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Abstract
Smoking accounts for almost 80–90% of lung cancer cases, which is also the most frequent cause of cancer-related
deaths in humans. With over 60 carcinogens in tobacco smoke, cells dividing at the time of carcinogen exposure are
at particular risk of neoplasia. The present study aimed to investigate global gene expression differences in lung
adenocarcinoma (LUAD) tumour samples of current smokers and non-smokers, in an attempt to elucidate biological
mechanisms underlying divergent smoking effects. Current and non-smoker tumour samples were analysed using
bioinformatics tools, examining differences in molecular drivers of cancer initiation and progression, as well as
evaluating the effect of smoking and sex on epithelial mesenchymal transition (EMT). As a result, we identified
1150 differentially expressed genes showing visible differences in the expression profiles between the smoking
subgroups. The genes were primarily involved in cell cycle, DNA replication, DNA repair, VEGF, GnRH, ErbB
and T cell receptor signalling pathways. Our results show that smoking clearly affected E2F transcriptional activity
and DNA repair pathways including mismatch repair, base excision repair and homologous recombination. We
observed that sex could modify the effects of PLA2G2A and PRG4 in LUAD tumour samples, whereas sex and
smoking status might possibly have a biological effect on the EMT-related genes: HEY2, OLFM1, SFRP1 and
STRAP. We also identified potential epigenetic changes smoking solely might have on EMT-related genes, which
may serve as potential diagnostic and prognostic biomarkers for LUAD patients.
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Background

Lung cancer represents 12.7% of all new cancer cases and is
also themost frequent cause of cancer-related deaths worldwide
accounting for 18.2% (Ferlay et al. 2010). Tobacco smoke ex-
posure accounts for the majority of lung cancer cases; however,
almost 25% of worldwide cases occur in lifelong never smokers
(Lee et al. 2011). Never smokers (NS) are defined as individ-
uals who have smoked less than 100 cigarettes during their
lifetime (Couraud et al. 2015). Consequently carcinogens in
cigarette smoke are presumed to induce carcinogenesis in
smokers; however, no such affront exists in NS implying an
alternative mechanism. Thus, lung cancer in lifelong never
smokers (LCINS) is considered a separate entity with adeno-
carcinoma predominance (Yano et al. 2008), over squamous
cell carcinoma (SCC) (Bhopal et al. 2019). The UK Million
Women Study found three significant risk factors out of 34
potential ones, to be associated with an increased incidence of
LCINS and included non-white ethnicity, asthma requiring
treatment and tall stature (Pirie et al. 2016).

Major contributors to lung cancer include secondhand to-
bacco smoking, especially with the changes in cigarette
manufacturing practices and smoking habits allowing deeper
aspiration (Gridelli et al. 2015), occupational carcinogen ex-
posure, pollution, X-ray radiation and radon exposure (Field
and Withers 2012). In populations with lung cancer, the 5-
year survival varies from 4 to 17% depending on the stage
and regional differences (Hirsch et al. 2017). Three studies
have supported the finding that smoking duration rather than
intensity serves as a predictor for lung cancer and the differ-
ences between the histological types. Additionally, the asso-
ciation of lung cancer with tobacco smoking differs by histo-
logical type according to the exposure of the respiratory tract
site to tobacco smoke particles, with lower exposure to the
peripheral and subpleural regions. In small cell and squamous
cell carcinoma, a rapid increase in risk was observed with the
number of cigarettes smoked following smoking cessation,
whereas to a lesser extent in adenocarcinoma (Kenfield
2008; Doll and Peto 1978; Flanders et al. 2003). Nicotine-
mediated tumour promotion is made possible through the ac-
tivation of the α7 subunit of the nicotine acetylcholine recep-
tors (α7-nAChR) or β-adrenergic receptors activating the sig-
nalling cascade. In NSCLC, the expression of (α7-nAChR) is
higher in squamous carcinoma smokers than in adenocarcino-
ma (Pezzuto et al. 2019).

In NSCLC, local progression and metastasis has been as-
sociated with epithelial to mesenchymal transition (EMT). In
adenocarcinoma and SCC, there is a strong correlation be-
tween the expression of EMT biomarkers and an advanced
stage and poor differentiation (Mahmood et al. 2017). Little
is known regarding the epigenetic changes of the molecular
mechanisms involved in EMT in NSCLC. Cigarette smoking
plays a vital role in promoting EMT and is associated with

poor survival, cell migration and invasion in NSCLC through
the deregulation of E-cadherin. Cigarette smoke condensation
(CSC) induces EMT by downregulating E-cadherins, which
are considered tumour suppressors and important molecular
markers in smoking patients (Nagathihalli et al. 2012).

Robust sex differences in terms of higher incidence of DNA
damage in men compared to women exist with a male cancer
incidence predominance (Dorak and Karpuzoglu 2012). While
these differences might be mediated through acute sex hormon-
al action paralleling the variation in circulating sex hormone
concentrations, factors independent from acute hormone action
underlie this discrepancy. However, there is insufficient data to
make a clear determination regarding the impact of sex, primar-
ily due to the fact that sex differences have not been exclusively
analysed. With LCINS being the seventh most prevalent in the
world, a higher proportion also seems to be amongst women in
comparison to men (Bhopal et al. 2019). Oestrogen receptor α
andβ are more frequently expressed in lung tissue compared to
normal tissue, whereas progesterone receptors are less frequent-
ly expressed in cancerous tissue, with the receptor’s expression
profile possibly correlating with the outcome (Couraud et al.
2012). In brain tumour glioblastoma, sex differences play
a role in patient outcomes beyond hormonal influences,
appearing to be intrinsic to the tumour cells. Yang et al.
proposed that patient sex correlates with prognosis as
well as treatment (Yang et al. 2019).

Recent work identifying further mechanisms of acquired
resistance in NSCLC necessitates additional detailed under-
standing of the biological underpinnings of this tumour phe-
notype. An improved understanding of LUAD tumour biolo-
gy accounting for smoking status and sex will allow a better
understanding of available well-known modulators of treat-
ment response and toxicity. FDA has been recommending
systematic analysis of sex differences that will allow precision
oncology rather than just exploring molecular markers. This
paper presents a few major genetic changes occurring in cur-
rent and non-smokers LUAD tumour samples and examining
the effect of smoking on both sexes and EMT. Our approach
to a pathway-specific gene association analysis will help form
a better view of the accumulative effect of group functionally
related genes aiding in revealing the transcriptional program
accounting for the variability in cancer phenotype.

Materials and methods

Data collection

The expression profile data of lung adenocarcinoma level 3
normalised (illuminahiseq_rnaseq) including 522 samples
with their corresponding clinical information were manually
retrieved from The Cancer Genome Atlas (TCGA) database
(http://gdac.broadinstitute.org/ data status of Jan 28, 2016).
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For validation, the gene chip GSE10072 of LUAD with its
clinical manifestation data was also downloaded from the
Genome Expression Omnibus (GEO) database for 180 pa-
tients (https://www.ncbi.nlm.nih.gov/geo/). Raw data has
been processed, and patients with missing clinical/
expression values were excluded from the analysis. Finally,
the study included 146 patients from TCGA and 45 probes
from GEO databases. Further grouping according to smoking
status included a permissible value of 1 for lifelong non-
smokers (NS) and 2 for current smokers (CS). We excluded
reformed smokers to adjust for smoking because residual con-
founding could lead to some of the excess hazards amongst
the groups. Our study included 54 NS of which 13 were males
and 41 females and 92 CS of which 59 and 33 were male and
female LUAD patients, respectively. A series of clinical traits
for TCGA patients are shown in Supplementary Table S1.

