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Abstract

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains typically carry genes encoding Panton-
Valentine leukocidin (PVL). We used wild-type parental and isogenic PVL-deletion (Dpvl) strains of USA300 (LAC and SF8300)
and USA400 (MW2) to test whether PVL alters global gene regulatory networks and contributes to pathogenesis of
bacteremia, a hallmark feature of invasive staphylococcal disease. Microarray and proteomic analyses revealed that PVL does
not alter gene or protein expression, thereby demonstrating that any contribution of PVL to CA-MRSA pathogenesis is not
mediated through interference of global gene regulatory networks. Inasmuch as a direct role for PVL in CA-MRSA
pathogenesis remains to be determined, we developed a rabbit bacteremia model of CA-MRSA infection to evaluate the
effects of PVL. Following experimental infection of rabbits, an animal species whose granulocytes are more sensitive to the
effects of PVL compared with the mouse, we found a contribution of PVL to pathogenesis over the time course of
bacteremia. At 24 and 48 hours post infection, PVL appears to play a modest, but measurable role in pathogenesis during
the early stages of bacteremic seeding of the kidney, the target organ from which bacteria were not cleared. However, the
early survival advantage of this USA300 strain conferred by PVL was lost by 72 hours post infection. These data are
consistent with the clinical presentation of rapid-onset, fulminant infection that has been associated with PVL-positive CA-
MRSA strains. Taken together, our data indicate a modest and transient positive effect of PVL in the acute phase of
bacteremia, thereby providing evidence that PVL contributes to CA-MRSA pathogenesis.
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Introduction

The worldwide emergence of community-acquired methicillin

resistant Staphylococcus aureus (CA-MRSA) strains has been linked to

carriage of genes encoding Panton-Valentine leukocidin (PVL), a

two-component leukolytic toxin [1–9]. The contribution of PVL to

CA-MRSA pathogenesis remains controversial. No difference in

virulence was detected when comparing two prevalent CA-MRSA

strains, LAC (USA300 lineage) and MW2 (USA400 lineage), to

their respective isogenic PVL knockout mutants in several mouse

models, including subcutaneous abscess, sepsis and pneumonia

models [10–13]. Data supporting a role for PVL in pathogenesis

are derived from experiments in a mouse pneumonia model using

laboratory strains of the NCTC8325 lineage lysogenized with a

PVL-encoding bacteriophage [14]. Presence of PVL was associ-

ated with up-regulation of staphylococcal protein A (Spa) and

other surface proteins and led the investigators to propose a model

in which PVL interference with global regulatory networks

culminated in overwhelming inflammation and necrosis of the

murine lung [14]. Such profound effects on global gene expression

raise the possibility that the experimental outcomes were due not

to PVL, but were consequence of major genetic perturbations [9],

perhaps due to pleiotropic mutations that occur with relatively

high frequency in laboratory strains [15,16].

The conflicting data from mouse infection models and the

relative insensitivity of murine polymorphonuclear leukocytes

(PMNs or granulocytes) to the leukolytic effect of PVL compared

with human cells prompted us to assess the role of PVL in CA-

MRSA pathogenesis in a rabbit model. Importantly, the sensitivity

of rabbit PMNs to the leukolytic activity of PVL mirrors that of

human PMNs [17], making the rabbit an excellent model species

because PMNs are a primary cellular target of PVL and the

principal component of host innate immune defense. Intravenous

injection of purified PVL into rabbits results in transient

granulocytopenia followed by marked granulocytosis, but is not

lethal [18]. Here, we tested in prevalent CA-MRSA strains
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whether PVL regulates global gene networks and evaluated its

contribution to pathogenesis of bacteremia, a hallmark feature of

invasive S. aureus disease and the most prevalent clinical syndrome

of invasive CA-MRSA disease in particular [19].

Results

PVL does not impact global gene regulation
Introduction of PVL into a laboratory strain of S. aureus was

reported to alter global gene regulation, resulting in increased

expression of surface adhesins such as staphylococcal protein A

(Spa) [14]. To assess the potential regulatory effects of PVL in

clinically relevant CA-MRSA strains, we performed experiments

using contemporary CA-MRSA belonging to the two prevalent

lineages, USA300 and USA400 [3–6,20].

To examine the effect of PVL on global gene expression, we

conducted transcriptional profiling of wild-type parental and

isogenic Dpvl mutant USA300 (SF8300–SF8300Dpvl) and USA400

(MW2–MW2Dpvl) strain pairs. Total RNA was isolated after in

vitro culture to exponential-or stationary phase of growth under

conditions known to induce over-expression of PVL. Contrary to

results reported by Labandeira-Rey et al. [14], only 1 of 3961 S.

aureus microarray probesets met standard criteria for differentially-

expressed genes (.2-fold change in transcript levels, a ratio of

wild-type versus Dpvl mutant strain and P,0.05 [21,22]) using the

SF8300–SF8300Dpvl strain pair comparison. The single differen-

tially-expressed gene, spectinomycin adenylyl-transferase (spc), was used

for allelic replacement of pvl and thus present in the SF8300Dpvl

mutant strain but not in the wild-type parental strain (Table 1).

