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ABSTRACT
In early 2020, unprecedented lockdowns and travel bans were implemented in Chinese mainland to fight
COVID-19, which led to a large reduction in anthropogenic emissions.This provided a unique opportunity
to isolate the effects from emission and meteorology on tropospheric nitrogen dioxide (NO2). Comparing
the atmospheric NO2 in 2020 with that in 2017, we found the changes of emission have led to a
49.3± 23.5% reduction, which was∼12%more than satellite-observed reduction of 37.8± 16.3%.The
discrepancy was mainly a result of changes of meteorology, which have contributed to an 8.1± 14.2%
increase of NO2. We also revealed that the emission-induced reduction of NO2 has significantly negative
correlations to human mobility, particularly that inside the city.The intra-city migration index derived from
Baidu Location-Based-Service can explain 40.4%± 17.7% variance of the emission-induced reduction of
NO2 in 29 megacities, each of which has a population of over 8 million in Chinese mainland.

Keywords: atmospheric nitrogen dioxide, anthropogenic emissions, meteorology conditions, human
mobility, COVID-19 quarantine

INTRODUCTION
To curb the spread of COVID-19, the Chinese
government implemented nationwide strict control
measures from late January to March 2020 [1,2].
Lockdowns were imposed in cities and provinces,
leading to a gradual cessation in inter-city and
inter-province traffic [1]. Inside cities and vil-
lages, strict self-quarantine was also implemented.
People had to stay at home, except for shop-
ping for necessities or seeking medical treatment.
Businesses and industries suspended operations or
largely reduced production.The intensive lockdown
measures led to a dramatic decrease in human
mobility [3,4].

Nitrogen dioxide (NO2), as one of the most
important air pollutants, is harmful to the human
respiratory system [5–7] and plays essential
roles in the formation of acid rains, second
order aerosols [8] and ozone [9–11].The dominant
sources of tropospheric NO2 over east China are

anthropogenic combustions in winter, of which
the contributions from power generation, indus-
try and transportations are about 19%, 42% and
35%, respectively [12]. The decrease in human
mobility resulting from the lockdown measures is
expected to have produced impacts on tropospheric
NO2 via effects on industry and transportation
activities [13,14]. Recent studies have reported a
satellite-observed large drop in column NO2 den-
sity during this period because of the COVID-19
quarantine [1,13,15].

Besides anthropogenic emissions, tropospheric
NO2 concentrations are also strongly modulated
by changes in meteorological conditions [16–19].
Changes in wind speed, atmosphere stability (re-
lated to temperature and pressure etc.), solar ra-
diation and humidity from day to day can quickly
change the atmospheric NO2 densities [16,20].
Temperature and humidity are crucial to the pho-
tochemical processes related to NO2 [21]. Higher
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temperature andhigher humidity can reduce the life-
time of NO2 and accelerate the conversion of NO2
to secondary nitrate aerosols [17,19], thus result-
ing in a negative correlation with atmospheric NO2
concentration in most places [16,19]. Solar radia-
tion is the key factor controlling the photodisso-
ciation rate of NO2 (NO2→NO + O), and can
greatly affect the lifetime of NO2 [21,22]. This
is strongly supported by observation of increased
NO2 concentration during the solar eclipse [22].
In general, surface NO2 concentration is found to
decrease with increasing solar radiation [16,21]. In
addition, highwind speed andhighplanetarybound-
ary layer height (PBLH) both favor dispersion and
dilution of air pollutants in the boundary layer of the
atmosphere [16,17] and can reduceNO2 concentra-
tion [21,23,24].

Anthropogenic emissions and meteorological
conditions can both affect atmospheric NO2
concentration, but their effects are often tangled.
Although the reported literature demonstrates the
important influences of lockdowns on tropospheric
NO2 [13,25], the respective contributions from
anthropogenic and meteorological processes are
not clear.