In silico analysis

To further explore the optimal molecular subgroups in LUAD,
unsupervised hierarchical clustering was performed on the
patient tumour samples (T), with Pearson correlation and the
pairwise complete-linkage method, separately on the sub-
groups (NS and CS). ExpressCluster software (CBDM
Bioinformatics, Scott Davis n.d) was used to find common
and unique expression profiles of genes showing differentia-
tion between the patient T subgroups. Profiles indicating con-
trast between CS and NS subgroups were considered signifi-
cant. Clustering was also performed by applying K-means++
algorithm, Z-norm signal transformation and rank correlation
distance metric. p values were corrected using Benjamini and
Hochberg adjustment tominimise errors, and adjusted p values
< 0.05were considered significant. Profiles indicating contrast
between CS and NS were considered significant. To investi-
gate the molecular differences amongst the groups, associated
clinical manifestations including history of smoking, treat-
ment response, sex, age, stage and vital status were analysed.

Multivariate and principal component analysis

Multivariate analysis (MFA) was used to estimate the relation-
ships amongst gene expression patient subgroup correlates, in
order to identify partitioning of patient subgroups. MFA stan-
dardises variables in predefined blocks of data calculating the
global axes, which are the linear combination of the original
parameters, thus maximising the global data variance. MFA
was computed using the R packages FactoMineR and
factoextra (Lê et al. 2008). Principal component analysis
(PCA) was used to reduce the dimensionality of the subsets,
creating uncorrelated variables and maximising variance
(Jolliffe and Cadima 2016) between subgroups.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Subramanian et al.
2005) was carried out to determine whether the identified set
of genes showed significant molecular functions between the
patient subgroups. Datasets and phenotype label files were cre-
ated (defined either as CS or NS and males or females) and
loaded onto the GSEA software (v3.0). Enrichment analysis
was performed according to the expression data for NS and
CS, separately, to all 20,501 genes in terms of canonical path-
way GeneSet (CP), cellular components (CC), molecular func-
tion (MF) and transcription factor targets (TFT) obtained from
the Molecular Signatures Database (MSigDB). The number of
permutations was set to 1000, and a ranked list metric was
generated using t test yielding the functions involved in both
the high and low expression groups. The nominal p value of
enrichment results cut-off was 0.05, while gene clusters with
false discovery rate, FDR < 0.25, were considered statistically
significant. FDR< 0.25 was chosen rather than 0.05 as accord-
ing to GSEA, an FDR< 0.25 is likely to generate interesting
hypotheses for further research (Subramanian et al. 2005).
Random seed for permutation to achieve repeatability was
779,948,241, with the parameter of permutations set as a 1000.

Weighted gene correlation network analysis

WGCNAR package was used to construct a scale-free network
from gene expression data (Langfelder and Horvath 2008). Its
algorithm was used to screen out the power value in the con-
struction of modules. The appropriate power (9) was used fol-
lowing the use of the gradient method testing the independence
and the average connectivity degree of different modules. We
made sure to select the power when the degree of independence
R2 was greater than 0.8 (R2 = 0.94 and slope = − 1.48). We then
proceeded to construct the modules with minModuleSize set as
30 to achieve high reliability of the results. Following that, the
correlation was transformed into adjacency matrix then into a
topological overlap measure (TOMplot). Heatmap tools pack-
age (Babicki et al. 2016) was used to analyse the strength of the
interactions. Module-trait associations were estimated using the
correlation between the module eigengene and the smoking
status (clinical trait), which allowed identification of module
(expression set) highly correlated to the phenotype. Gene sig-
nificance (GS) for each expression profile was calculated as the
absolute value of the correlation between the expression profile
and the trait; module membership (MM) was defined as the
correlation of expression profile and each module eigengene.

Functional enrichment analysis of the co-expression
modules

The constructed modules had different numbers of genes, and
functional enrichment analysis was performed on the
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significantly distinct modules. Gene ontology (GO) analysis
results from GOenr (enrichmentAnalysis) in WGCNA were
extracted out. p value ≤ 0.05 after correction was used as a
threshold. GO terms that were significantly overrepresented in
a set of genes were then visualised in Cytoscape 3.5 (Shannon
2003), to further explore functions and pathways related to
DEGs in the subgroups. All metabolic pathways generated
were further subjected to enrichment and topological analysis
using Java Enrichment of Pathways Extended to Topology
(JEPETTO) plugin, and co-expressed modules were con-
structed by the Cytoscape software to identify hub genes.
JEPETTO allows identifying novel and significant relation-
ships using protein-protein interaction networks based on
KEGG database (Winterhalter et al. 2014). It helped us ana-
lyse the functional association of the top-ranked underlying
networks between DEGs and known cellular pathways.
ViSEAGO R package (Brionne et al. 2019) was also used
for biological interpretations of biological processes (BP) cat-
egory using the GO public database. Associated gene terms
were retrieved from EntrezGene database (Nov 2019) for
Homosapiens ID 9606, and experimental GO terms from
orthologous genes were added. Enrichment tests were per-
formed using Fisher test, subsequently with classic, elim,
weight and weight01 algorithms. We used several algorithms
to validate the robustness of enrichment. Enriched GO terms
(p < 0.01) were grouped into functional clusters using hierar-
chical clustering with the help of GOSemSim (Yu et al. 2010)
based on Wang’s semantic similarity between GO terms re-
specting GO graph topology and Ward’s criterion. Further,
these functional clusters were grouped using hierarchical clus-
tering based on BMA distance between sets of GO terms and
Ward’s criterion.

Statistical analysis

Mutation and the frequency of copy number alterations
(CNA) were analysed for association between smoking
groups. Mutation and CNAwere downloaded from cbioportal
webs i te (h t tps : / /www.cb iopor t a l .o rg / ) fo r lung
adenocarcinoma (TCGA, Firehose Legacy); data was
merged according to the patient ID. The Pearson’s chi-
squared test was used to compare the mutation and CNA
frequency between the subgroups. A Bonferroni-corrected p
value of < 0.05 was used to determine the significance thresh-
old for all association tests. Differences in the EMT marker
gene expression signatures according to patient category (both
sex and smoking) were examined using the Kruskal-Wallis
analysis of variance, followed by the Dunn post hoc with
Bonferroni correction for multiple comparisons. p < 0.05
was considered statistically significant. Computation was per-
formed using the dunn.test R package, as well as GraphPad 5.
01 (GraphPad Prism7 Software n.d, CA, USA).

Results

Unsupervised cluster analysis identifies six subgroups
for LUAD current and non-smoker patients

Unsupervised hierarchical clustering analyses of 120 CS and
75 NS tumour samples were conducted with 20,501 genes
downloaded from TCGA. These lung tumour samples were
then divided into six subgroups, three each, based on molec-
ular signature differences as shown in Supplementary Fig. S1.
CS subgroup 1 (C1) contained 54 samples, subgroup 2 (C2)
contained 38 samples and subgroup 3 (C3) contained 28 sam-
ples, whereas for NS, subgroup 1 (N1) contained 17 samples,
subgroup 2 (N2) 37 samples and subgroup 3 (N3) 21 samples.