Only 5 of 2632 MW2 probe sets were differentially expressed in

the MW2–MW2Dpvl strain pair comparison, and of these, 2 were

specific for lukS-PV and lukF-PV found only in the MW2 parent

strain (Table 1). Using TaqMan real-time reverse transcriptase-

PCR, we confirmed that expression of PVL does not alter

transcripts encoding accessory gene regulator (AgrA) and Agr-

regulated virulence factors such as protein A (Spa), a-toxin (Hla),

b-hemolysin (HlgABC), serine aspartate repeat protein (SdrD),

serine protease (SplA), or clumping factor B (ClfB) (Figure 1A and

Table 2).

Consistent with the microarray and TaqMan data, protein

profiles of cell extracts and culture supernatants were virtually

identical between each of the wild-type parental and Dpvl isogenic

mutant strains cultured with the same in vitro growth conditions

(figure 1B and 1C). Although there was over-expression of PVL in

supernatants of LAC, SF8300 and MW2 wild-type strains

(figure 1C), the toxin did not modulate production of other

virulence factors, including a-toxin and protein A (figure 1D–F).

Protein A is a well-characterized proinflammatory factor mediat-

ing the development of disease in the lung [23]. However, we

found that PVL does not modulate expression of protein A in CA-

MRSA clinical strains, in marked contrast to what was reported by

Labandeira-Rey et al. using laboratory strains of S. aureus [14].

Our results formally rule out the possibility that PVL contributes

to CA-MRSA virulence by altering global gene and/or protein

regulatory networks of S. aureus.

Co-infection experiments in a rabbit model of bacteremia
As PVL has no effect on global gene and protein expression in

prevalent CA-MRSA strains, a potential direct effect of PVL to

CA-MRSA pathogenesis was examined. We used a rabbit model

of bacteremia to compare wild-type parental and isogenic Dpvl

mutant strain pairs using a competition design. Rabbits were co-

infected with a mixture of parent and Dpvl mutant strains in an

approximate 1:1 ratio. The Dpvl mutant strains contained a

spectinomycin resistance cassette (spc) used to replace pvl genes,

which allowed for the enumeration of the Dpvl mutant (Spc-

resistant) and parent strain (Spc-sensitive). Normalized ratios of the

parent to Dpvl mutant, representing competition indexes, were

determined in organs harvested from rabbits that succumbed to

infection or moribund rabbits with end stage bacteremia, which

were euthanized between 2 and 7 days post infection (Table 3).

The competition indexes in the rabbit lung, spleen, kidney and

blood did not differ significantly from the null effect value of 0 for

the SF8300–SF8300Dpvl (n = 17), LAC–LACDpvl (n = 28) and

MW2–MW2Dpvl (n = 25) isogenic strain pairs, indicating no

contribution of PVL to bacterial colonization and persistence at

the end stages of bacteremia in the competition model.

Contribution of PVL to pathogenesis in a single-strain
rabbit bacteremia model

Although PVL did not impact CA-MRSA pathogenesis in a

competition bacteremia model, it is possible that secreted toxin

from the parent produced a bystander effect that protected mutant

cells. We assessed the potential contribution of PVL over the time

course of bacteremia in the rabbit model in which either the

parental strain SF8300 or the isogenic mutant SF8300Dpvl were

used to inoculate individual rabbits. Bacterial densities in vital

organs determined at 24, 48 and 72 hours post infection (Table 4).

In this model, bacterial densities decreased over time in the lung

and spleen (linear test for trend, P,0.05), but increased in the

kidney (linear test for trend, P,0.05), indicating that the kidney is

a target organ that supports bacterial growth. At 24 and 48 hours

post infection, significantly more SF8300 than SF8300Dpvl were

recovered from the kidney, but not from lung or spleen (P,0.05).

In contrast, at 72 hours post infection, there was no significant

difference in bacterial densities between SF8300 and SF8300Dpvl

isolated from kidney (Table 4). This result is in part explained by

the rapid growth of 2.5 logCFU of SF8300Dpvl in the kidney

between 48 and 72 hours post infection (P,0.001), whereas this

did not occur for the SF8300 parental strain (P = 0.63). The lack of

difference in bacterial densities at 72 h post infection correlated

with the end stages of disease in the bacteremia model, as rabbits

infected with either SF8300 or SF8300Dpvl had lost .15% of the

baseline weight and some also exhibited other moribund

conditions (Table 4). Moreover, there were no notable differences

in gross pathology of kidneys between wild-type and Dpvl mutant

strains (data not shown). These results are consistent with a null

effect of PVL at the end stages of bacteremia in the co-infection

studies in which rabbits had a mean survival time of 3.9 days

(Table 3).