Chemical transport models can be used to
analyze the sources of atmospheric composition
changes. However, the modelled results can be af-
fected by potential uncertainties in the emission and
chemistry processes. For example, Liu et al. showed
that the modelled surface NO2 over North China
Plain is about 34% lower than surface measurement
with the GEOS-Chem model, but is 26% higher us-
ing the CMAQ model [26]. Recent studies suggest
the possibility of constraining the observation-based
anthropogenic and meteorological influences with
statistical models to avoid the effects of potential
uncertainties in model simulations [27–29]. During
the early stages of theCOVID-19 pandemic, anthro-
pogenic emissions in China were much lower than
before [13,15], while changes in meteorology con-
ditions in 2020 were expected to be smaller than
changes in emissions.This provides an ideal test-bed
to study the separate impacts of emission and mete-
orological changes on atmospheric NO2 with statis-
tical models.

In this study, we investigated the effects of me-
teorology conditions and human mobility associ-
ated with COVID-19 quarantine on atmospheric
NO2 in China using a statistical model to repre-
sent the NO2 [27]. The human mobility strengths,
including migration and intra-city flow were quan-
tified using Baidu Migration data [3,30]. We fo-
cused on the month before (hereafter Month-01)
and the month after (hereafter Month-02) the Chi-
nese Spring Festival in 2017, 2018, 2019 and 2020

to take the holiday effect on human mobility into
account.

RESULTS
Statistical model of troposphere NO2

According to the annual Report on the State of the
Environment in China from 2015 to 2019 (http://
english.mee.gov.cn/Resources/Reports/soe/), the
mean NO2 concentrations of the cities in China
were relatively stable from 2017 to 2019. Before
that, anthropogenic NOx emissions (normalized in
2010) were reduced by about 21% in 2012–2015
(7%/year) and about 6% in 2015–2017 (3%/year)
[12]. The dramatic declines of anthropogenic NOx
emissions in 2012–2015, as well as the subsequent
slowdown of emission reductions, were mainly
driven by installation of selective catalytic reduction
(SCR) systems in utilities for coal-fired power plants
[12].

Recent studies have revealed that the satellite-
observed column NO2 density in China in 2020
Month-02 was much lower than that in 2019 [15],
and concluded that this drop was attributed to the
COVID-19 related city lockdowns and travel bans
[1]. However, it must be recognized that the atmo-
sphericNO2 concentration is also greatly affected by
meteorology conditions [15].

Assuming the real measurements of atmospheric
NO2 (in logarithm) can be separated into two parts,
NO2 contributed by emission FEmi s (x, t) and by
meteorology conditions GMete (x, t), we have the
following function associated with geolocation (x)
and time (t) [27]:

log NO2(x, t)OB S = FEmi s (x, t)OB S

+GMete (x, t)OB S
. (1)

A statistical model of logNO2(x, t)MOD was
established on two assumptions. (i) The regression
model was trained in Month-01 and Month-02 in
2018 and 2019. Considering the fairly stable NOx
emission in China in recent years [12], FEmi s (x, t)
based on 2018 and 2019 should provide a good
approximation for the anthropogenic influences for
2017 and 2020. Thus, we assumed the temporal
variations of FEmi s (x, t) were negligible at each grid
of 0.5 × 0.5 degree. (ii) The temporal and spatial
variations of GMete (x, t) can be modelled using a
simplified linear function of five key meteorology
parameters as described in Data and methods.
We found these two assumptions resulted in good
agreement between the observed and modelled
tropospheric NO2, based on self-consistency
check (using training data) and independent
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Figure 1. The monthly mean (1 month after the Chinese Spring Festival) of observed NO2 (OBS) (a and d), modelled NO2 (MOD) (b and e), and their
difference (MOD − OBS) (c and f) in the atmosphere in 2017 and 2020. R is the spatial correlation between OBS and MOD. Review drawing number:
GS(2021)1055.

check (using independent data). Therefore, we
have:

log NO2(x, t)MOD = FEmi s (x)MOD

+GMete (x, t)MOD
. (2)

It should be noted that the modelled emission
term FEmi s (x)MOD in Eq. (2) is only a function of
geolocation. In other words, its value stays constant
at given 0.5 × 0.5 degree box based on statistical
regression. The detailed regression procedures and
sensitivity tests are described in Data and methods.
The difference between satellite observations and
modelling results can be expressed as:

Log

[
NO2(x, t)MOD

NO2(x, t)OB S

]
= [

FEmi s (x, t)MOD

− FEmi s (x)OB S] + � ,

(3)

where the first term at the right hand of Eq. (3) rep-
resents the error introduced by ignoring the tempo-
ral variations of emission.The second term� repre-
sents the modelling error of GMete (x, t).

