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Machine learning enables design automation of
microfluidic flow-focusing droplet generation
Ali Lashkaripour 1,2, Christopher Rodriguez3,8, Noushin Mehdipour 2,4,8, Rizki Mardian2,7,8,

David McIntyre 1,2,8, Luis Ortiz2,5, Joshua Campbell 6 & Douglas Densmore 2,7✉

Droplet-based microfluidic devices hold immense potential in becoming inexpensive alter-

natives to existing screening platforms across life science applications, such as enzyme

discovery and early cancer detection. However, the lack of a predictive understanding of

droplet generation makes engineering a droplet-based platform an iterative and resource-

intensive process. We present a web-based tool, DAFD, that predicts the performance and

enables design automation of flow-focusing droplet generators. We capitalize on machine

learning algorithms to predict the droplet diameter and rate with a mean absolute error of

less than 10 μm and 20 Hz. This tool delivers a user-specified performance within 4.2% and

11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the

community to support additional fluid combinations, without requiring extensive machine

learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic

expertise and design iterations and facilitate adoption of microfluidics in life sciences.
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M iniaturization of liquid handling is in ever increasing
demand as the need for higher sensitivity and
throughput rises in numerous life science applications,

such as drug discovery, biochemical assays, clinical diagnostics,
and genomics1–4. Robotic liquid handling5, digital microfluidics6,
and droplet microfluidics7 are commonly used to minimize
sample volumes. Large machine footprints and high overhead
costs limit the accessibility of high-performance liquid handling
robots and cost-effective robots often operate at volumes larger
than 1 μl8. Digital microfluidic devices, although ideal for running
complex protocols9, fall short of delivering a high throughput10.
Conversely, droplet microfluidics enables unprecedented combi-
nation of throughput, volume reduction, reaction control, and
sensitivity11–13, yet, adoption of droplet-based platforms in the life
sciences has been an exception rather than the norm14,15. This can
be attributed to the phenomenological complexity of droplet for-
mation16,17, lack of predictive understanding18–20, high fabrica-
tion cost inherent to photolithography21, and unreliability of
numerical simulations to capture the intricate dynamics of mul-
tiphase flows20. Consequently, expertise and an iterative design
process is required to achieve the desired performance22,23. Several
geometries including T-junction7, step-emulsification24, co-flow25,
and flow-focusing26 can be used to generate droplets. Flow-
focusing geometries offer a wider range of deliverable performance
(i.e., droplet diameter and generation rate) in comparison to the
other geometries27–29. Nonetheless, due to the large number of
effective parameters and the complex fluid dynamics involved,
analytical solutions or generalizable scaling laws are yet to be
determined for flow-focusing droplet generation18,20.

With the recent introduction of high-resolution low-cost rapid
prototyping techniques, the barrier to entry to microfluidics is
significantly lowered30,31. Large design spaces previously studied
through numerical simulations32,33 can now be explored experi-
mentally to characterize the performance of droplet generators at
a realistic cost and time-frame23. Therefore, sufficiently large
data-sets can be generated to train machine learning algorithms
and achieve accurate performance prediction, a need that has not
been met since the introduction of droplet microfluidics almost
two decades ago18.

Machine learning enables detection of complex patterns using
computer science and statistics34. With the increasing availability
of large-scale data-sets, machine learning has helped advance
numerous fields including cancer detection, cell behavior pre-
diction, genomic analysis, and drug discovery35–38. However,
implementing machine learning in the field of droplet micro-
fluidics has been limited to real-time or post-experiment data
analysis39 due to the lack of standardized and sufficiently large
data-sets40. The ability to predict the performance of droplet
generators based on the design parameters eliminates costly
design iterations and enables application-specific design optimi-
zation18. More importantly, accurate performance prediction
allows design automation tools for droplet generators to be
developed, significantly reducing the resources and expertise
required to develop functional droplet-based platforms.

In this study, we leverage a low-cost rapid prototyping
method30, to fabricate 43 flow-focusing droplet generators, and
evaluate their performance over a wide range of flow conditions,
generating a standardized large-scale data-set of 998 data-points.
Capitalizing on this data-set and machine learning algorithms, we
develop a web-based tool, DAFD (Design Automation of Fluid
Dynamics), that can predict the performance of droplet gen-
erators. We demonstrate DAFD can be extended to support
additional fluid combinations through DAFD Neural Optimizer
and transfer learning, providing a framework for machine
learning based performance prediction of droplet generation with
a diverse set of fluids. Furthermore, we develop and verify a

design automation tool that can design a droplet generator based
on user-specified performance. Finally, we demonstrate that
performance prediction enables further features, such as quanti-
fying the effect of fabrication and testing tolerances on the
observed performance, while providing a guideline to adjust flow
rates to account for these possible tolerances. An overview of this
study is shown in Fig. 1.