Discussion

A PubMed search for articles on PVL published in 2002–2007

identified more than 300 articles, suggesting an association

between PVL and CA-MRSA disease. Although compelling,

epidemiological data alone are insufficient to establish whether

PVL directly contributes to widespread dissemination of CA-

MRSA strains or severity of infection [24,25]. As bacteremia

accounts for approximately 65% of invasive CA-MRSA disease

[19], we used a rabbit model of bacteremia to study the role of

PVL in CA-MRSA pathogenesis. Herein, we discovered a

transient positive effect of PVL-mediated CA-MRSA pathogenesis

in a rabbit bacteremia model. PVL appears to play a modest, but

measurable role in pathogenesis during the early stages of

bacteremic seeding of the kidney, the target organ from which

bacteria were not cleared, as evidence by an increasing bacterial

load over time (Table 4). During acute infection, it is possible that

PVL in CA-MRSA Pathogenesis
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PVL-mediated lysis of incoming PMNs enabled better coloniza-

tion and/or early survival of the parental USA300 strain.

However, the early survival advantage conferred by PVL was lost

by 72 hours post infection. Although it is unclear why there was no

difference in bacterial densities in the kidney between parental

wild-type and Dpvl mutant strains at the end stage of bacteremia, it

is worth noting that PVL has been shown to prime the host innate

immune system [26–28] and this could have resulted in enhanced

clearance of parental USA300 strain. For example, sublytic

concentrations of PVL, orders of magnitude lower than required

for granulocyte lysis, induce release of interleukin-8, leukotriene

B4, and reactive oxygen species by PMNs, which contribute to

innate host defense against bacteria [26–28]. In contrast to the

parental USA300 wild-type strain, the Dpvl isogenic mutant may

not activate the immune response in this manner, allowing it to

achieve significant growth in the kidney in the end stages of

bacteremia and eventually compensate for any early survival

advantage conferred by PVL. Alternatively, in established

infection once a certain bacterial density has been achieved,

PVL may play only a minimal role in maintaining infection.

Our study demonstrated clearly that there is no difference in

transcriptome and/or proteome profiles between prevalent CA-

MRSA wild-type strains and their isogenic Dpvl mutants,

indicating that a PVL effect must be direct and not mediated by

interference with global regulatory networks (Figure 1 and

Table 1). This stands in marked contrast to the regulatory role

of PVL reported by Labandeira-Rey et al. [14] using a laboratory

S. aureus strain lysogenized with a PVL-encoding phage [14].

While the reasons underlying these differences are under

investigation , the absence of global gene regulatory effects of

PVL in prevalent CA-MRSA strains may limit the practical

applicability of the Labandeira-Rey et al. investigation [14].

Bubeck Wardenburg et al. [11,12] found no contribution of PVL

to pathogenesis in C57BL6 and BALB/c mouse pneumonia

models using wild-type CA-MRSA and isogenic Dpvl mutant

strains. The differences in infection outcomes between the two

studies could be related to differential levels of staphylococcal

protein A (Spa), which was dramatically increased in the PVL-

lysogenized laboratory strains [14], but remains unaltered in PVL-

harboring CA-MRSA strains (Figure 1). Protein A has well-known

inflammatory effects in murine lungs and ligates tumor necrosis

factor receptor-1 (TNFR1) on airway epithelial cells [23].

In sum, we propose a model in which PVL exhibits a transient

contribution to CA-MRSA pathogenesis in rabbit bacteremia

model. Enhanced production of PVL in the early, acute phase of

infection could contribute to CA-MRSA pathogenesis. This is

consistent with the clinical presentation of rapid-onset, over-

whelming infection that has been associated with invasive CA-

MRSA disease in humans [29]. It is unclear why the effect is

transient. Perhaps sublytic production of PVL in the end stages of

infection could result in priming of the innate immune response

that limits bacterial survival. Alternatively, once a threshold of

organisms is achieved in a target organ, even if there is somewhat

of a delay in getting to that threshold, factors other than PVL may

be important in maintaining persistent infection.

Materials and Methods

Bacterial strains and culture
Clinical strains LAC and SF8300 are pulsed-field gel electro-

phoresis (PFGE) type USA300-0114, which have been implicated

in epidemiologically unassociated outbreaks in the United States

[20,30]. MW2 is PFGE type USA400, the prototype CA-MRSA

strain type endemic in the U.S. Midwest [3]. The isogenic PVL

knockout (Dpvl) strains, LACDpvl and MW2Dpvl, have been

described previously [10]. SF8300Dpvl was constructed as

described for LACDpvl and MW2Dpvl, in which a spectinomycin

resistance cassette replaced both the lukS-PV and lukF-PV genes.