The performance of the model was analyzed
using independent (from establishing the model)
observations in 2017. The model successfully pre-
dicted the monthly mean atmospheric NO2 in 2017
Month-02 (Fig. 1), with negligible bias in most ar-
eas in China. Even in the heaviest polluted areas
in central and eastern China with NO2 over 10 ×
1015 molec/cm2, the mean bias is only 4.3% com-

paredwith satellite observations.On the other hand,
the spatial correlation coefficients between model
prediction and satellite NO2 are as high as 0.97
(P < 0.001). Similar results for 2018 and 2019 can
be seen in Fig. S4.

The model also works well at predicting daily
NO2. At the scales of provinces (Fig. S5) and cities
(Fig. S6), statistically significant positive correlation
coefficients between daily mean NO2 predicted by
the model and the real satellite measurements can
be found in most areas in the mainland of China in
Month-01 andMonth-02 in 2017, 2018 and 2019.

The above results demonstrate that the contri-
bution of emission to the atmospheric NO2, in the
same month of the adjacent years, can be estimated
as a time-independent geolocation-based function.
The spatial and temporal variations of meteorology
effects can be modelled using the linear function of
five selected key parameters. The modelling error is
generally<5%basedonvalidations in2017.Therea-
son for the emission situation in 2017 was similar to
that in 2018/2019, and the regression model cap-
tured the quantitative dependence of atmospheric
NO2 on meteorology conditions. Consequently, if
the anthropogenic emissions in 2020 were similar
to those in 2018/2019 (i.e. without the effects from
COVID-19 quarantine), the model was expected to
provide good prediction for tropospheric NO2 in
2020.

It should be noted that changes in column
atmospheric NO2 are not linearly associated with
emissions because of nonlinear effects from at-
mospheric chemistry. Based on results from the
GEOS-Chem chemical transport model study
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(Fig. S17), we found a broadly linear response of
modelled tropospheric NO2 columns to changes in
anthropogenic NOx and VOCs emissions, that is
50% reduction of anthropogenic emissions results in
about 45% reduction of tropospheric NO2 columns.
The model simulations suggest that the influence
from nonlinear processes is small (about 5%).

Quarantine-induced reduction
in troposphere NO2

In 2020, although NO2 variations related to meteo-
rology conditions could still be modelled with good
accuracy, the emissions ofNO2 were significantly re-
duced because of the city lockdowns and travel bans.
Therefore, the foundation of the statisticalmodel de-
scribing the contribution from emissions collapsed.
The term FEmi s (x, t)OB S − FEmi s (x)MOD in
Eq. (3) in 2020 became much larger than that in
2017.Themodel overestimatedmonthlymeanNO2
by 6–9 × 1015molec/cm2 in the heavily polluted
areas in China (Fig. 1d). Similar overestimation
also could be seen from the time series of daily
mean NO2 in most polluted cities and provinces
(Figs S7–S10), such as Tianjin, Shanghai, Shan-
dong, Jiangsu and Beijing.

If we compare the satellite observation of atmo-
spheric NO2 in 2020 with that in 2017, we could
decompose the difference into three isolated terms
[31]:

NO2(x, 2020)OB S − NO2(x, 2017)OB S

= [
NO2(x, 2020)OB S − NO2(x, 2020)MOD]

+ [
NO2(x, 2020)MOD − NO2(x, 2017)MOD]

+ [
NO2(x, 2017)MOD − NO2(x, 2017)OB S]

,

(4)

where the first term represents the emission-induced
reductions in 2020; the second represents the mete-
orology induced variations; and the third represents
themodelling error. Using real satellite observations
and modelling results in 2020 and 2017, the map of
the contributions (unit:%) fromemission andmete-
orology (i.e. the above three terms) to the reduction
of NO2 is shown in Fig. 2. In most of China’s cities
with monthly meanNO2 over 3× 1015 molec/cm2,
we found that emission-induced reductions in 2020
(Fig. 2b) were larger than the satellite-observed re-
ductions (Fig. 2a), because themeteorology in 2020
led to a net increase of NO2 compared to 2017
(Fig. 2c).