Results
Efficient large-scale data-set generation. A microfluidic flow-
focusing droplet generator can be defined with six geometric
parameters: orifice width, orifice length, water inlet width, oil
inlet width, outlet channel width, and channel depth (Fig. 1a). To
capture the effect of geometry on droplet generation, these
parameters were varied according to the range observed in the
literature while considering fabrication limits (see Supplementary
Note 2). Using a low-cost rapid prototyping and assembly tech-
nique we previously introduced23,30, 43 flow-focusing devices
were fabricated at fraction of time and cost required with stan-
dard photolithography (see Supplementary Note 1). 25 out of the
43 devices were designed to cover an orthogonal design space
(using Taguchi design of experiments method, see Supplementary
Table 2) as we previously described23. The remaining 18 devices
were granularly added to the data-set during the verification
process of the design automation tool until accurate design
automation was achieved.

In addition to geometry, fluid properties and flow rates play
major roles in dictating the behavior of microfluidic droplet
generators. As shown in Fig. 2b, the fabricated devices were tested
over a wide range of capillary number and flow rate ratio
combinations (minimum 1 and maximum 34 different flow
conditions per device), with a total of 65 unique flow conditions
(not every device was tested at the same flow conditions to
generate a diverse data-set). Nine hundred and ninety-eight
experimental data-points were generated and droplet diameter,
generation rate, and generation regime were recorded. The
observed droplet diameter varied from 27.5 to 460 μm, generation
rate range was observed to be 0.47–818 Hz, and the generation
regime occurred in the dripping regime for 561 data-points and
in the jetting regime for the remaining 437 data-points (see
Fig. 2c).

Performance prediction. Flow-focusing droplet generation
commonly occurs at dripping or jetting regimes, with significant
differences in sensitivity to the design parameters and observed
performance23. Consequently, generation regime prediction is
integral to accurate performance prediction of droplet generators.
To achieve this, neural network models were built, trained, and
optimized to first, classify the generation regime, and then, pre-
dict the droplet diameter and generation rate. The regime clas-
sification model was built using all data-points and was able to
predict droplet generation regime with an accuracy of 95.1 ±
1.5% against the test-set (20% of the data that the model was not
trained on). The standard deviation is calculated based on ten
different training–testing sessions, where the train-set and test-set
were randomly chosen.

Droplet diameter, generation rate, and flow rate of the
dispersed phase are interdependent and given two of the
parameters the third parameter can be calculated using the
conservation of mass principle as given Eq. (1):

1
6
πD3 � F ¼ Qd; ð1Þ

where D is droplet diameter, F is generation rate, and Qd is the
flow rate of the dispersed phase. Therefore, predicting either
droplet diameter or generation rate is sufficient to calculate the
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other, for a given flow rate. Nonetheless, here we developed
separate models for predicting droplet diameter and generation
rate to add redundancy in the design automation stage. This
enabled defining a new parameter called “inferred droplet
diameter” (the diameter calculated using the predicted generation
rate and the conservation of mass principle), allowing for
accuracy-checking of one predictive model using the other
predictive model in order to avoid design-spaces where one or
both models are inaccurate, as further explained in the design
automation section.

Four neural network models for predicting droplet diameter
and generation rate in the two generation regimes were built and
trained on a bounded performance range (25–250 μm and 5–500
Hz with a total of 888 data-points, see Fig. 2c) to avoid training
the models where sufficient number of data-points were not
available. The neural networks were able to accurately predict
droplet diameter and generation rate in both dripping and jetting
regimes, as given in Table 1. When comparing against the test-set,
the neural networks were able to predict the droplet diameter
with a mean absolute error (MAE) of 10 μm and 6 μm for
dripping and jetting regimes, respectively. Additionally, the
neural networks predicted the generation rate with an MAE of
less than 20 Hz and 16 Hz for dripping and jetting regimes,
respectively. The mean absolute percentage error (MAPE) for
generation rate was observed to be about three times the MAPE
for droplet diameter (see Table 1). This can be explained by the
interdependence of droplet generation rate and diameter, for a
given dispersed phase flow rate. Based on the conservation of
mass given in Eq. (1), it can be concluded that generation rate
inversely scales with diameter to the power of three, as given in
Eq. (2). If droplet diameter is predicted with an error of δ, using
the Taylor series expansion the prediction error for 1

D3 is
approximated by Eq. (3). Therefore, the prediction error for

generation rate (δf) can be approximated by Eq. (4).

F � 1
D3 ð2Þ

1

Dþ δð Þ3 �
1
D3 �

3δ
D4 þO δ2

� �
ð3Þ

δf �
1
D3 �

1

Dþ δð Þ3 �
3δ
D4 � O δ2

� � � 3δ
D4 ð4Þ

By dividing Eq. (4) by Eq. (2), it can be concluded that the
percentage error for generation rate (εf) is approximately equal to
three times the percentage error for droplet diameter (εd) as given
by Eq. (5), provided that the value of δ is small.