Classification of the patient subgroups and
identification of DEGs

Gene set enrichment analysis (GSEA) allowed identification
of genes contributing to the differentiation of the smoking
status of the subgroup tumour samples. The 100 best genes
(obtained from GSEA heatmaps) differentiating the compared
CS vs NS subgroups were extracted following 9 different
group combinations (Supplementary Fig. S2). PCA was used
to explore the 6 patient subgroups, assessing the variation
across each category (CS or NS) according to smoking status
(Supplementary Fig. S3). Subgroups C1, C2 combined verses
N1 and N2 also combined were mutually independent and
highly clustered in intra-subgroups, thus dividing them based
on their molecular differences. Subgroups N3 and C3 were
eliminated from further analysis, rendering four subgroups
best suitable to discriminate LUAD tumour samples according
to their smoking status (Supplementary Fig. S4). We then
identified from ExpressCluster 12 clusters showing unique
expression profiles differentiating C1, C2, N1 and N2 sub-
groups yielding 2454 DEGs. Multivariate analysis of 2454
gene expression revealed clear distinction between C1, C2,
N1 and N2 (Supplementary Fig. S5).

Gene co-expression network reveals 1150 DEGs cor-
responding to smoking status

Expression values of the 2454 genes were used to construct
the co-expression modules by WGCNA package tool. To
identify modules of these genes, the topological overlap-
based dissimilarity was determined and used as a distance
measure with a constant height cut-off value (6 × 105)
(Supplementary Fig. S6). Soft threshold power was set to 9
in which R2 was 0.94 to ensure a scale-free network
(Supplementary Fig. S7). This resulted in merging of highly
correlated eigengenes, and the 9 best modules differentiating
between CS and NS were chosen (Supplementary Figs. S8
and S9). We then combined the module genes and removed
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duplicates generating 1150, permitting the identification of
distinct transcription modules for subgroups (CS and NS)
and considered as our candidate genes.

Functional annotation analysis of DEGs

To gain insights into the biological functions that may be
affected due to tobacco exposure, we performed functional
analysis based on gene ontology (GO) using GSEA,
JEPETTO plugin in Cytoscape and ViSEAGO package in
R. GSEA enrichment of gene sets according to GO functional
terms associated with cellular process led to the identification
of processes mostly relating to ECM regulation and replica-
tion fork (Supplementary Table 2 and Supplementary Fig. 8),
while cell cycle, DNA repair, DNA replication and prolifera-
tion and E2F pathway and transcription family targets for
canonical pathways (Supplementary Tables 3 and 4 and
Supplementary Fig. 10). The biological process controlled
by the genes in the “turquoise”module was found to be main-
ly enriched in cell cycle regulation, division, DNA replication,
repair and E2F pathway, while “grey” module genes were
associated with proliferation, transcription, cell to cell signal-
ling and P53 downstream signalling pathway and other mod-
ules such as “magenta” with cytoskeletal organisation, “dark
orange” with skeletal development and “black” with immune
responses (Supplementary File 1). Pathway analysis using
JEPETTO plugin in Cytoscape revealed that cell cycle,

DNA replication and repair pathways (MMR, BER, NER),
HR, ErbB GnRH, TGF-β, T cell receptor and VEGF signal-
ling pathway as major pathways varying with different con-
stitution for CS and NS analyses and asthma (Table 1).
However, when analysed separately, overexpressed genes in
CS seem to correlate with mismatch repair, cell cycle, NHEJ
and ABC transporters, while in NS, only asthma seemed to be
significantly enriched (Supplementary Table 5).

Smoking dysregulates cell cycle

Of our 1150 genes JEPETTO analysis for cell cycle related
genes (CD22, BTK, PIK3R5, PIK3CG, CD19, PRKCB,
INPP5D, NFATC2, PIK3R1, PIK3AP1, FCGR2B and
RAC2) showed that their expression was elevated in NS com-
pared to CS. The expression levels of these genes PIK3R5,
PIK3CG, PIK3R1 NFATC2 and RAC2 in the NS cohort also
seemed to be elevated inmismatch repair, homologous recom-
bination, DNA replication, VEGF signalling pathway, T cell
receptor signalling pathway, ErbB signalling pathway and
GnRH signalling pathway (Table 1). GSEA analysis of the
1150 genes brought up REACTOME_E2F_MEDIATED_
REGULATION_OF_DNA_REPLICATION (Table 2).

We also found 113 genes relating to cell cycle
(Table 3) to be overexpressed in our CS cohort; 28
were identified with a log fold change over 1.5.
Further GO analysis of the 113 genes using ViSEAGO

Table 1 Genes involved in major cancer-related pathways coloured according to increased expression, CS in red and NS in blue with their corre-
sponding NCBI Reference Sequence accession number

Cell cycle CD22, BTK, PIK3R5(NG_030374.1), PIK3CG (NG_050579.1), CD19 (NG_007275.1), PRKCB (NG_
029003.2), INPP5D (NG_033988.1), NFATC2, PIK3R1(NG_012849.2),PIK3AP1,FCGR2B(NG_023318.1),
RAC2 (NG_007288.1)

Mismatch repair POLD1 (NG_033800.1), RFC5, RFC4, RFC3, EXO1 (NG_029100.2)

Homologous recombination POLD1 (NG_033800.1), RAD54B (NG_012878.2), XRCC2 (NG_027988.2), EME1 (NG_029665.1), RAD51
(NG_012120.1), RAD54L (NG_012144.1), BLM (NG_007272.1)

DNA replication DNA2 (NG_034247.1), MCM2 (NG_050771.1), POLD1 (NG_033800.1), POLE2 (NG_052877.1), POLE (NG_
033840.1), RFC3, RFC4, RFC5

VEGF signalling pathway PIK3R5 (NG_030374.1), PLA2G2A (NG_012928.1), PIK3CG (NG_050579.1), PRKCB (NG_029003.2),
NFATC2 PLA2G5 (NG_032045.1), PIK3R1 (NG_012849.2), PLA2G2D, RAC2 (NG_007288.1)

T cell receptor signalling pathway CD40LG (NG_007280.1), CSF2 (NG_033024.1), CD28 (NG_029618.1), PTPRC (NG_007730.1), PIK3R5
(NG_030374.1), CD4 (NG_027688.1), ITK (NG_016276.1)

PIK3CG (NG_050579.1), NFATC2, PIK3R1 (NG_012849.2)

ErbB signalling pathway PIK3R5 (NG_030374.1), PIK3CG (NG_050579.1), MAPK10 (NG_013325.2), PRKCB (NG_029003.2),
PIK3R1 (NG_012849.2), BTC

GnRH signalling pathway PLA2G2A (NG_012928.1), MAPK10 (NG_013325.2),
PLCB2 (NG_052867.1), CACNA1C (NG_008801.2), PRKCB (NG_029003.2), PTK2B (NG_029510.2),

PLA2G5 (NG_032045.1), PLA2G2D

Base excision repair TDG

Nucleotide excision repair POLD1 (NG_033800.1), POLE2 (NG_052877.1),
POLE (NG_033840.1), RFC3,RFC4, RFC5

TGF beta signalling pathway TGFBR2 (NG_007490.1)

Asthma CD40LG (NG_007280.1)
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R tool returned 46 clusters, relating mostly in to DNA
replication, cell cycle checkpoint, regulation and re-
sponse to chemotherapy drugs (Fig. 1), in particular
GO:0051726, regulation of cell cycle; GO:0010564, reg-
ulation of cell cycle process; GO:0051726, regulation of
cell cycle; and GO:1901987, regulation of cell cycle
phase transition (Supplementary File 2). Additionally,
BLM and RAD51 were statistically significant and
enriched with overexpression in CS for GO:1901563,
response to camptothecin; GO:0097329, response to an-
timetabolite; and GO:0072710, response to hydroxyurea
(Supplementary File 2) (Supplementary Table 14).