Overall, the Ozone Monitoring Instrument
(OMI) observed troposphere NO2 decreased by

37.8 ± 16.3% in 2020 from that in 2017. Using the
model mentioned above, we estimated that if the
weather conditions in 2020 were the same as that in
2017, the NO2 columns should have decreased by
49.3± 23.5% because of the reduced anthropogenic
emission, which means the emission-induced re-
duction of NO2 resulting from the COVID-19
quarantine was actually higher than OMI actual
observations. The meteorological conditions in
2020 did not favor the dilution and ventilation of
air pollutants, and thus led to an increase of NO2
of 8.1 ± 14.2%. Meanwhile, the modelling error of
the above estimation is only 3.32 ± 17.8%, which is
significantly smaller than the other two terms.

The statistic model results are consistent with
GEOS-Chem model simulations. As shown in
Fig. 2e, there are good agreements in the derived
impacts of meteorological variability. Both GEOS-
Chem-based and statistics-based results show
positive contributions from meteorological vari-
ability in northern China, and neutral and weakly
negative contributions in central and southern
China. Quantitatively, the weather effects from
GEOS-Chem- and statistics-based analysis are
17.42 ± 22.90% versus 20.38 ± 15.55% over the
selected North China Plain area, −2.32 ± 7.67%
versus 2.12± 5.18% in Anhui and−3.27± 18.41%
versus−2.78± 7.99% in Guangdong.

The results are also consistent with other studies
in the literature [14,32–34]. Zhang et al. es-
timated the daily NOx emission in 2020 by
combining TROPOMI NO2 observation with
WRF-GEOSChem simulations, and reported a 50%
decrease of emission after the COVID-19 lockdown
[14]. Marlier et al. observed a 49% decline of NO2
after the Lunar New Year, and found the weather
conditions weakened the emission reduction
[33]. Zhao et al. applied the emission inventory
of 2017 to WRF-CMAQ, and concluded that the
meteorological condition in 2020 elevated the NO2
concentration in over half of the cities inChina [34].
Wang et al. found the reduction of PM2.5 simulated
by WRF-CMAQ is smaller than the reduction of
precursor emissions, also indicating the unfavorable
meteorology (lower PBLH, WS and higher RH) for
the dilution of the pollutants [35].

Therefore, the COVID-19 quarantine actually
has caused a reduction of NO2 larger than that seen
from the satellite observation (i.e. a direct compar-
ison of 2020 with 2017), but the weather effect
has cancelled out some of the emission effect. The
modelling error is significantly smaller than each of
the two effects, particularly the mean value. This is
the first time contributions of emission and weather
to the satellite-observed reduction of NO2 in early
2020 have been isolated. Similar analyses using
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Figure 2. The isolated contribution of emission and meteorology to the changes of NO2 between 2020 and 2017 in 163 cities
in China with monthly mean NO2 over 3 × 1015 molec/cm2. (a) Relative reduction of satellite-observed atmospheric NO2

(%). (b) Estimated emission-induced reduction of NO2 (%). (c) Estimated weather-induced changes of NO2 (%). (d) Modelling
error of the estimation (%). (e) GEOS-Chem model simulated weather-induced changes of NO2 (%). (f) The mean and spatial
variations of weather-induced changes of NO2 in the three selected regions (marked in c and e) from the statistical model
and GEOS-Chem are listed in the table. Review drawing number: GS(2021)1055.

situations in 2018 and 2019 are given in the Sup-
plementary data (Figs S11 and S12). Overall, when
comparing 2020 with 2018 and 2019, the emission-
induced reduction of NO2 was also significantly
larger than the satellite-observed reduction from the
meteorology contribution. This confirmed the con-
clusion derived from the 2020–2017 comparison.