εf ¼
δf
F
� 1� D3

Dþ δð Þ3 �
3δ
D

� 3εd ð5Þ

The fact that the percentage errors of the separately trained
models for droplet diameter and generation rate are compatible
with the conservation of mass principle, demonstrates that the
models are representative of the droplet generation phenomenon.
It must be noted that this error ratio does not necessarily hold
true for all of the data-points, further emphasizing the
importance of having two separately trained models for diameter
and generation rate to enable accuracy-checking of the predictive
models, later used in the design automation stage.

To compare the performance of the developed predictive
models to the existing approaches in the literature, the data-
points were fed to previously proposed scaling laws for predicting
the performance of flow-focusing droplet generators (further
introduced in Supplementary Note 4)16,41. As demonstrated in
Fig. 3a, the scaling laws, although great tools for understanding
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Fig. 1 The workflow of the developed design automation tool for flow-focusing droplet generators, called DAFD. This tool is made possible by accurate
machine learning based predictive models developed in this study. a The machine learning algorithms convert the user-specified performance into the
required geometry and flow rates to achieve the desired droplet diameter and generation rate. The developed tool can also predict performance deviations
caused by possible tolerances in fabrication or testing. b Accurate predictive models (neural networks with CIDAR logo) trained on a large-scale data-set
(initial learning) are made possible by machine learning and a low-cost rapid prototyping method that enabled efficient generation of a large-scale data-set
in this study. Additional custom-built design automation tools that support further fluid combinations can be developed by the microfluidic community
using Neural Optimizer to automatically train neural networks based on a user data-set without requiring extensive machine learning knowledge, or by
using transfer learning and the pre-trained models (accurate predictive models developed in this study) without requiring a large-scale data-set. This tool is
open-source and can be accessed online at: dafdcad.org. Scale bars represent 100 μm.
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the overall effect of parameters on performance, fall short on
accurate performance prediction in comparison to machine
learning based models (Fig. 3b).

To demonstrate the efficacy of the developed tool in predicting
the performance of new design parameters on which they were
not trained (i.e., unseen design parameters), six unseen flow
conditions (see Supplementary Note 5) were fed to DAFD and the

accuracy of performance prediction was evaluated by running
these six new experiments. DAFD predicted the generation
regime with 100% accuracy, and showed an MAE (MAPE) of 5.41
μm (7.01%) and 38.1 Hz (24.2%) in predicting diameter and
generation rate, respectively (Fig. 3c).

Finally, the effect of data-set size on the accuracy of the
predictive neural networks was studied through a data reduction

Fig. 2 Rapid prototyping enables efficient generation of data-sets suitable for training machine learning algorithms. a The six parameters defining a
flow-focusing geometry were varied according to an orthogonal design of experiments. Capillary number and flow rate ratio were used to determine the
flow rates for each device. b A total of 43 devices were fabricated using a low-cost micromill and assembly technique. Each device is tested over a wide
range of flow conditions to generate a large-scale data-set. c For each experiment, droplet diameter, generation rate, and generation regime were recorded.
A total of 998 data-points were collected of the observed performance and their associated design parameters. The machine learning algorithms were
trained on a bounded performance range of 25–250 μm for droplet diameter and 5–500 Hz for generation rate. The bounded range included 888 data-
points with a comparable representation of both dripping and jetting regimes.

Table 1 Neural networks enable accurate performance prediction in flow-focusing droplet generation. The metrics are reported
for a 20% test-set (training the models on 80% of the data and leaving 20% for the test-set).

Parameter Regime R2* RMSE** MAPE*** MAE****

Droplet diameter Dripping 0.893 ± 0.029 13.1 ± 1.6 μm 11.2 ± 1.3% 9.9 ± 1.2 μm
Droplet diameter Jetting 0.966 ± 0.010 8.2 ± 1.3 μm 4.8 ± 0.5% 5.9 ± 0.8 μm
Generation rate Dripping 0.889 ± 0.026 31.7 ± 5.8 Hz 33.5 ± 4.2% 19.6 ± 2.7 Hz
Generation rate Jetting 0.956 ± 0.009 21.9 ± 2.8 Hz 15.8 ± 2.9% 15.4 ± 2.1 Hz

*R2 coefficient of determination, **Root mean square error, ***Mean absolute percentage error, ****Mean absolute error. The provided values are reported using the average plus-minus (±) the standard
deviation for ten different training and testing sessions. For each session the test-set and train-set were randomly chosen.
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study. By training the models on increasingly larger sub-samples
(starting from 50 data-points up to 325 data-points for each
regime) and testing against a 20% randomly selected sub-sample
of the original data-set. It can be concluded that approximately
250–300 informative data-points for the dripping regime and
200–250 informative data-points for the jetting regime (a total of
approximately 500 data-points) would yield a relatively similar
accuracy to the full bounded data-set with an 80% train-set
(0.8 ⋅ 888 ≈ 710 data-points), as shown in Fig. 4.