Bacterial strains were cultured in tryptic soy broth containing

0.25% D-glucose (TSB, Becton, Dickenson, and Company), CCY

medium (3% [wt/vol] yeast extract, 2% Bacto-Casamino acids,

2.3% sodium pyruvate, 0.63% Na2HPO4, and 0.041% KH2PO4

[pH 6.7]), or YCP medium (3% [wt/vol] yeast extract, 2% Bacto-

Casamino acids, 2% sodium pyruvate, 0.25% Na2HPO4, and

0.042% KH2PO4 [pH 7.0]). Overnight cultures were diluted

1:200 and incubated at 37uC with shaking (250 RPM). Unless

specified, bacteria were cultured to mid-exponential (TSB,

Table 1. PVL does not alter global transcriptional profiles of USA300 and USA400.*

Strains Media Growth Phase Differentially Expressed GeneJ

No. of Genes Gene Identification¥

SF8300 vs. SF8300Dpvl TSB Exponential 1 spc

SF8300 vs. SF8300Dpvl TSB Stationary 1 spc

SF8300 vs. SF8300Dpvl CCY Exponential 0 –

SF8300 vs. SF8300Dpvl CCY Stationary 1 spc

MW2 vs. MW2Dpvl TSB Exponential 0 –

MW2 vs. MW2Dpvl TSB Stationary 2 lukF-PV and lukS-PV

MW2 vs. MW2Dpvl CCY Exponential 0 –

MW2 vs. MW2Dpvl CCY Stationary 5 lukF-PV, lukS-PV, set, lukE, plc

JTranscriptome analyses of SF8300 vs. SF8300Dpvl mutant strains were performed using custom Affymetrix GeneChips (RMLChip1) containing 3961 probe sets from
eight different S. aureus strains (COL, EMRSA16, MSSA476, RF122, TSS, 8325, Mu50, and N315); and MW2 vs. MW2Dpvl using custom Affymetrix GeneChips (RMLChip3)
with 99.3% coverage of genes from MW2 (2613 probe sets of 2632 ORFs; the remaining 0.7% are represented by identical probe sets from other staphylococci). Note
that RMLChip1 does not contain probesets for lukS-PV and lukF-PV, which was subsequently assayed by TaqMan real-time RT-PCR (Table 2). Table displays only
probesets that met standard criteria required for differentially-expressed genes (.2-fold change in transcript levels in the wild-type vs. Dpvl strain, and P,0.05 using a
unpaired Student’s t test).

¥spc, encoding spectinomycin adenylyltransferase (detected only in SF8300Dpvl by RMLChip1; probe set absent in RMLChip3); lukF-PV and lukS-PV, encoding PVL
(detected only in MW2 by RMLChip3; probe sets absent from RMLChip1); set, encoding an enterotoxin homolog (MW0052), 2.4 fold-change; lukE (MW1768), encoding
leukocidin E, 2.1 fold-change; and plc (MW0070), encoding 1-phosphatidyl-inositol phosphodiesterase precursor, 2.6 fold-change.

doi:10.1371/journal.pone.0003198.t001

PVL in CA-MRSA Pathogenesis
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OD600 = 0.75; CCY and YCP, OD600 = 1.0) or stationary (TSB,

CCY, and YCP, OD600 = 2.0) phases of growth.