Human mobility and NO2

Based on Eq. (3), the difference between satel-
lite observations and model prediction in 2020,
i.e. logrNO2(2020) = logNO2(x, 2020)MOD −
logNO2(x, 2020)OB S , mainly represents the
emission-related reduction of NO2 (hereafter
logrNO2), which can be attributed to multiple
factors including the prohibition of human mobility
implemented by the government, closure of busi-
nesses consuming fossil fuels, such as restaurants,

hotels etc., reduction of industrial production
because of weakened domestic and international
trades etc. It is hard to make a thorough survey to
measure all of those factors in the current situation
when COVID-19 remains a serious threat to human
health.

Fortunately, satellite location-based services
(LBS) describing human mobility [36] are useful
proxies of anthropogenic emissions. To what extent
can the emission-related reduction of NO2 in
2020 be explained using LBS data? To quantita-
tively understand the roles of city lockdowns and
travel bans played in reducing the air pollutants in
China, we investigated the correlations between
the emission-related reduction of NO2 and Baidu
migration data (Data and methods) of three indices
representing the relative population flow moving
in (I-index), moving out (E-index) and moving
inside the city (C-index). The spatial patterns of
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Figure 3. Upper panel: The time series of daily logrNO2 (vertical bars), I-index (red curves), E-index (dash red curves), C-index (blue curves) averaged
in megacities with a population over 8 million in (a) 2020 and (b) 2019 around the Spring Festival (the purple vertical lines). The light blue shadows
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the indices in the mainland of China in Month-01
and Month-02 in 2019 and 2020 are shown in
Fig. S13. Generally, values are higher in eastern
China than those in western China. The spatial
patterns and inhomogeneities are associated with
population density and economy activities. For
example, megacities such as Beijing, Shanghai,
and Guangzhou showed large values of all indices

because of their dense population, large numbers of
migrant workers and prosperous economy.

As shown in Fig. 3, as people started to go home
for family reunions inMonth-01 2020, the immigra-
tion index (I-index, red curves) and emigration in-
dex (E-index, dash red line) inmegacitieswith apop-
ulation over 8 million rapidly increased and peaked
around 23 January 2020 when Wuhan, Hubei, was
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locked down because of a COVID-19 outbreak. Af-
ter that, both I-index and E-index decreased sharply
and remained at very low values during Month-02
2020 [4]. In Month-01, shopping and visiting in-
side cities also increased in preparation for the com-
ing Spring Festival, and the intra-city C-index (blue
curves) was also high before 23 January 2020. For
the same reason, theC-index dropped after the lock-
downs. The ‘Spring Festival Effect’ was also shown
in 2019, except that the C-index picked up quickly
several days after the Spring Festival.

Meanwhile, the emission-related change of
logrNO2 (vertical bars in Fig. 3) in 2020 just
oscillated around zero each day before 23 January.
After that, it stayed at positive values and was
significantly larger than the standard variations. In
contrast, in 2019, the difference between satellite
observation and model prediction of NO2 (ie,
logrNO2), remained at small values during the
whole period of Month-01 and Month-02, and the
temporal variations were always within the range of
standard deviation. The difference between 2020
and 2019 confirmed that the emission changes in
2020 induced a large reduction in NO2.

To investigate the quantitative relationship be-
tween logrNO2 and the human mobility indices, we
constructed scatter plots of daily logrNO2 to daily
indices in 2019 and 2020 in cities populated over
8 million (lower panel in Fig. 3). In 2019, the cor-
relations between logrNO2 and all migration in-
dices are weak because the emission-induced varia-
tions in NO2 were very small. While in 2020, daily
logrNO2 in individual cities or that averaged in all
cities both negatively correlated with those migra-
tion indices, withP<0.001.The intra-citymigration
C-index showed the strongest correlation and could
explain 22.1% (i.e. the R2 at individual city level) to
60.8% (the R2 averaged in all megacities) variance
of the logrNO2. The immigration I-index could ex-
plain 13.0% to 36.0%; the emigration E-index could
explain 12.3% to 27.0%.