Generalizable performance prediction. In our original data-set,
variations of geometry and flow condition were thoroughly

considered. However, fluid properties were kept constant and DI
water and NF 350 mineral oil were used to produce droplets.
Depending on the application, a different fluid combination with
different fluid properties (viscosity, surface tension, etc.) can be
used. To enable performance prediction of droplet generation
with different fluid combinations, two different workflows were
established. First, an automated data-to-model machine learning
framework, DAFD Neural Optimizer, was developed to train
neural networks from scratch. Second, the neural networks
trained on the original data-set were utilized as base-models (pre-
trained models) for automated transfer learning to allow
researchers to fine tune the models for new fluid combinations42.
Thus, the microfluidic community can build custom predictive

Fig. 3 Neural networks provide superior accuracy in predicting the performance of microfluidic flow-focusing devices. a Scaling laws, despite being
valuable tools for understanding the dynamics of droplet generation, fall short on accurate performance prediction. Scaling law #116 & #241 performed
similarly in predicting droplet diameter. For generation rate prediction, scaling law #1 was not accurate, and scaling law #2 could not be used for
performance prediction. b The developed neural networks predicted the droplet diameter and generation rate in both dripping and jetting regimes
accurately. Droplet diameter prediction was more accurate in comparison to predicting generation rate, and performance prediction in jetting regime was
more accurate in comparison to dripping regime (see Table 1). The predicted performance are depicted for 20-fold cross-validation. c The neural networks
showed an MAPE of 7% for droplet diameter and less than 25% for generation rate while predicting the performance of unseen design parameters, which
is similar to the accuracy observed for previously seen design parameters.
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models using DAFD Neural Optimizer (for large-scale data-sets)
or transfer learning (for small-scale data-sets), as demonstrated in
Fig. 5.

A web-based tool was developed that enables researchers to
upload a custom tabular data-set and generate optimized neural
networks, without the need for machine learning expertise. This
tool utilizes an automated machine learning approach to design,
train, and evaluate neural networks in an easy to use interface.
DAFD Neural Optimizer can search for optimal hyperparameters
of neural networks while allowing for data-normalization
method, test-set size, validation method, number of folds, and
the evaluation metric to be specified (see Supplementary Figs. 6
and 7). To demonstrate the efficacy of this tool, the previously
generated large-scale data-set was uploaded to Neural Optimizer
and the trained models were compared to the neural networks we
previously built with expertise and trial and error, and a
comparable accuracy in predicting droplet diameter and genera-
tion rate was observed (see Fig. 5a). This tool is further explained
in Supplementary Note 6.

Training an accurate neural network model requires a
relatively large data-set. Consequently, an immediate drawback
of training neural network models on small-scale data-sets is
over-fitting to the train-set, resulting in models that poorly
generalize to the test-set43. Transfer learning was shown to be
explicitly beneficial in improving the performance of neural
network models for small-scale data-sets when another accurate
model trained on a relatively similar system, also known as a pre-
trained model, is available44. To fine tune the pre-trained model
to fit a new data-set, the structure and weights of the first few
layers (that carry more generic features of the system) of the
neural networks are kept unchanged, while the last layers (that
carry more specific features) are allowed to be updated45.

Transfer learning can also be implemented in performance
prediction of droplet microfluidics since the high-level dynamics
remain the same regardless of the fluid combinations used to
generate droplets46. Therefore, for a small-scale data-set on
droplet generation with a new fluid combination, the models
trained on the original data-set (pre-trained models) can be fine
tuned to accurately predict the performance, allowing for
significantly fewer number of data-points.