Microarray experiments
SF8300, SF8300Dpvl, MW2, and MW2Dpvl were cultured to

exponential (OD600 = 1.0) and stationary (OD600 = 2.0) phases of

growth in TSB or CCY medium at which time bacteria were lysed

using 700 ml of RLT buffer (Qiagen, Valencia, CA) and the lysate

was homogenized using an FP120 FastPrep system (Qbiogene,

Carlsbad, CA). Total RNA was isolated with RNeasy kits

(Qiagen). Contaminating DNA was removed using DNase (on

column DNase treatment,Qiagen; off column DNase treatment,

Turbo DNase). Fragmented and biotin-dUTP-labelled cDNA was

generated from purified RNA as described by the Affymetrix

Target Preparation protocol (www.affymetrix.com/support/

downloads/ manuals/expression_s3 _manual.pdf). To synthesize

cDNA, random primers at 25 ng/ml (Invitrogen), 10 mM DTT,

0.5 mM dNTPs, 0.5 U/ml SUPERase?In (Ambion) and 25 U/ml

SuperScript II (Invitrogen) were added to ,20 mg RNA in 1X

first-strand reaction buffer. The remaining RNA was hydrolyzed

Figure 1. PVL does not alter global gene and protein expression profiles. Clinical strains of USA300 (LAC and SF8300) and USA400 (MW2)
and their respective isogenic Dpvl mutant strains were cultured to mid-exponential or stationary phases of growth in TSB or CCY media. (A) TaqMan
real-time RT-PCR for comparison of fold changes in transcript levels of selected Agr-regulated genes in wild type and Dpvl mutant strains. See also
Table 2 for additional data derived from in vitro growth to exponential phase and stationary phase in CCY or TSB media. agrA, accessory global
regulator; hla, alpha-toxin; hlgA, gamma-haemolysin component A; splA, serine protease; spa, protein A; sdrD, serine aspartate repeat protein; clfB,
clumping factor B. (B) Cell extracts separated by 12% SDS-PAGE (Protean II gel, Bio-Rad) using cultures grown to stationary phase. (C) Culture
supernatants, prepared from growth in TSB or CCY media, were separated by gradient 10-20% SDS-PAGE. PVL subunits were identified by
automated-direct infusion tandem mass spectrometry [32]. (D, E, F) Western immunoblot analysis of supernatants and cell extracts from cultures
grown to stationary or mid-exponential phase. Proteins were detected with rabbit polyclonal antibodies specific for LukF-PV, Hla (a-toxin), or Spa. The
immunoblots in panel E were exposed on the same film for equal times or using a longer exposure for MW2 (inset), which produced less Spa. Protein
samples for SDS-PAGE presented in panels B and C were prepared in a manner identical to those shown in panels E and F.
doi:10.1371/journal.pone.0003198.g001
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Table 3. Co-infection experiments with USA300 or USA400 parental or isogenic Dpvl mutant strains assayed at end stages of
bacteremia.

USA300 USA400

SF8300 vs. SF8300Dpvl LAC vs. LACDpvl MW2 vs. MW2Dpvl

no. of rabbits 17 28 25

mean (6sd) inoculum (log10CFU) 7.4260.49 7.8060.31 7.4560.25

mean (6sd) inoculum wt:Dpvl ratio1 0.8160.05 1.0960.27 0.9260.05

mean (6sd) survival in days 3.961.3 3.961.2 3.261.3

mean (6sd) bacterial density

lung, log10(CFU/g) 2.7761.39 3.3161.46 3.0561.84

spleen, log10(CFU/g) 2.6461.51 2.9761.35 2.6661.25

kidney, log10(CFU/g) 3.7061.83 4.9561.69 4.4161.97

blood, log10(CFU/ml) 1.5561.29 1.1461.15 1.3361.00

competition index (95% confidence interval) 2

Lung 20.35 (21.12–0.41) 0.30 (20.14–0.74) 0.07 (20.16–0.30)

Spleen 20.03 (20.75–0.69) 0.18 (20.18–0.54) 0.12 (20.03–0.27)

Kidney 20.20 (21.10–0.70) 0.66 (20.01–1.33) 0.43 (20.24–1.09)

Blood 20.35 (21.02–0.32) 20.13 (20.47–0.21) 0.21 (20.16–0.58)

1Competition assays were used to compare three wild type-Dpvl mutant pairs: LAC-LACDpvl (n = 28), SF8300-SF8300Dpvl (n = 17), and MW2-MW2Dpvl (n = 25), where n
is the total number of animals used in each experiment. A 1:1 mixture containing approximately 36107 CFUs of wild type parent and 36107 CFUs of isogenic Dpvl
mutant were used to co-infect New Zealand white rabbits via the marginal ear vein. Mean bacterial densities comprising of both wild type and Dpvl mutant from vital
organs and blood are shown. The competition index (CI), which is the logarithm (log10) of the output ratios of parent and isogenic mutant after correction for variations
in input ratios, are shown. A positive CI value indicates enhanced tissue infectivity of the parent, whereas a negative CI value indicates enhanced tissue infectivity of the
mutant; a CI = 0 is the no-effect value.

2The null hypothesis (CI = 0) that there was no difference in bacterial densities between parent and isogenic Dpvl mutant in rabbit vital organs was tested using a paired
Student’s t test. All two-tailed P values were not statistically significant (P.0.05).

doi:10.1371/journal.pone.0003198.t003

Table 2. TaqMan real-time RT-PCR analysis reveals that PVL does not alter agr-regulated transcripts in USA300 and USA400 clinical
strains.6

Strain Growth Phase agrA spa clfB sdrD hla hlgA splA lukF-PV

mean fold-change in gene transcripts for wt vs. Dpvl

For cells grown in TSB

LAC vs. LACDpvl Exponential 21.25 21.39 1.15 21.36 21.43 21.25 21.10 20769.59*

SF8300 vs. SF8300Dpvl Exponential 21.31 21.20 21.31 21.49 21.32 21.39 21.28 48376.47*