A list of the explained variance of logrNO2 bymi-
gration indices (from high to low) of all 29 megaci-
ties is given in Table 1. In some of the cities in south-
ern China such as Guangzhou and Dongguan, the
C-index could explain asmuch as∼70% variance. In
mid- and easternChina, cities like Suzhou,Heze and
Xuzhou also showed explained variance of over 60%
by the C-index. This indicates that human mobility
inside the city is more important in terms of effects
on NO2 emissions than the population flow toward
(I-index) or out (E-index) of the city.

Not only in those megacities, but negative cor-
relations between logrNO2 and migration indices
were also seen nationwide in the mainland of China
in 2020. In Fig. 4, among cities with meanNO2 over

Table 1. The explained variance of emission-based reduc-
tion of NO2 by the migration indices of C-index R2(C), the
I-index R2(I) and the E-index R2(E) in 29 megacities with
a population of over 8 million. The cities are sorted by
the R2(C) from large to small. NaN: insignificant correlation
coefficient.

City R2(C) R2(I) R2(E)

Dongguan 0.708 0.145 0.312
Guangzhou 0.667 0.626 0.366
Xuzhou 0.665 0.325 0.410
Suzhou 0.658 0.412 0.218
Heze 0.641 0.207 0.317
Shangqiu 0.594 0.277 0.333
Shenzhen 0.563 0.133 0.292
Linyi 0.532 0.195 0.248
Xi’an 0.451 0.298 0.117
Jinhua 0.449 0.289 0.232
Ganzhou 0.437 0.477 NaN
Jining 0.433 0.149 0.325
Nanjing 0.414 0.158 NaN
Quanzhou 0.395 0.344 0.319
Weifang 0.381 0.113 0.089
Tianjin 0.331 0.198 0.093
Zhoukou 0.315 0.114 0.273
Zhumadian 0.304 0.130 0.292
Baoding 0.292 0.141 0.176
Harbin 0.288 0.198 0.178
Shijiazhuang 0.266 0.133 0.118
Chongqing 0.255 0.232 0.227
Beijing 0.248 NaN 0.080
Wuhan 0.248 0.235 0.230
Shanghai 0.142 NaN 0.120
Nanyang 0.141 NaN 0.151
Xinyang 0.087 0.077 0.090
Chengdu NaN NaN NaN
Handan NaN 0.081 NaN
AVERAGE 0.404± 0.177 0.227± 0.132 0.224± 0.098

3 × 1015 molec/cm2, the logrNO2 showed signifi-
cantly negative correlationswith I-index in 116 cities
and with E-index in 110 cities, with explained vari-
ance of 0.203 ± 0.120 and 0.208 ± 0.124, respec-
tively. For the C-index, 156 cities showed signifi-
cantly negative correlations with explained variance
of 0.279 ± 0.159. No city showed positive correla-
tion with logrNO2 for the C-index. The results in-
dicate that these LBS migration indices, particularly
the intra-city index (C-index), to a large extent, pro-
vided reasonable explanation for the temporal varia-
tions of emission-induced reduction of NO2 in large
areas of China in early 2020.

DISCUSSION AND CONCLUSION
The unprecedented lockdowns and travel bans
during the COVID-19 lockdown have led to a
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Figure 4. The spatial distribution of the correlation coefficients between logrNO2 and the human mobility indices of (a) I-index; (b) E-index and
(c) C-index in Chinese mainland. Only cities with mean NO2 >3 × 1015 molec/cm2 during 12 January to 27 March 2019 that passed the 95% sig-
nificance test are filled with colors. The number included in the term ‘Covered city’ represents the number and the associated percentage of cities
showing negative correlations between logrNO2 and the human mobility indices. Review drawing number: GS(2021)1055.

large reduction in anthropogenic emissions of air
pollution [13]. We took the opportunity of this
unintentionally conducted circumstance to investi-
gate the isolated effects of emission and meteorol-
ogy condition on atmospheric NO2, and the quan-
titative relationship between the reductions of NO2
and human mobility using state-of-the-art satellite
remote sensing products and location-service-based
big data. We established a statistical model repre-
senting the column density of NO2 as a function
of only five key meteorology parameters, with the
assumption that emission was constant. Compared
with satellite observations in early 2017, the model-
predicted monthly mean NO2 was only biased by
4.3% in the heaviest polluted areas in central and
eastern China and showed spatial correlation coef-
ficient of 0.97 (P< 0.001).