To demonstrate the applicability of transfer learning in
performance prediction of droplet generators, we generated two
new small-scale data-sets, in which we either changed the dispersed
phase fluid or the continuous phase fluid. First, lysogeny broth (LB)
bacterial cell media (instead of DI water) and NF 350 mineral oil
were used to generate droplets and create a small-scale data-set of
36 data-points, with data-points in both generation regimes.
Second, light mineral oil with a viscosity of 21.4 mPa s with 2%
span 80 as surfactant (instead of NF 350 mineral oil with a viscosity
of 57.2 mPa s with 5% span 80) and DI water were used to create a
small-scale data-set of 18 data-points in the dripping regime.
Training neural networks from scratch on these data-sets resulted
in non-generalizable models that over-fitted to the train-set, and
performed poorly on the test-set, as shown in Fig. 5b, c. Conversely,
by fine tuning the pre-trained models using transfer learning, the
performance prediction accuracy on the test-set improved
significantly (see Fig. 5b, c). Therefore, by using transfer learning
only a fraction of initial data-points is required to achieve a
comparable accuracy for a new fluid combination. Additionally,
transfer learning with 18 data-points per regime showed higher
accuracy for the LB bacterial media data-set in comparison to the
light mineral oil data-set. This can be attributed to the smaller
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Fig. 4 Effect of data-set size on the accuracy of performance prediction.
The data reduction study suggests that a relatively similar performance
prediction accuracy can be achieved with fewer data-points. Based on the
four criteria of a coefficient of determination, b mean absolute percentage
error, c root mean square error, and d mean absolute error it can be
concluded that approximately 250–300 informative data-points for the
dripping regime and 200–250 informative data-points for the jetting regime
would yield a relatively similar accuracy. The train-set (up to 80%) and
test-set (20%) were randomly selected (N = 10) from the existing 888
data-points.
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difference in fluid properties between LB bacterial media and DI
water, in comparison to light mineral oil and NF 350 mineral oil.
Therefore, for a new fluid combination that differs significantly in
fluid properties (in comparison to NF 350 mineral oil and DI water)
more data-points are required for an accurate transfer learning.
Researchers can use the information provided in Table 1, and
compare the performance of their neural networks trained on a
data-set (that conforms with the data-set generated in this study in
terms of parameter normalization and placement) of new fluid
combinations to the performance of the predictive models
developed in this study to determine if sufficient number of data-
points are collected.

Design automation. The developed design automation tool
converts the user-specified performance to the geometry and flow
rates required to achieve that desired performance. Droplet dia-
meter (25–250 μm), generation rate (5–500 Hz), and optional
design constraints can be specified in the tool. Design automation
is achieved by finding a point on the data-set closest to the desired
performance, adjusting the design parameters, evaluating a cost
function using the predictive models, and minimizing it until the
desired performance is reached, as described in Supplementary
Note 8.

As a first step to verify the accuracy of design automation, eight
different droplet diameters ranging from 25 to 200 μm were
specified as the desired performance. The proposed designs (see

Supplementary Note 9) were fabricated and the flow rates were
set to the values given by the tool. For the specified droplet
diameters an MAE (MAPE) of 4.3 μm (5.0%) was achieved
between the specified and observed droplet diameters. A
maximum diameter deviation of 12.3 μm (for 200 μm droplets)
and a maximum percentage error of 16% (for 25 μm droplets)
was observed (see Fig. 6a).

In several applications, accurate control over the droplet
generation rate as well as the diameter is essential. To demonstrate
the capability of DAFD to design droplet generators that deliver a
user-specified performance, a variety of droplet diameter and
generation rate combinations were specified. Three droplet
diameters and seven different generation rates were specified
and the proposed designs (see Supplementary Note 9) were tested,
and the observed and desired performance were compared. For a
droplet diameter of 100 μm, an MAE (MAPE) of 4.44 μm (4.4%)
and 33 Hz (12.2%) was observed for droplet diameter and
generation rate, respectively (see Fig. 6b). These values were
observed to be 4.36 μm (5.8%) and 33 Hz (14.4%) and 3.92 μm
(7.8%) and 41.3 Hz (38.8%) for droplet diameters of 75 μm and 50
μm, respectively (see Fig. 6c, d). The highest error of 14.8 μm and
101 Hz was observed for a droplet diameter of 50 μm and a
generation rate of 50 Hz. This can be attributed to the extremely
low flow rates (0.206 μl/min DI water and 0.272 ml/h mineral oil)
required for this performance, which are prone to experimental
errors (expansions, contractions, and movements in syringes and
tubing and syringe pump accuracy). Excluding this extreme data-

Fig. 5 Generalizing performance prediction to new fluid combinations. a Large-scale data-sets on any fluid combinations can be uploaded to DAFD
Neural Optimizer to generate optimized neural networks without requiring extensive machine learning expertise, with comparable accuracy to models
manually optimized. Error bars represent two standard deviations calculated based on ten different training and testing sessions where the test-set and
train-set were randomly chosen. b For a small-scale data-set on LB bacterial cell media (instead of DI water) and NF 350 mineral oil, training neural
networks from scratch resulted in inaccurate models. However, transfer learning significantly improved the accuracy of models on the same data-set. c For
a small-scale data-set on DI water and light mineral oil (instead of NF 350 mineral oil), training neural networks from scratch resulted in inaccurate models.
Using transfer learning the accuracy of the trained neural networks was improved significantly, despite the large difference in continuous phase fluid
properties. Therefore, the pre-trained models on DI water and NF 350 mineral oil and transfer learning can be used to extend DAFD without requiring
large-scale data-sets.
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point, the developed design automation tool delivers a user-
specified performance with an MAE (MAPE) of 3.7 μm (4.2%)
and 32.5 Hz (11.5%) for droplet diameter and generation rate,
respectively. These minor deviations can be easily adjusted by
changing the flow rates of the dispersed and continuous phases to
reach the desired performance as discussed in the design tolerance
prediction section. It must be noted that the design automation
accuracy exceeded the accuracy of the predictive models because
of the accuracy-checking (redundancy) in the predictive models
that enabled the introduction of the inferred droplet diameter (see
“Methods: Design automation” section).