Analysis of multiple omics data

Of the 1150 DEGs, we identified 130 genes with log fold
change − 1.5 < log2FC < 1.5 and reduced them to 25 genes
with a log fold change of − 2 < log2FC < 2 (Supplementary
Table 6), indicating distinct molecular signatures between
CS and NS LUAD patients with biological differences amid
them between (Table 4). The log2 ratio is interpreted as the
average log fold change in gene expression between the smok-
er groups. Fifteen genes seem to be overexpressed in NS and
10 in CS. Enrichment analysis of those 25 genes did not bring
up significant metabolic pathways, but a few of them seem to
be reported in the literature as tumour suppressors or involved
in EMT process. SCGB1A1 seems to be an important defence
molecule of the lung and one of the top hypermethylated
genes in smokers. PRH2 has not been reported in the literature
regarding any inflammatory diseases, however showed a
log2FC of 2.76 in CS.

Characteristics of LUAD patients related to different
EMT profiles in association with smoking status

We performed dimensional grouping through MFA of
LUAD patients according to the smoking status of the
different subgroups. Our results show a contradictory
pattern for EMT members between NS and CS.
ITGA5, TCF3, SMAD3, KRT5, SNAI1, KRT18, DSP
a n d SMAD2 a r e o v e r e x p r e s s e d i n CS a n d
underexpressed in NS, whereas VIM, SDC1, CDH11,
MUC1, MMP2, ZEB2, ZEB1, LAMA2, TCF4, DDR2,
CDH1 , LAMA4 , MMP3 ITGB6 and OCLN are
underexpressed in CS and overexpressed in NS
(Fig. 2). Kruskal-Wallis analysis on all 43 EMT genes
identified 25 to be statistically significant. None showed
significance across all 6 group combinations (C1C2,
C1N1, C2N1, C1N2, C2N2, N1N2). However of the
statistically significant EMT genes, the Dunn post hoc
test for both smoking subgroups C1 and C2 showed
significant difference in the expression of KRT8
(p < 0.0108) and TCF3 (p < 0.0134), while LAMA2
(p < 0.0281), LAMA3(p < 0.010), LAMA5 (p < 0.05) and
TJP1(p < 0.0423) differed for both never smoker sub-
groups (N1, N2) (Supplementary Table 13).

Table 2 Reactome pathways from functional enrichment STRING for 1150 DEGs, cell cycle and E2f related genes (CS in red, NS in blue)

Reactome pathways FDR value Genes from our DEGs

Activation of E2F1 target genes at G1/S (9 of 28 genes) 0.0003 CDK1, RRM2, TK1, TYMS, CDC6, CDC45, ORC1, CDT1, E2F1

E2F-enabled inhibition of pre-replication
complex formation (5 of 9 genes)

0.0029 CCNB1, CDK1, ORC1, ORC6, MCM8

Transcriptional regulation by E2F6 (6 of 32 genes) 0.0412 RRM2, E2F1, CDC7, CHEK1, BRCA1, EZH2

Table 3 113 cell cycle-related genes with log fold change values
LogFC < 1.5

GENE AVG CS AVG NS CS/
NS

LOG2FC

ATAD2 1473.042 733.996 2.007 1.005

AURKB 412.571 138.189 2.986 1.578

BUB1 739.387 287.960 2.568 1.360

CCNB1 1245.186 577.687 2.155 1.108

CDC45 325.860 120.739 2.699 1.432

CDC6 674.595 324.381 2.080 1.056

CDC7 307.452 170.302 1.805 0.852

CDCA2 170.324 65.480 2.601 1.379

CDK1 1082.311 492.400 2.198 1.136

CDT1 534.413 210.613 2.537 1.343

DLGAP5 496.263 197.427 2.514 1.330

E2F1 692.107 327.445 2.114 1.080

E2F8 237.507 112.652 2.108 1.076

EZH2 533.852 287.415 1.857 0.893

FAM83D 491.591 217.409 2.261 1.177

MAD2L1 553.410 263.098 2.103 1.073

MCM8 386.794 211.137 1.832 0.873

TK1 1630.038 851.468 1.914 0.937

TYMS 882.919 518.395 1.703 0.768

RRM2 1789.905 720.811 2.483 1.312

CHEK1 358.058 153.272 2.336 1.224

BRCA1 463.460 258.389 1.794 0.843

MELK 464.370 184.240 2.520 1.334
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Gene expression analysis with special reference to
EMT markers according to smoking status and sex

Following analysis of 144 EMT markers, hierarchical cluster-
ing identified 57 genes with differing expression in relation to
smoking status and gender in our patient groups: female never
smokers (FN), male never smokers (MN), female current
smokers (FC) and male current smokers (MC) (Fig. 3). We
found 4 genes to be statistically significant between all four
groups using Kruskal-Wallis and Dunn post hoc test (FN, FC,
MN, MC): OLFM1 (p < 0.0001), HEY2 (p < 0.0378), SFRP1
(p < 0.0109) and STRAP (p < 0.0001). HEY2, OLFM1
and STRAP showed statistically significant difference
between FN and FC groups, OLFM1 and STRAP be-
tween groups FN and MC and, finally, SFRP1 for MN
and MC (Supplementary Table 7).

Gender-related differences in relation to smoking
status

We also performed GSEA enrichment analysis for male and
female LUAD patients. In males of the significantly enriched
datasets included “calcium mediated signalling”, “MYD88
dependent TLR receptor signalling pathway”, “Negative reg-
ulation of IL-6 production”, “Regulation of PI3K”, “Inositol

phosphate biosynthetic process”, “Response to wounding”,
“Respiratory burst”, “Sialyation”, “TLR4 signalling pathway”
and “Positive regulation of stem cell differentiation”, whereas
within female patients of the upregulated gene sets seemed to
be focused around cell division, cell cycle regulation, nuclear
division, chromatin remodelling and segregation and extracel-
lular matrix organisation (Supplementary File 3). The log fold
change between both sexes was also calculated, withPLA2GA
and PRG4 presenting with a 1.5 < log2FC < − 1.5 in both NS
and CS groups (Supplementary Table 8). Additionally DNA
repair pathways BER, MMR and HR and DNA replication
had a higher gene expression in males compared to females
(Supplementary Table 9).

Mutation analysis in different smoking subgroups

The total mutation count was found as expected to be higher in
CSwith a total of 10,471 in the 92 patients, when compared to
a total of 1662 mutations in the 55 NS patients (data not
included). We also found 7 significant gene mutation in all 4
subgroups EGFR p value = 0.002245, LRP1B p value =
0.006958, ZFHX4 p value = 0.006958, MUC16 p value =
0.007124, RYR2 p value = 0.02769, NAV3 p value = 0.03284
and TP53 p value = 0.04229 (Supplementary Table 10).
BRAF mutation was also only found in CS with none at all

Fig. 1 Functional analysis of 113 genes. The clustering heatmap plot of
functional sets of gene ontology (GO) terms was obtained using
ViSEAGO showing the major biological processes, cluster number and

number of genes in each cluster. Based on BMA semantic similarity
distance and Ward’s clustering criterion
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in our NS cohort, in parallel with a few other studies (Paik
et al. 2011). There are several other studies (Chapman et al.
2016; Midha et al. 2015; Dias et al. 2017; Takamochi et al.
2013) supporting our result with the higher incidence of
EGFR mutation in NS groups compared to current/heavy
smokers.