Using the statistical model, it was found that the
travel bans and lockdowns of China in 2020 have
resulted in a decrease of observed NO2. Meanwhile,
changes in meteorological conditions, such as
lower PBLH, lower solar radiation etc., have led
to an increase of atmospheric NO2 (Fig. 5). As
shown in Fig. 5, compared with 2017, the anthro-
pogenic emission changes in early 2020 led to a
49.3 ± 23.5% reduction of atmospheric NO2, and
the changes in meteorological conditions led to an
8.1 ± 14.2% increase. Consequently, the net reduc-
tion of NO2 was brought down to 37.8 ± 16.3%.
The modelling error was 3.3 ± 17.8%. We revealed,
for the first time, that the COVID-19 quarantine
caused a reduction of atmospheric NO2 which was
actually larger than what we saw from the satellite
observations. In addition, the emission-induced
reduction of NO2 shows statistically significant
correlations to human mobility. Quantitatively, the
migration index representing the movement inside
the city has the highest explained variance among
all indices: it can explain 40.4% ± 17.7% variance
on average in 29 megacities with a population of
over 8 million in the mainland of China. This study

established a method to untangle the contributions
of emissions and meteorology conditions to the
reduction of atmospheric NO2, and quantitatively
assessed the effect of the city lockdowns and travel
bans on the tropospheric NO2 reduction during the
COVID-19 outbreak in early 2020. This analysis
may shed light on the parameterization of NO2
emission related to human mobility, as well as the
understanding of the effect of transportation on
atmospheric NO2. The indices based on the Baidu
Big Data are able to provide daily information on
human activities, and thus can predict the change of
NO2. In future, the data could be used tomodify the
emission model and make the emission estimation
more accurate [37,38].

In this study, we employed a simplified model
from Ref. [27] to describe the dependence of atmo-
spheric NO2 on emissions and meteorology. Com-
pared with physical and chemical transfer models,
which require a large source of computing time
[26] and are affected by uncertainties in mod-
elled physical or chemical processes, the approach
shown in this work is fast and accurate with rela-
tive error <5% even in the heaviest polluted area in
China, provided the emission does not change sig-
nificantly. Our findings demonstrate the reliability
of statistic approaches to predict tropospheric NO2
changes.

We suggest further efforts to develop novel
statistic-based approaches as important supple-
ments to the chemical transportmodels, particularly
to understand the sensitivity of NO2 to various
meteorological variables to provide more accurate
predictions. The uncertainty in the statistic model
deserves further studies, in particular its dependence
on the background NO2 concentration, as well as
the sensitivity of NO2 to each selected meteoro-
logical parameter. More meteorological parameters
or more complicated functions to describe the
dependence of atmospheric NO2 on meteorology
conditions, also deserve further study.
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Figure 5. Conceptual plot showing the combined meteorological effect and anthropogenic emission effect on the satellite-
observed NO2 in China during the COVID-19 pandemic in early 2020. The curves at the bottom show the time series of daily
Baidu emigration index in Shanghai during the period around the Chinese Spring Festival in 2019 (white curve) and 2020
(yellow curve). The data are maintained by Baidu Inc.

DATA AND METHODS
Data
The standard product of tropospheric NO2
column density retrieved from the Ozone Mon-
itoring Instrument (OMI) onboard Aura satel-
lite (OMNO2, Level 2, version 003, available at
https://disc.gsfc.nasa.gov/datasets/OMNO2 003/
summary) was used in this study. Original orbit data
were gridded into 0.25 ∗ 0.25 degree to collocate
with reanalysis data. To exclude the potential im-
pacts from cloud contamination, only samples with
cloud fraction <30% and NO2 column concentra-
tion<50× 1015 molec/cm2 were used in our study.
Row anomaly issues were carefully treated using
the official quality flag of OMNO2 (see OMNO2
README file) based on the abnormal proportion
of negative value in the data (if the ratio of negative
value in an x-track was>2%, all the data in the track
were not used).