Design tolerance prediction. The experimentally observed per-
formance of a droplet generator suggested by the design auto-
mation tool can be affected by the tolerances in fabrication and
syringe pumps. To this end, the developed predictive models
were used to quantify the effect of these tolerances on the per-
formance of a given design. Based on the droplet generator
design and a user-specified tolerance, three different values for
each design parameter were considered (in the range of the
designed value plus/minus the tolerance). Using quasi-Monte

Carlo sampling47 and the neural network based predictive
models, principal parameters affecting droplet diameter and
generation rate were identified using variance-based sensitivity
analysis in an automated manner (see “Methods: Design toler-
ance study” section).

Once the principal parameters affecting droplet diameter and
generation rate are identified, the effect of the tolerance for the
remaining parameters was plotted against the principal parameter,
as shown in Fig. 7c, d. The principal parameters could be different
for droplet diameter and generation rate, and it could vary
depending on the design of the droplet generator, suggesting the
importance of the developed design-specific tolerance prediction
tool. The flow rates of the continuous and dispersed phases can be
adjusted to account for these tolerances. Therefore, the machine
learning based predictive models were automated to predict the
performance of given a design for flow rates lower and higher than
the designed values (two times the user-specified tolerance). As a
result, two plots are generated depicting the effect of flow rates on
the droplet diameter and generation rate for a given design to
guide researchers to adjust flow rates according to the observed
performance deviation caused by the tolerances (see Fig. 7b).
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Fig. 6 Machine learning based design automation of microfluidic flow-focusing droplet generators. a While specifying only droplet diameter, an MAE
(MAPE) of 4.2 μm (5.0%) between the specified and observed diameters was observed. b When specifying both a droplet diameter of 100 μm and
generation rates ranging from 50 to 500 Hz, an MAE (MAPE) of 4.44 μm (4.4%) and 33 Hz (12.2%) were observed. c For specifying both a diameter of
75 μm and generation rate, an MAE (MAPE) of 4.36 μm (5.8%) for droplet diameter and 33 Hz (14.4%) for generation rate were observed. d For
specifying generation rate and a droplet diameter of 50 μm an MAE (MAPE) of 3.92 μm (7.8%) and 41.3 Hz (38.8%) were observed. The scale bars
represent 200 μm. Error bars represent two standard deviations and are calculated by analyzing the variations in droplet diameter (droplet polydispersity)
for each experiment.
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Case-study: single-cell encapsulation. The ability to measure the
properties of single cells isolated from a large population is one of
the main motivations of droplet microfluidics48–50. With few
exceptions, cell encapsulation occurs through a random process that
is dictated by the Poisson distribution51. To demonstrate that
performance prediction of droplet generators enables further design
automation capabilities (e.g., single-cell encapsulation, droplet
merging, and performance-driven design optimization), cell con-
centration calculation for single-cell encapsulation was incorporated
into the design automation tool (see “Methods” section).

To examine the accuracy of the developed tool in providing the
required cell concentration to ensure single-cell encapsulation for
a user-specified performance, a droplet diameter of 50 μm, a

generation rate of 150 Hz, and a ratio of cells to droplets of 0.05
was specified. Additionally, two design constraints were specified
in the software to test its capability in delivering the desired
performance while imposing design constraints. First, the lowest
aspect ratio allowable in the tool (value of 1) was specified as a
design constraint to keep the device shallow and maintain the
cells in the plane of focus. Second, the lowest normalized water
inlet allowable in the tool (value of 2) was specified as a design
constraint to avoid secondary flows inside the inlet channel that
could trap the cells.

Naturally, because of the specified design constraints, the
geometry suggested by DAFD was different in comparison to the
geometry suggested for a diameter of 50 μm, a generation rate of

a. Design automation
Specified performance: 100 μm & 200 Hz Design Parameters:

1. Orifice width: 150 μm
2. Depth: 300 μm
3. Water inlet width: 375 μm
4. Oil inlet width: 600 μm
5. Outlet width: 300 μm
6. Orifice length: 375 μm
7. Oil flow rate: 6.84 mL/hr
8. Water flow rate: 7.1 μL/min