MW2 vs. MW2Dpvl Exponential 21.00 21.24 1.40 21.18* 21.12 21.46 21.11 9092.34*

LAC vs. LACDpvl Stationary 1.42 1.36 1.47* 1.27* 1.51 21.06 21.09 60925.20*

SF8300 vs. SF8300Dpvl Stationary 1.16 1.40 1.35 21.04 1.58 1.22 1.82 126494.09*

MW2 vs. MW2Dpvl Stationary 1.37 1.52 1.63 1.39 1.44 1.95 1.67 16747.59*

For cells grown in CCY

LAC vs. LACDpvl Exponential 21.23 21.74 21.57 21.62 1.13 21.64 21.43 2133.83*

SF8300 vs. SF8300Dpvl Exponential 21.10 1.27a 21.15 21.13 21.20 21.24* 1.05 4008.34*

MW2 vs. MW2Dpvl Exponential 21.02 2.83 1.57 1.20 21.76 21.09 21.39 7972.35*

LAC vs. LACDpvl Stationary 1.22 1.13 1.12 21.00 21.12 21.17 21.35 392409.30*

SF8300 vs. SF8300Dpvl Stationary 21.09 1.38 1.41 1.03 21.23 1.11 1.35 781001.79*

MW2 vs. MW2Dpvl Stationary 1.08 1.76 1.36 1.20 1.57 1.46 1.59 146821.31*

6TaqMan real-time RT-PCR was performed as described in Methods. Results are expressed as the mean fold-change of 3–5 experiments (exponential growth, Exp.) or 4–
7 experiments (stationary phase of growth, Stat.) with one exceptiona (one of the TaqMan reactions failed, n = 2). The relative expression level of each transcript (dCT)
was compared in parent vs. Dpvl strains using a paired Student’s t-test (*P,0.05 versus Dpvl). Except for lukF-PV, none of the transcripts in any of the strains met
standard criteria required for differentially expressed genes (.2-fold change in the wild-type vs. Dpvl mutant strain and P,0.05).

agrA, accessory global regulator; hla, alpha-toxin; hlgA, gamma-haemolysin component A; splA, serine protease; spa, protein A; sdrD, serine aspartate repeat protein; clfB,
clumping factor B; and lukF-PV, Panton-Valentine leukocidin component F.
doi:10.1371/journal.pone.0003198.t002
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by adding 1 N NaOH at 65uC for 30 min after which 1 N HCl was

added to neutralize the reaction. cDNA purification was

performed using a QIAquick PCR purification kit (Qiagen) with

nuclease-free water substituted for the elution buffer. cDNA

(,5 mg/sample) was fragmented using 0.6 U of DNase I (GE

Healthcare) per mg of cDNA in One-Phor-All Buffer (Amersham

Biosciences). Labeling of the 39termini of the fragmentation

products was completed as described in the protocol using 7.5 mM

GeneChip DNA Labeling Reagent (Affymetrix), terminal deox-

ynucleotidyl transferase (Promega) in 5X reaction buffer. The

reaction was terminated using 0.5 M EDTA. Biotinylated S. aureus

cDNA from strains SF8300 and SF8300Dpvl was hybridized to

custom Affymetrix GeneChips (RMLChip1) containing 3961

probe sets from eight different S. aureus strains (COL, EMRSA16,

MSSA476, RF122, TSS, 8325, Mu50, and N315). Biotinylated S.

aureus cDNA from strains MW2 and MW2Dpvl was hybridized to

custom Affymetrix GeneChips (RMLChip3) with 99.3% coverage

of genes from MW2 (2613 probe sets of 2632 ORFs; the remaining

0.7% are represented by identical probe sets from other

staphylococci). GeneChips were scanned according to standard

GeneChip protocols (Affymetrix). Precise details for Affymetrix

hybridization and scanning protocols can be found at the above

internet address. Each experiment was replicated 3 times.

Affymetrix GeneChip Operating Software (GCOS v1.4, http://

www.affymetrix.com) was used to perform the preliminary analysis

of custom chips at the probe-set level. All *.cel files, representing

individual biological replicates, were scaled to a trimmed mean of

500 using a scale mask consisting of only the S. aureus probe-sets to

produce the *.chp files. A pivot Table with all samples was created,

including calls, call p-value and signal intensities for each gene.

The pivot Table was imported into GeneSpring GX 7.3 (Agilent),

and hierarchical clustering (condition tree) using a Pearson

correlation similarity measure with average linkage was used to

determine similarity of biological replicates (data not shown). The

pivot Table was also imported into Partek software (Partek Inc. St.