Discussion

The goal of this study was to examine the consequences of
tobacco smoking on lung adenocarcinoma (LUAD) tran-
scriptome differentiation. Here we highlight that smoking pro-
motes gene expression changes critical to tumour differentia-
tion rather than initiation. Lung cancer is the global cause of
death and 80–90% of these cases attributable to tobacco ex-
posure. With over 60 carcinogens in cigarette smoke, the ef-
fects of tobacco on lung cancer genome are well established,
making it a major influence on mutational burden driven by
the exogenous carcinogens and endogenous DNA damage
(Yoshida et al. 2020). Smoking lung cancer patients have

the highest somatic alterations, approximately 10 times as
many as those from non-smokers (Vogelstein et al. 2013),
with G to T transversion being a molecular signature of tobac-
co smoke (TS) mutagens in lung cancer due to PAH exposure
(Pfeifer et al. 2002). Additionally, TS increases driver muta-
tions, cell-to-cell heterogeneity and other indirect effects such
as inflammation, immune suppression and infection (Yoshida
et al. 2020).

This is the first study, to our best of knowledge, to show
systemic differences in gene expression of major processes
involved in carcinogenesis including: cell cycle; DNA repair
pathways (MMR, HR, BER, NER); DNA replication; and
ErbB, GnRH, VEGF, TGF-β and T cell receptor signalling
pathway between LUAD tumour samples in relation to
smoking status. We also found previously reported asthma
associated genes amongst our DEGs with elevated expression
in non-smokers (NS). Asthma is suggested to increase lung
cancer risk perhaps through damage caused by trauma or in-
flammation. Even non-smoking asthmatic patients seem to
have an increased risk for lung cancer (Pirie et al. 2016; Qu
et al. 2017). Damage caused by smoking amongst other fac-
tors affects DNA repair pathways and thus is linked to the
genetic predisposition to cancer in several different tissues.
For instance, inherited mutations in DNA mismatch repair
(MMR) genes lead to autosomal dominant inheritance of he-
reditary nonpolyposis colorectal cancer (HNPCC) or Lynch
syndrome (Arora et al. 2017) and homologous recombination
(HR) in Fanconi anaemia, Nijmegen syndrome and Bloom
syndrome. These syndromes all result from chromosomal in-
stability with the genes identified involved in aspects of DNA
damage repair (Taylor 2001).Moreover, HR contributes to the
repair of DSB in mammalian cells and is necessary for cell
viability when exposed to ionising radiation which occurs
during late radioresistant S phase of the cell cycle and the
rather not radioresistant G2 phase of the cell cycle (Zhong
et al. 2016). We share the opinion of other researches that
partial or temporary inhibition of recombination processes
merged with the radiotherapy may be an approach to cancer
treatment in the nearby future.

In lung cancer malignancy, disruption of the normal cell
cycle regulation is amongst the critical altered pathways due to
TS exposure. TS components induce nicotine acetyl-choline
receptor (nAChR) signalling, activating cell surface receptors
such as β-adrenergic and EGF receptors stimulating tumour
promoting cascade. This interaction facilitates tobacco-
induced cancer progression, an important genomic alteration
in lung cancer. It has also been evident that TS represses
negative regulators of cell cycle progression including
cyclin-dependent kinase (CDK) inhibitors. Two classes of
CDK inhibitors are capable of arresting cells in G1 phase
halting cell cycle progression by preventing their tumour sup-
pressor retinoblastoma (RB) phosphorylation. Functional in-
activation of RB protein induced by nAChR leads to

Table 4 1150 DEGs with log fold change values − 2 < LogFC < 2

Name Average CS Average NS CS/NS LogFC

PRG4 76.328 4765.678 0.016 − 5.964
OGN 52.414 523.019 0.100 − 3.319
SCGB1A1 841.129 5499.275 0.153 − 2.709
C19orf59 89.226 501.220 0.178 − 2.490
ADH1B 461.322 2309.951 0.200 − 2.324
ADAMTS8 38.365 187.606 0.204 − 2.290
FCER2 8.227 40.048 0.205 − 2.283
RETN 18.094 84.525 0.214 − 2.224
AGER 746.866 3459.086 0.216 − 2.211
C10orf105 6.680 30.612 0.218 − 2.196
HSD17B6 240.568 1098.694 0.219 − 2.191
C6 35.335 146.531 0.241 − 2.052
ABCA8 77.462 315.615 0.245 − 2.027
INMT 284.509 1141.019 0.249 − 2.004
C1QTNF7 35.305 141.375 0.250 − 2.002
HES6 1302.454 314.761 4.138 2.049

GPC2 88.922 21.271 4.181 2.064

GCLC 3866.484 922.099 4.193 2.068

LRRC16B 59.894 14.186 4.222 2.078

MLLT11 652.937 147.855 4.416 2.143

GLDC 230.230 50.770 4.535 2.181

HPDL 80.714 15.912 5.073 2.343

MTL5 171.734 33.037 5.198 2.378

PRH2 34.155 5.375 6.354 2.668

ABCC2 645.006 43.092 14.968 3.904
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deregulated E2F activity, corresponding with aberrant cell
proliferation driving cell cycle progression and inhibiting
components that arrest cell cycle (Schaal and Chellappan
2014). Inactivation of RB1 is involved in the development

of NSCLC (Imai et al. 2004). Genome replication and pro-
gression through each cell cycle division is dictated by the
cyclin-dependent kinase (CDK)-RB-E2F axis, the cell cycle
progression transcriptional machinery. Disruptions in any of

Fig. 3 The heatmap for EMT
marker genes showing
contrasting profiles of expression
in relation to smoking status and
gender in our patient groups:
female never smokers (FN), male
never smokers (MN), female
current smokers (FC) and male
current smokers (MC)

Fig. 2 The heatmap for EMT
markers in current and never
smoker LUAD patients, showing
contrasting profiles of expression
between the smoking groups for
some genes
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(CDK)-RB-E2F axis components lead to a heightened mito-
genic E2F activity and uncontrolled proliferation (Kent and
Leone 2019).

Our GSEA analysis showed significantly elevated expres-
sion of E2F genes family and its targets in LUAD tumour
samples associated with TS exposure. Thus, we analysed
CDK-RB-E2F genes expression, including but not limited to
AURKB, BUB1, CDCA2 and DLGAP5. Our findings con-
firmed previous reports showing that AURKB gene is fre-
quently overexpressed in tumour samples of lung cancer pa-
tients, a key regulator of mitosis associated with poor progno-
sis (Yu et al. 2018), possibly reflecting the requirement for
increased mitotic spindle genes expression for increased rep-
lication maintaining a tumorigenic phenotype (Al-Khafaji
et al. 2017). Our analysis showed that AURKB expression is
three times higher in tumour samples from smokers than never
smokers. Interestingly, AURKB expression in newborns was
found to be related to the mother’s smoking status, with ob-
served decreased expression in offsprings of mothers who quit
the use of tobacco during pregnancy (Nguyen et al. 2019). We
also found the expression of BUB1 to be 2.5 times higher in
CS tumour samples. BUB1 codes the mitotic checkpoint pro-
tein serine/threonine kinase which plays an important role in
chromosome segregation (Han et al. 2015). Bidkhori et al.
established that the overexpression of BUB1—involved in
cell division—amongst other genes leads to tumour progres-
sion in LUAD despite of patients’ smoking status (Bidkhori
et al. 2013). Both proteins AURKB and BUB1 are linked in
literature with the poor prognosis of different cancers
(Davidson et al. 2014; Ricke and van Deursen 2011).
Another cell cycle associated gene which we found to be 2.5
times overexpressed in CS tumour samples is CDCA2. Shi
et al. observed upregulated levels of CDCA2 gene in vivo
and in vitro in lung carcinoma cells with adjacent normal
tissue. Furthermore, they noticed that knockdown of
CDCA2 in LUAD tissue inhibits tumour cells by G1 phase
arrest, therefore CDCA2 seems to play a significant role in
adenocarcinoma progression (Shi et al. 2017, 2). All four
(AURKB, BUB1, DLGAP5 and CDCA2) described genes
emerging from our analysis are regulated by the p53-
DREAM pathway. DREAM is a transcriptional repressor that
binds to E2F and participates in the control of all checkpoints
from DNA synthesis to cytokinesis including G1/S, G2/M and
spindle assembly checkpoints. According to numerous stud-
ies, downregulation of DREAM target genes promotes gener-
al loss of checkpoint control, chromosomal instability and
aneuploidy of cancer cells (Engeland 2018).