Suggested Design

b. Predicted performance change with flow rates

c. Predicted droplet diameter tolerance

d. Predicted generation rate tolerance

Fig. 7 Prediction of performance deviations caused by fabrication and flow rate tolerances. a Once a design is suggested by the tool based on the user-
specified desired performance, b the variations in droplet diameter and generation rate for the suggested design for changing water and oil flow rates are
predicted using the developed neural networks. This helps users adjust for possible performance deviations caused by tolerances in fabrication. c Based on
the user-specified tolerance, by using the developed predictive models, parameter sensitivities are quantified through Sobol sensitivity analysis. This allows
the users to identify the most influential design parameters for a given design that can cause the most amount of performance deviations for a similar
percentage tolerance. The diameter changes caused by tolerances are predicted and plotted with the most effective parameter as the x-axis and the
remaining parameters on the y-axis. d The same process explained in c is used to identify generation rate sensitivity to tolerances in design parameters and
plot the changes in generation rate caused by fabrication tolerances.
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150 Hz in the design automation section (without design
constraints). The suggested device was fabricated and tested with
the provided flow rates and cell concentration while using 10 μm
fluorescent beads as cell surrogates. A droplet diameter of 46.3
μm and a generation rate of 167 Hz was observed (Fig. 8b),
demonstrating the efficacy of the design automation tool in
proposing designs with user-specified constraints. Additionally,
the bead encapsulation rate followed the Poisson distribution
closely (Fig. 8c). Slightly higher than expected double-bead
encapsulation events were observed, which can be attributed to
the weak hydrophobic surface properties of polystyrene that
facilitate aggregations of beads suspended in DI water.

Discussion
We presented a web-based open-source tool that leverages
machine learning to accurately predict the performance of flow-
focusing droplet generators. This enabled us to build a design
automation tool that takes user-specified performance as input
and provides a geometry and flow condition to achieve the
desired performance in return, thus, eliminating the need for
resource-intensive design iterations.

The current version of the developed tool supports droplet
generation with DI water and mineral oil. We demonstrated that
this tool can be further extended to support additional fluid
combinations either by using Neural Optimizer (for large-scale
data-sets) or through transfer learning (for small-scale data-sets).
We believe that the automated scheme of Neural Optimizer and
the efficacy of transfer learning in reducing the number of
required data-points would enable the community to develop
custom predictive models for a wide variety of fluid combina-
tions, without requiring extensive machine learning expertise or
vast experimental resources. Furthermore, the open-source nature
of the tool allows for these custom predictive models to be easily
integrated into the developed workflow. Therefore, we envision
future work leading to more comprehensive design automation
tools for droplet microfluidics developed by the community to
support a diverse range of applications.

The framework established in this study is application-agnos-
tic, and the authors believe that a similar workflow can be
implemented in other microfluidic components such as micro-
mixers52 or even non-microfluidic components such 3D printed
lattices53 to achieve design automation of complex phenomena.
Therefore, through design of experiments and rapid-prototyping,
structured data-sets (conforming to a tabular format) can be
generated and loaded to DAFD Neural Optimizer to train optimal
predictive neural networks. Using these predictive models and by
implementing iterative search algorithms such as the one used in
this study, researchers can achieve accurate design automation.

We also demonstrated that the developed tool can be used to
quantify and account for performance deviations caused by
possible tolerances in fabrication or testing. Additionally, the
ability to automatically design droplet generators that deliver the
desired performance enabled automated calculation of cell con-
centration for single-cell encapsulation, as demonstrated in this
study. Our tool can be extended by the community to accom-
modate further design automation capabilities. For instance, the
developed tool can be integrated with models that predict the
path that individual droplets take in a network of microfluidic
channels54, to enable both performance and behavior prediction.

Finally, the developed design automation tool can be integrated
with other microfluidic computer-aided design tools to enable
more sophisticated design automation55–63. We envision, our
tool’s parameter discovery and refinement capabilities to be
augmented with high-level CAD software being developed. The
high-level software can translate liquid interactions (merging,
splitting, branching, etc.) into a directed graph data structure
using a high-level programming language similar to Verilog64.
That language can be compiled into a parameter-free version of a
netlist file called MINT65. MINT can be read by emerging soft-
ware tools including 3DμF66. Using this file, 3DμF’s design
abilities, and DAFD’s parameter exploration, a fully realized
design can be created quickly without having to have monolithic
designs that encode both the structure and function in a non-
modifiable manner. Such tools can significantly reduce the barrier
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Fig. 8 Single-cell encapsulation with user-specified performance. a The desired performance of 50 μm and 150 Hz was specified and the design
suggested by the tool was fabricated. Polystyrene beads 10 μm in size were used as cell surrogates and were suspended in DI water at a concentration
given by the tool (922.9 beads/μl). b By setting the flow rates to the suggested values, a droplet diameter of 46.3 μm at 167 Hz was achieved. c Within a
total of 315 continuous events, 10 events of single-bead encapsulation, and 2 events of double-bead encapsulation were observed, which closely follows the
Poisson distribution. d Snapshots of the experiment further emphasize the random but probabilistic nature of single-cell encapsulation. Coloring was
adjusted for better visualization.
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to entry to microfluidics and allow it to play an integral role in
numerous fields without demanding substantial microfluidic
expertise or resources.