Louis, MO) to produce a Principle Component Analysis plot as a

secondary check on similarity of biological replicates (data not

shown). After data had passed these preliminary statistical tests,

biological replicates were combined into a custom worksheet

(Microsoft Excel 2003, Microsoft Corporation) used to correlate

replicates of all test conditions and controls. Quality filters based

upon combined calls and signal intensities (test and/or control

signal intensity was required to be greater than the average

background signal intensity of 27) were used in the worksheet to

further evaluate individual gene comparisons. Present and

Marginal calls were treated as the same. Absent calls were

negatively weighted for the filters and dropped completely from

further calculations. All individual genes passing the above filters

and combined from all usable replicates have the ratios of test

(wild-type strain)/control (mutant strain) reported with associated

probability computed by a paired Student’s t-test. Significance

Analysis of Microarrays (SAM) was also performed using the Excel

sheet with a column added containing the results. P-values

obtained from ANOVA (Partek) were filtered using the False

Discovery Rate (FDR). Gene lists were generated with emphasis

placed upon the quality and statistical filters mentioned above. To

be included in the final gene list, in addition to the above criteria,

gene expression must have been changed at least 2-fold.

Microarray data are posted on the Gene Expression Omnibus

(GEO, www.ncbi.nlm.nih.gov/geo/, platform accession numbers

GPL2129 for RMLChip1 data (SF8300 strains) and GPL4692 for

RMLChip3 data (MW2 strains), series accession number

GSE8677).

TaqMan real-time reverse transcriptase-PCR
TaqMan real-time RT-PCR analysis of 3–7 separate experi-

ments (each assayed in triplicate) was performed with an ABI 7500

thermocycler (Applied Biosystems) using RNA samples prepared

as described for the microarray experiments. Relative quantifica-

tion of S. aureus genes was determined by the change in expression

of target transcripts relative to the endogenous control gene, gyrB.

Data were subsequently expressed as fold-change in wild-type

transcript levels compared to the isogenic lukS/F-PV mutant

strains (Dpvl strains set at 1.0, baseline). lukS/F-PV transcripts were

undetecTable in the Dpvl strains.

Analysis of S. aureus protein profiles
S. aureus were cultured to mid-exponential (TSB, OD600 = 0.75;

CCY and YCP, OD600 = 1.0) or stationary (TSB, CCY, and YCP,

OD600 = 2.0) phases of growth as described above. At the desired

phase of growth, 10 ml of culture was centrifuged at 28006g for

10 min at 4uC. Supernatant (5–7 ml) was collected and concen-

trated to 2X using Centriplus centrifugal filters with 3,000 MW

cut-off membranes (Millipore, Bedford MA). Cell pellets were

washed in 1 ml of cold Dulbecco’s phosphate-buffered saline

(DPBS) and resuspended in 600 mL of cold DPBS. Sample was

loaded into a pre-chilled FastPROTEIN BLUE tube (MP

Biomedical, Solon, OH) and S. aureus were disrupted/homoge-

nized with a FP120 FastPrep Instrument (Qbiogene) set at speed

6.0 for 20 sec. Samples were immediately returned to ice. After

homogenization, tubes were centrifuged at 10,0006g for 1 min at

4uC and supernatant was transferred to a new tube. Samples were

stored at 280uC until used.

Table 4. Time-course single-strain infection experiments with
a USA300 parental or isogenic Dpvl mutant strains.1

SF8300wt SF8300Dpvl P value

log10CFU/g6standard deviations

24 h post infection n = 19 n = 19

Lung 3.4160.57 3.1960.38 0.179

Spleen 3.6260.57 3.4460.38 0.27

Kidney 4.0961.92 2.6361.76 0.020

48 h post infection n = 19 n = 18

Lung 2.8860.56 2.7960.65 0.65

Spleen 2.7260.90 2.6460.82 0.78

Kidney 4.4861.49 3.2061.91 0.030

72 h post infection n = 12 n = 12

Lung 2.7061.40 2.6861.18 0.96

Spleen 2.7061.34 3.0360.78 0.47

Kidney 4.7561.55 5.5060.79 0.151

Blood

24 h post infection 1.2860.93 0.9660.13 0.077

48 h post infection 0.6860.16 0.5060.13 0.37

72 h post infection 0.7161.26 1.1561.04 0.36

1Rabbits were euthanized and log10CFU per gram of lung, spleen, and kidney
were determined at 24, 48 and 72 hours post infection. It was not possible to
conduct an experimental group at 96 hours post infection because rabbits loss
.15% of the baseline weight by 72 hrs post infection, which is a moribund
condition stipulated by UCSF animal use committee for euthanization. Two-
sided P values by unpaired Student’s t test are reported.

doi:10.1371/journal.pone.0003198.t004
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For SDS-PAGE, equivalent volumes of cell extract (5.6 mL of

protein from exponential phase samples and 1.6 mL of protein

from stationary phase samples) or culture supernatant (54 mL of

2X sample) were resolved by 12% or 10–20% SDS-PAGE

(Protean II gel, Bio-Rad). Protein gels were stained with Gel-Code

according to the manufacturer’s instructions (Pierce). Images were

adjusted for brightness and contrast in Adobe Photoshop CS

(Adobe Systems Incorporated, San Jose, CA).