Landi et al. showed that mitotic genes involved in cancer
development are deregulated by TS; this applies specifically
to genes that regulate the mitotic spindle formation (Landi
et al. 2008). Our results run in parallel with theirs regarding
PRC1, MAD2L1, ASPM, RACGAP1, CCNA2, MKI67,
KIF2C, TPX2, BIRC5, TTK, NEK2 and CENPF, where they

were all found to be overexpressed in CS-related tumours
(Supplementary Table 6). These data shed a light on
characterising the molecular profile differentiating tumours
in the context of TS in LUAD. It has already been shown that
TS, nicotine in particular, upregulates BIRC5 expression in
NSCLC possibly inducing an early developmental stage in
adenocarcinoma CS compared to NS (Hirano et al. 2015).
We identified higher expression in CS of 1.5 log fold change
for BIRC5. TTK, a key component of the spindle assembly
checkpoint, is linked to mitosis through EGFR gene which is
frequently altered in lung cancer (Landi et al. 2008). ESPL1
was previously found to be overexpressed in lung adenocar-
cinoma smoking patients (He et al. 2018), and Zhang et al.
suggested that it may be combined with other genes including
BUB1 and E2F1 to form a regulatory network causing abnor-
malities of cell proliferation, transport and metabolism hence
facilitating tumour progression (Zhang et al. 2016). The loss
of mitotic checkpoint, chromosomal instability and
aneuploidy are not only mechanisms supporting cancer
development but, additionally, proliferation and metastasis.
All these processes undergo the control of resistin coding by
RETN gene. Our results show RETN to be upregulated in NS.
Its expression also seemed to increase as the size of the tumour
and clinical stage progressed and correlated with poor
clinicopathological status. Zhao et al. (2018) demonstrated
no correlation of resistin expression with sex, point of diagno-
sis, smoking or blood type in LUAD unlike in other forms of
cancer (Zhao et al. 2018).

Another gene of interest to us is CDCA5which has also been
linked to cell cycle progression and its overexpression in lung
adenocarcinoma leading to tumour progression. The CDCA5
gene encoding the sororin protein joins the cohesin complex
regulating sister chromatid segregation. In mitosis, sororin un-
dergoes phosphorylation, and protein kinases such as Cdk1/
cyclinB and ERK2 regulate its dynamic localisation and function
(Bidkhori et al. 2013). Thus, it interacts with the key regulatory
factors ERK and cyclin E1 of G1/S mitotic checkpoint and in the
S and G2/M phase ensuring accurate separation of sister chroma-
tids by interacting with coherents and CDK1 (Wu et al. 2019).
We found the expression of this gene to be 1.5 times higher in CS
tumour samples compared to NS tumour samples. The E2
ubiquitin-conjugating enzyme family member UBE2C is
overexpressed in 27 human cancers, possibly acting as a proto-
oncogene. UBE2C is involved in mitotic cyclin B degradation,
promoting cell cycle transition from M to G1 phase. Its overex-
pression leads to changes in ubiquitination; thus, it could possibly
be involved in uncontrolled cell proliferation; additionally it has
been identified to be associated with smoking in LUAD
(Dastsooz et al. 2019), confirming our results, and drinking
habits in PAAD. Oliviero et al. also identified that genes with
strong and very strong correlations with UBE2C are involved in
the cell cycle process. Of the genes they identified, we here also
show that over expression of some of them are associated with
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smoking status in our study including KIF18B, KIFC1, KIF4A,
AURKB, TPX2, PLK1, CDK1, CENPA, CDC20, MYBL2,
BUB1B, CCNB1, NCAPG, SKA3, E2F1 and RAD51. Of the
related genes include several different roles involved in mitosis
(KIF18B, AURKB, TPX2, NCAPG); regulation of cell division
and DNA damage response (PLK1); cell division and driving
cells into S phase (CDK1); cell cycle progression, survival and
differentiation (MYBL2); mitotic checkpoint complex (BUB1B);
and controlling the correct exit from meiosis, migration of mei-
otic spindle (SKA3). They also showed co-expression of tran-
scription factor RAD51 involved in HR and DNA repair, and
E2F1 activating genes involved in the G1/S phase, which was
already stated, were identified to be differentially expressed in
our LUAD cohort and overexpressed in our CS group. When
expressed and activated in late G1 and S phase, MYBL2 binds
directly to the promoters and transactivates genes expressed in
G2/M phase including CCNB1, CDK1 and CCNA2 (Musa et al.
2017), all genes identified in our study (Supplementary Table 6).

SNHG6 is a novel oncogene promoting LUAD cell prolif-
eration, migration, invasion, EMT and cell cycle progression
in vitro. Findings by Liang et al. suggest that SNHG6-miR-
26a-5p-E2F7 axis is critical for LUAD cell metastasis and
EMT and that E2F7 could rescue the inhibitory effects of
sh-SNHG6 or miR-26a-5p (Liang et al. 2018). Our results
for E2F7 show a 1.5 log fold change, with a higher expression
in CS. E2F7 has been shown to repress the expression of
genes involved in maintaining genomic stability throughout
the cell cycle as well as upon induction of DNA lesions inter-
fering with replication fork progression. It has also been
shown to restrict HR through transcriptional repression of
RAD51, also a gene identified to be overexpressed in our CS
cohort. Briefly, E2F7 DNA damage response function is
through transcriptional-dependent regulation of DNA repair
genes (Mitxelena et al. 2018). SCGB1A1 seems to be an im-
portant defence molecule of the lung, with anti-inflammatory
function protecting the lungs from excessive inflammation. It
is hypothesised that chronic cigarette smoke exposure shuts
down SCGB1A1 through an epigenetic mechanism (Zhu et al.
2015). Our results with a lower expression of 2.7-folds in CS
compared to NS, run in parallel with it being one of the top
hypermethylated genes in CS compared to NS in their epithe-
lial cells (Zhu et al. 2015). We found PRG4 to be
overexpressed in NS almost 6 folds with its role widely stud-
ied in modulating inflammatory responses of OA; in cancer,
however, its anti-invasive effect has only been investigated in
breast. In breast cancer, PRG4 inhibitor demonstrated a higher
fold change difference between the early stage of breast cancer
compared to controls, suppressing cell migration and inva-
siveness (Lee et al. 2016).