The ECMWF atmospheric reanalysis data
(ERA5, Single Level and Pressure Level) were used
to provide meteorological parameters in this study.
Original ERA5 data have a spatial resolution of 0.25
∗ 0.25 degree and a temporal resolution of 1 hour.

I-index, E-index and C-index data are main-
tained by Baidu, Inc. and are available at
https://qianxi.baidu.com/. The information is
derived from billions of location requests per day
using the Baidu Map app, with permission to share
from users. All of the proxies are not absolute
numbers of travelers but proportional values.

Statistical model of atmospheric NO2

A multiple variable linear regression model was
developed to quantify tropospheric nitrogen diox-
ide (NO2) as a function of meteorological factors,
which was inspired by the model described by de
Foy and Schauer [27] and Seo et al. [31], using
combined satellite observations and atmosphere re-
analysis data. Based on our statistics on the satel-
lite retrievals (refer to Fig. S17) and the studies
[28,39], the values of atmospheric column NO2
are log-normally distributed. Therefore, we used
log(NO2) for the multiple regression analysis so
that we could scale to a normal distribution with
zero mean and unit standard deviation. Contribu-
tions from emission source are assumed unchanged
with time in this model. The tropospheric NO2 is
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considered to be a linear function of five key me-
teorological factors [25]: planetary boundary layer
height (PBLH), solar radiation (SR), surface tem-
perature (T), relative humidity (RH) and wind
speed (WS). To ensure all variables have similar or-
der of magnitude, a logarithm transformation was
conducted on NO2 column density, PBLH and SR.
As a result, the regressionmodel can be expressed as
follows.

log(NO2) = b0 + b1 · log(P B LH)

+ b2 · log(S R + 10) + b3 · T
+ b4 · RH + b5 · WS. (5)

The coefficients of b0 to b5 are regression coef-
ficients determined with the Iterative Reweighted
Least Squares (IRLS) fitting method [27]. We used
2018 and 2019 data from 45 days before to 65 days
after theChinese SpringFestival (ChineseNewYear
based on Lunar Calendar) as training data to build
up the regression model, and used 2017 data to test
the model and assess the modelling error. Then we
extended the model with estimated error to predict
the column NO2 density in 2020, assuming there
were no changes of anthropogenic emission. For
more details on development of the model, see the
Supplementary data.

GEOS-Chem model simulation
The GEOS-Chem chemical transport model
(http://www.geos-chem.org, version 12-8-1)
is driven by assimilated meteorological data of
MERRA-2 with nested 0.5◦ × 0.625◦ horizontal
resolution. The GEOS-Chem model includes fully
coupled O3-NOx-VOC-halogen-aerosol chemistry.
The chemical boundary conditions are updated
every 3 hours from a global simulation with 4◦ × 5◦

resolution. The model has been used to investigate
O3 changes in China in recent literature [40,41].
Emissions in GEOS-Chem are computed by the
Harvard-NASA Emission Component (HEMCO).
Global default anthropogenic emissions are from
CEDS (Community Emissions Data system)
[42]. Regional emissions are replaced by MEIC
(Multiresolution Emission Inventory for China)
in China, MIX in other regions of Asia [38]. The
total anthropogenic NOx and VOCs emission in
MEIC inventory are further scaled based on public
literature [12,43] to obtain the annual emission
in 2019. Open fire emissions are from the Global
Fire Emission Database (GFED4) [44]. Natural
emissions of O3 precursors, including NOx from
lightning and soil and VOCs from vegetation are
calculated on the basis of the assimilated MERRA-2

meteorology. The biogenic emissions of VOCs are
calculated according to the Model of Emission of
Gases and Aerosols from Nature (MEGAN v2.10)
[45].

DATA AVAILABILITY
NO2 data are available at https://disc.gsfc.nasa.
gov/datasets/OMNO2 003/summary. The ERA5
meteorological data are from https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era5.
The migration data are from https://qianxi.
baidu.com/.

CODE AVAILABILITY
The computer codes used to analyze the data are
available from the corresponding author on reason-
able request.
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