Western blot for alpha-toxin and LukF-PV (PVL)
Overnight cultures of S. aureus were diluted 1:100 in 5 ml of

YCP medium and incubated at 37uC with shaking (250 rpm).

Bacteria were cultured to mid-exponential (OD600 = 1.1) or

stationary (OD600 = 1.7) phases of growth and removed by

centrifugation (50006g for 10 min at 4uC). Secreted proteins

were precipitated using TCA (10% w/v), washed, and solubilized

in 200 ml 10 mM Tris-Cl, pH 7.6. Proteins (15 ml of each sample)

were resolved with 12% SDS-PAGE, followed by transfer to

nitrocellulose. Membranes were blocked overnight at 4uC with 5%

non-fat milk (Bio-Rad) and then incubated with rabbit polyclonal

antibodies specific for LukF-PV (1 mg/ml, a kind gift of Dr.

Gerard Lina, Lyon, France) or alpha-toxin (1:10,000 dilution,

Sigma-Aldrich, St Louis, MO) for 2 h at room temperature.

Immunoblots were washed and incubated with horseradish

peroxidase-coupled goat anti-rabbit IgG (1:4,000 dilution, Zymed,

CA) for 1 h at room temperature. Proteins were detected with

enhanced chemiluminescence (GE, Piscataway, NJ) systems and

autorad film (IscBioExpress, UT). Protein A (Spa) was detected by

rabbit polyclonal antibody specific for Spa.

Rabbit bacteremia model
Bacterial strains were grown in TSB at 37uC with shaking for

16–18 hours, harvested, and resuspended in 10% glycerol/

phosphate buffered saline to approximately 56108 colony forming

units (CFUs) per ml, aliquoted into individual cryovials and

immediately stored at 280uC. For competition experiments, a

mixture containing approximately 36107 CFUs of wild type

parent and 36107 CFUs of isogenic Dpvl mutant were used to co-

infect New Zealand white rabbits via the marginal ear vein. A

0.5 ml volume of blood was sampled daily from the ear artery for

quantitative blood culture. Rabbits were monitored twice daily to

identify moribund animals (defined as those that are immobile,

cannot be aroused to move from a recumbent position, and unable

to access food or water) and those that have lost more than 15% of

baseline weight, which are conditions stipulated by the UCSF

committee on animal research for immediate euthanization.

Rabbits were dead or euthanized for moribund conditions

between 2 and 7 days post infection. A 0.2 to 0.3 g sample from

lung, spleen and kidney was processed for quantitative bacterial

culture onto blood agar plate (BAP; tryptic soy agar supplemented

with 5% sheep blood; Remel, Lenexa, KS).

For single-strain experiments, 86107 CFUs of the parental

strain SF8300 or the mutant strain SF8300Dpvl were injected via

the marginal ear vein into New Zealand white rabbits (no

difference in CFUs of SF8300 or SF8300Dpvl administered to

rabbits, P.0.05 by unpaired Student’s t test). Rabbits were

euthanized and log10CFU per gram of lung, spleen, and kidney

determined at 24, 48 and 72 hours post infection.

The animal experiments reported herein were reviewed by the

University of California San Francisco Institutional Animal Care

and Use Committee (IACUC). Animals were housed in humane

conditions in accordance with IACUC policies and procedures.

Statistics
For the rabbit co-infection model, the input ratio of the parent

to mutant was determined by transferring 144 CFUs of the mixed

inoculum onto TSA containing 300 mg/ml of spectinomycin. The

parental strains were susceptible to spectinomycin, whereas the

Dpvl mutant strains were resistant because a spectinomycin

resistance cassette was used in allelic replacement of wild type

pvl genes [10]. Similarly, the output ratio of the parent and mutant

was determined for each rabbit tissues (lung, spleen, kidney, and

blood) by transferring 144 CFUs onto TSA containing 300 mg/ml

spectinomycin. For each rabbit tissue, a competition index (CI) of

the two comparator strains was calculated with the following

formula that corrects the output ratios for variations in the input

ratios: CI = log10(output ratio/input ratio). A positive CI value

indicates enhanced tissue infectivity of the parent, whereas a

negative CI value indicates enhanced tissue infectivity of the

mutant; CI = 0 is the no-effect value. A paired Student’s t test was

used to test the null hypothesis (CI = 0) that there was no difference

in tissue infectivity between the parent and the Dpvl mutant.

Linear trends in bacterial densities in vital organs and blood over

time course of infection were explored by means of the Cuzick test

(Stata 8, nptrend command) [31].
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