Multidrug resistance (MDR) in cancer cells could notably
attenuate chemotherapy response and increase the likelihood
of mortality. The overexpression of ATP-binding cassette
(ABC) transporters is a major mechanism presenting MDR,

resulting in increased efflux of drugs from cancer cells, there-
by decreasing intracellular drug concentration (Sun et al.
2012). Additionally, it is considered that ABC transporters
might also be involved in early steps of carcinogenesis
(Andersen et al. 2015). Interestingly, adenoma cells present
a higher level of ABCC2 gene expression than carcinoma tis-
sues. Furthermore, upregulation of ATP-binding cassette
(ABC) transporter genes is overexpressed in bronchial tissue
of chronic smokers in comparison to patients following
smoking cessation (van der Deen et al. 2005). The present
study identified ABCC2 gene expression to be significantly
higher, four times, in CS tumour samples than NS. It is worthy
of mentioning that the expression of all genes included in
ABC transporters cellular pathway were enriched in our study
amongst CS tumour samples (Supplementary Table 5).
Cancer treatment success is not only associated with MDR
mechanisms, but specific genetic mutations may also result
in increased drug sensitivity or therapeutic resistance. For in-
stance, EGFR tyrosine kinase inhibitors (TKIs) being the first
line treatment of choice for adenocarcinoma patients, T790M
mutation is the major mechanism of acquired resistance
(Hochmair et al. 2019). Therefore, identifying new potential
cancer mutations could contribute to the development of new
therapeutic strategies. Here we analysed the top mutated genes
in adenocarcinoma tissue and found higher mutation count in
CS population overall, with six being statistically significant
(Supplementary Table 10). TP53 and EGFR mutations are
common and have been identified to alter clinical outcomes,
substantially if they were concurrent, activating alternative
proliferative pathways that bypass EGFR as a target (Vyse
and Huang 2019). The mutation of some of these genes ac-
cording to literature, EGFR, TP53, ZFHX4 and MUC16, is
characterised and correlated with potential cancer therapeutics
(Qiu et al. 2019; Aithal et al. 2018, 16; Goodwin 2018),
whereas others, RYR2, LRP1B and NAV3, are yet to be inves-
tigated (Wang et al. 2019; Carlsson et al. 2012). We identified
a key component of DNA homologous repair-RAD51 to be
overexpressed in CS. Radiation can induce RAD51 to express
and translocate between cytoplasm and nucleus (Zhong et al.
2016). A recent study in NSCLC cell lines established evi-
dence that EGFR status demonstrates distinct radiosensitivity
and DSB repair function associated with the expression and
subcellular distribution of RAD51. Consequently, defective
RAD51-mediated DNA repair could be a consequence of ab-
errant signal transduction from hypersensitive NSCLCs with
EGFR mutation (Zhong et al. 2016), hence there, shedding
light on possible effective role as a therapeutic in radiation
resistance EGFR cells.

EMT plays an important role in tumour progression and
metastatic invasion. Additionally, it has been reported to cause
acquired resistance to EGFR-tyrosine kinase inhibitors, and
several signalling pathways including Wnt, Notch and integrin
are known to activate EMT through transcriptional repression

431J Appl Genetics (2020) 61:421–437



of E-cadherins (Loh et al. 2019). A recent study by Yu et al.
(2019) investigated in vitro the role of asbestos-related micro-
environment on lung cancer progression, revealing an increase
in proliferation and migration of lung cancer cells exposed to
media from asbestos-exposed lung fibroblasts, thus highlight-
ing the importance of the interaction of lung fibroblasts with
asbestos and lung cancer metastasis (Yu et al. 2019), hence
there supporting our hypothesis that the local environment is
of importance for the development of specific cancer natures
and imprints on the tumour’s local EMT-related features,
prompting aggressiveness. Additionally Zhou et al. demonstrat-
ed that during endochondral ossification, oestrogen blocked the
EMT process from the resting zone (RZ) to the proliferative
zone (PZ), whereas androgen promoted MET from PZ to hy-
pertrophic (HZ) (Zhou et al. 2015). Our results regarding EMT
analysis indicate the need for further investigation of the role of
androgen and oestrogen on the process. Cigarette smoking
plays a vital role in promoting EMT and is associated with poor
survival, cell migration and invasion in NSCLC through the
deregulation of E-cadherin. Our results also show VEGF and
TFG-β signalling pathway to be significantly enriched. TGF-β
signalling pathway plays a quite important role in EMT (Xu
et al. 2009). Fantozzi et al. found that VEGF-A is required for
the increased tumorigenicity of cells undergoing EMT, yet not
sufficient on its own. An additional angiogenic factor regulated
in their expression during EMT is critical for an effective tu-
mour initiation. Their results seem to give perception as to the
mechanisms underlying increased tumourigenicity of cancer
stem cells (CSC) and cells undergoing EMT in line with similar
results in skin and brain tumours (Fantozzi et al. 2014). We
identified collagen type X alpha 1 (COL10A1), a member of
the collagen family, to be enriched in skeletal development. In
gastric cancer (GC), COL10A1 was found to possibly act as a
potent co-stimulator of TGF-β1-induced EMT, where its ex-
pression was vastly elevated during GC development and pro-
gression. It also promoted cell migration and invasion via up-
regulation of the TGF- β1-SOX9 axis, while its knockdown
slowed TGFβ1-induced EMT (Li et al. 2018). Thus similar to
GC, it is worthy of elucidating the role of COL10A1 in LUAD
as it could possibly serve as a biomarker and therapeutic target.

TS is an important risk for lung and head and neck squa-
mous carcinoma (HNSCC), where benzo[a]pyrene (B[a]P) in
cigarette smoke shown evident to induce EMT-related gene
expression, impacting multiple transcriptional changes in lung
cancer cells. Of our statistically significant EMT genes, TCF3
was significant for both smoking subgroups. TCF3 is involved
in the regulation of Wnt signalling pathway in embryogenesis
and development (Li et al. 2017). In females, it was indeed
identified to show response to smoking stimulus along with
ICOSLG, the vascular adhesionmolecule 1 VCAM1 in B cells,
emphasising the significance of B cells in the aetiology of
smoking-induced diseases involving interactions between im-
mune cells and vascular endothelium (Pan et al. 2010).

However, in their study, they found its expression to be down-
regulated in female smokers contrary to our results where we
did not separated both sexes. This is very much likely attrib-
uted to sex as well as the effect of smoking, accentuating the
influence of sex on future exploratory analysis.

