − ∆ ⋅ = ⋅ − ∆ ⋅
�� �� �� ��� ˆ ˆ ˆ ˆG n X n X n X n X( ) 1

2
( ) 1

2
( ) , (31)D p p

where ρ ρ∆ = ∑ i i i i( ) i  denotes full dephasing of ρ in the basis {|i〉 }i=1,…,d. Thus, ρ χ= ˆG f g n( ) ( ) ( )D , with 
f(χ) =  χ/2, and = ⋅ − ∆ ⋅

�� ��
ˆ ˆ ˆg n n X n X( ) ( ) p.

For the GQC measure ρ ρ δ= −δ∈G ( ) minD 2 , the FR also holds as the optimal δ is given by Δ (ρ)48.
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(iii) CRoC(ρ) for the one-qubit states and d-dimensional states with X-shaped density matrix, equals to the l1 
norm of coherence, and thus the FR holds.

(iv) The K coherence is defined as ρ ρ= −K K( , ) Tr{[ , ] }1
2

2 11. As ρ  can be decomposed as 
ρ γ= ∑ =

−
Xi

d
i i0

2 1 53,  ρ K( , ) is a function of χ γ= ��n̂ , i.e., ρ χ= ˆK n K( , ) ( , )  , with γ γ γ γ= … −
�� ( , , , )d1 2 2 1 . Then 

by using [X0, K] =  0, we obtain

 ρ γ χ χ= − ⋅ = − ⋅ = − ⋅

  

ˆ ˆK X K n X K n X K( , ) 1
2

Tr{[ , ] } 1
2

Tr{[ , ] } 1
2

Tr{[ , ] }, (32)
2 2 2 2

thus χ χ=ˆ ˆn K f g n K( , ) ( ) ( , ) , with f(χ) =  − χ2/2, and = ⋅


ˆ ˆg n K n X K( , ) Tr{[ , ] }2 .
(v) For the quantifier ρ ρ= − =

��P d x( ) ( ) 1/ /22  which is a monotonic function of the purity P(ρ) =  Trρ2 
of a state, we have the FR P E P P Eρ ρ ρ=[ ( )] ( ) [ ( )]p , with ρp bing the probe state for which | | =x 2p .

(vi) The general form of geometric quantum correlation measure can be written as

ρ ρ ρ= − ΠΠ ∈D ( ) opt ( ) , (33)p
A

p
p

A 

where   = †[Tr( ) ]p
p p/2 1/  denotes the Schatten p-norm, and opt represents the optimization over some class 

 of the local measurements ΠA. This definition covers the geometric discord50–52 and measurement-induced 
nonlocality55,56. For these measures, as  ∑ Π Π =k k

A
A k

A
A, we have

ρ ρ χ χ χ− Π = ⋅ − Π ⋅ = ⋅ − Π ⋅
�� �� �� ��

ˆ ˆ ˆ ˆn X n X n X n X( ) 1
2

( ) 1
2

( ) , (34)
A

p
A

p
A

p

then by comparing with Lemma 1, we obtain f(χ) =  (χ/2)p, and = ⋅ − Π ⋅Π

�� ��
ˆ ˆ ˆg n n X n X( ) opt ( )A

p
p

A , i.e., the FR 
holds.

If ρ in Eq. (33) is replaced by ρ , then one obtains the Hellinger distance discord for p =  253,54. As 
ρ γ= ∑ ⊗X Xij ij i

A
j
B, with = … −X{ }i

A
i d0,1, , A2 1 and = … −X{ }j

B
j d0,1, , B2 1 being the sets of Hermitian operators which 

constitute the orthonormal operator bases for the Hilbert space A  and B
53, and ∑ Π Π =X Xk k

A A
k
A A

0 0 , the FR 
also holds for it.

(vii) For two-qubit states, the maximum Bell-inequality violation Bmax(ρ)57, remote state preparation fidelity 
Frsp(ρ)58, and Nqt(ρ) which is a monotone of the average teleportation fidelity ρ ρ= +F N( ) 1/2 ( )/6qt qt

59, are given 
by

ρ ρ ρ= + = + = + +B E E F E E N E E E( ) 2 , ( ) 1
2

( ), ( ) , (35)max 1 2 rsp 2 3 qt 1 2 3

where E1 ≥  E2 ≥  E3 are eigenvalues of the 3 ×  3 matrix T†T, and ρσ σ= ⊗T Tr( )ij i j . This gives χ χ=ˆ ˆE n E n( ) ( )i i
2  

for i ∈  {1, 2, 3}, which implies that all measures of Eq. (35) satisfy the requirement of Lemma 1.
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