Yoshino et al. showed that TS promoted EMT by upregu-
lating TWIST (Yoshino et al. 2007). Further studies by Zhu
et al. investigating TWIST interactions with gender and
smoking in patient survival revealed that both smoking and
gender could modify the effects on the risk of death in
HNSCC patients. Their analysis revealed that TWIST1 links
to poor survival obvious in either males or smokers than in
either female or non-smokers (Zhu et al. 2017). Additionally,
Stoyianni et al. used cancers of unknown primary (CUP) as a
model for metastatic dissemination to study the prognostic
significance of EMT. The presence of EMT phenotype signif-
icantly correlated with male gender, anaplasia and visceral
metastases with strong adverse prognostic significance on pa-
tient survival. They also showed as others already did a pos-
sible role for NOTCH2 and 3 activation in regard to the in-
duction of EMT phenotype (Stoyianni et al. 2012). Since there
is almost no information regarding smoking and sex on the
expression of EMT-related genes (except for TWIST1/2), we
wanted to observe gender and smoking-induced differences
correlating to the expression of EMT-related genes that could
possibly allow unravelling of potential biomarkers for
personalised therapy. Joint analysis of 144 EMTmarker genes
accounting for sex and smoking status allowed us to identify 4
statistically significant genes in all four groups (FN, MN, FC,
MC) of which one was related to the NOTCH pathway (Fig.
3). Statistically significant differences between FN and FC
groups included HEY2 (p = 0.048), OLFM1 (p < 0.05) and
STRAP (p = 0.0031); for FN vs MC included OLFM1
(p < 0.05) and STRAP (p = 0.0001); and, finally, for MN and
MC groups was SFRP1 (p = 0.0391). Overexpression of
OLFM1 was found to result in smaller metastatic and pulmo-
nary nodules and reported as a potential target for the diagno-
sis and treatment of LUAD (W. Shi et al. 2016). SFRP1which
functions as modulators of Wnt signalling is a favourable
predictive and prognostic biomarker for prostate cancer
(Zheng et al. 2015). While both STRAP and HEY2 are in-
volved with NOTCH signalling pathway, STRAP promoted
the stemness of HCC through epigenetic regulation (Jin
et al. 2017). In NSCLC, lncRNA PRNCR1 upregulates
HEY2 promoting tumour progression by competitively bind-
ing miR-448 (Cheng et al. 2018).

The National Comprehensive Cancer Network (NCCN)
Clinical Practice Guidelines in Oncology proposed that a pa-
tient’s sex to be a prognostic factor in LUSC, LUAD, HNSC,
KIRC and KIRP. This allows to provide an overview of molec-
ular differences between cancer patients of both sexes with dis-
tinct patterns of the effect of sex on the patient group in each
cancer type. Sex-biased genes include EGFR—the key

432 J Appl Genetics (2020) 61:421–437



therapeutic target in LUAD—with female-biasedmRNAexpres-
sion possibly contributing to a higher response rate in female
patients to their counterparts (Yuan et al. 2016). Our results for
GSEA analysis (Supplementary file 3) for female and male
LUAD patients regardless of smoking status seem to contrast
those of Yang et al. in two glioblastoma (GBM) studies, where
they found cell cycle signalling pathways to be critical determi-
nants of survival in males and integrin signalling for females
(Yang et al. 2019, 2017) in both molecular function and biolog-
ical processes gene sets. It is interesting to find out whether these
differences seem to be attributed to the effect of tobacco smoking
or due to an altered mechanism in lung adenocarcinoma
metabolism.

Also in relation to sex differences, we found a few of our
DEGs to be overexpressed in female NS including PLA2G2A
and PRG4 while REEP1 and PLA2G2A in male CS
(Supplementary Table 8). Underexpressed genes also include
GINS4 in female NS and WIF1 and PRG4 in female CS.
PLA2G2A a member of the subfamily of group II sPLA2 was
overexpressed in our NS samples as part of the GnRH signalling
pathwaymembers, in bothCS andNS seems to have a higher log
fold change for females tomales. Proteoglycan 4 (PRG4) appears
to have an inversely proportional relationship between females
and males in our CS and NS cohort. PRG4 also seems to have a
unique ability to block NFkB activation downstream from two
different receptor families (CD44 and TLRs), where it might
possibly be an anti-inflammatory agent (Alquraini et al. 2015).
This could possibly explain its higher expression in male CS
tumour samples as according to their habits they seem to use
all tobacco products more often compared to females (Higgins
et al. 2015). Also of interest to us were GINS4 and WIF1 being
overexpressed in males CS compared to females. GINS4 has an
essential role in DNA replication initiation and progression of
DNA replication forks and the DSB repair via break induced
replication (Kamada et al. 2007). While WIF1 is an inhibitor of
the Wnt/β-catenin pathways, its overexpression in male CS
could possibly play a role in the regulation of cell proliferation,
metastasis and differentiation. That is because in osteosarcoma,
WIF1 knockdown rescued proliferation, migration and invasion
of osteosarcoma cells (Cai et al. 2019).REEP1/2 has been shown
to be selectively upregulated in response to DNA damage, being
downstream targets of p53. Zheng el al. showed that
p53 indirectly regulates endoplasmic (ER)-mitochondria
contacts and Ca2+ via upregulating REEP1/2, EI24 and
VDAC2. REEP1/2 are accessory elements helping ER to
expand and facilitate EI24-mediated apoptosis and over-
expression of REEP1 but not REEP2, promoting DNA-
damage induced apoptosis (Zheng et al. 2018). This
possibly explains the increased expression levels of
REEP1 in our female cohort corresponding with the
hypothesised better overall survival compared to males.

Differences in the immune system and genetic architecture,
whether being sex-specific or due to smoking status, will

allow unravelling of epigenetic marks and shedding light on
the mechanisms potentially providing scientific evidence for
interventions, cancer surveil lance and treatment.
Pharmacokinetics and pharmacodynamics differ in individ-
uals in terms of toxicity and efficacy; therefore, sex influences
pathophysiology, clinical signs and treatment and response in
cancer, making it vital to further investigate outcome implica-
tions based on potential sex differences in cancer, enhancing
and pe r sona l i s i ng the r apeu t i c s . I n t he fu tu r e ,
pharmacogenomic differences between sexes could have a
noteworthy role in chemotherapy. An understanding of the
significance of sex-specific genetics and epigenetic architec-
ture of human disease could help reveal the existence of sex-
specific protective mechanisms that could be utilised in novel
treatments (Gabory et al. 2013).

Nevertheless, it should be mentioned that one of the ca-
veats of our study was the lack of control and normal samples
from LUAD patients, to help advance our understanding in
determining biomarkers that are differentially expressed based
on the aspects of tumour and sex of the patient due to their
unavailability. Another limitation includes the inability to di-
vide the patients into subgroups according to their age/stage
due to the small number of cases meaning that prospective
study would have had an insufficient number for the analysis
to allow a reliable investigation. We believe that it is unfortu-
nate that patients of certain subgroups including the elderly
and those with poor performance are not considered in ad-
vanced personalised therapy as they do require specific treat-
ment considerations in terms of targeted therapies.

Conclusion

Here we constructed a gene co-expression network and identi-
fied 9modules with distinct expression profiles of LUAD in CS
and NS patients. One thousand one hundred fifty genes showed
a visible differentiation between the subgroups. These genes
were primarily involved in cell cycle, replication and
proliferation. Twenty-five genes were also identified with a
twofold or higher between the smoking subgroups proving
some clues on the effect of smoking prevalence on LUAD.
We found a contradictory pattern for EMT members between
NS and CS that could be a result from direct nicotine exposure
or possibly other gene interactions giving rise to a different
outcome due to mutation, treatment or gender differences.
Our study highlights significant differences in male and female
patients, identifying new candidate genes such as PLA2G2A
and PRG4 that could enable a better understanding of sex-
specific differences in the course of lung carcinogenesis. A
thorough analysis of the biochemical processes associated with
pathogenesis at the molecular level of LUAD assessing the
impact of tobacco smoke or the lack of will enable a better
search for “driver” genes contributing to its initiation or
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progression. An early on identification of prognostic molecular
markers relating to tumour aggressiveness is useful since fol-
lowing resection, tumour metastasis is a fundamental barrier to
long-term survival. Prospective studies need to include larger
numbers of patients to accrue sufficient numbers of cases reli-
ably investigating the risks associated with other exposures.
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