Methods
Reagents and materials. For the original large-scale data-set NF 350 mineral oil
with a viscosity of 57.2 mPa s and a specific density of 0.857 was used as the
continuous phase. Five percent of V/V Span 80 surfactant (Sigma-Aldrich) was
added to the oil to reduce the surface tension for higher generation rates and
droplet stability. DI water with added food color for better visualization was used as
the dispersed phase. For the small-scale data-sets lysogeny broth (LB) bacterial cell
media (L3022, Sigma Aldrich) and light mineral oil with a viscosity of 21.4 mPa s
(M8410, Sigma Aldrich) were used for droplet generation. Microfluidic devices
were milled from polycarbonate sheets with a thickness of 5.56 mm (McMaster-
Carr). Slygard 184 Silicone elastomer kit (Dow Corning) was used to make thin
layers of Polydimethylsiloxane (PDMS) to seal the microfluidic geometry.

Fabrication and assembly of microfluidic devices. A low-cost desktop CNC
micromill (Othermill/Bantam Tools) was used to mill out the flow and control
layers of the microfluidic device on a polycarbonate substrate. A layer of PDMS was
placed between the flow and control layer to seal each device. Two layers of
pressure distributors were milled out of polycarbonate, one pressure distributor
was placed above the flow layer and one was placed beneath the control layer. Each
device, with a total of five layers, was clamped to increase the sealing pressure and
achieve a uniform seal.

Droplet generation. Droplet generation was achieved by flowing the continuous
and dispersed phases through a flow-focusing geometry. To dampen the flow rate
fluctuations induced by the syringe pumps, 50 cm long flexible PVC tubing
(McMaster-Carr) with an inner diameter of 1.6 mm and outer diameter of 3.2 mm
was used to introduce the fluids to the microfluidic devices. Both phases were
filtered through a 0.45 μm polyvinylidene fluoride (PVDF) filter (Millipore). To
ensure cross-lab validity of the results, New-Era syringe pumps were used to
generate the data-set and Harvard Apparatus syringe pumps were used to verify the
accuracy of DAFD.

Image acquisition and processing. A high-speed camera (IDT Xstream) mounted
on a stereo-microscope (AmScope) was used to record experiments with frame
rates up to 18,000 frames per second depending on the speed of the experiments.
An 18,000 Lumen LED light source (Expert Digital Imaging) was placed under-
neath the microfluidic device to ensure sufficient illumination. Each video was
analyzed using an open-source image-processing software we previously developed,
uDROP, for microfluidic flow-focusing droplet generation. This software records
generation rate, droplet diameter, and polydispersity of droplets and is available at:
https://github.com/CIDARLAB/uDrop-Generation.

Flow-focusing geometry definition. The six parameters defining a flow-focusing
geometry were all normalized to the value of the orifice width (except orifice width
itself). The values for these geometric parameters were varied according to the
values observed in the literature while considering the fabrication limits of desktop
micromilling (minimum features size of 75 μm), as further explained in Supple-
mentary Note 2.

Flow condition definition. Capillary number and flow rate ratio are the two main
dimensionless numbers that can define the flow condition in a flow-focusing
geometry20. Given the geometry and these two dimensionless number the flow
rates of continuous and dispersed phases can be calculated using Eq. (6)23:

Qc ¼
Ca: � σ � H �Wc

μcWd
1
Or: � 1

2Wc

h i
Qd ¼ Qc

ϕ
;

ð6Þ

where Ca. is capillary number, ϕ is flow rate ratio, μc represents dynamic viscosity,
Qc is oil flow rate, σ denotes surface tension between the continuous and dispersed
phases, H is channel depth, and Wd, Wc, and Or. are water inlet, oil inlet, and
orifice widths, respectively. In this study, capillary number and flow rate ratio were
varied according to the values observed in the literature and were used to calculate
the oil and water flow rates for the designed flow-focusing geometries, as further
explained in Supplementary Note 2.

Performance prediction. Multi-layer feed-forward neural networks were used for
performance prediction. The input dimensions of the neural networks were the
eight design parameters of flow-focusing droplet generators and the output layer
was a single node representing the predicted droplet generation regime, diameter,
or rate. Depending on the complexity of the prediction task, three or four hidden
layers with rectified linear activation functions were included in the network

structure to achieve an acceptable performance prediction. Adam optimizer was
used to minimize the classification or regression cost. Cross-validation, dropout
regularization, and early stopping were used during the training process to avoid
over-fitting to the train-set. This enabled the models to be generalized from the
train-set to test-set. The classifier (neural network model for predicting droplet
generation regime) was developed using all 998 points of the dataset. The regres-
sion models (neural networks for predicting the droplet diameter and generation
rate) were developed using the bounded performance range. This range with a total
of 888 data-points enabled a higher accuracy for the predictive models by avoiding
training them on design spaces without sufficient number of data-points, as shown
in Fig. 2c. To train both classification and regression models, the data-set was split
into train and test sets with an 80–20% ratio, respectively. Neural networks were
trained on the train-set, and their performance was evaluated using test-set (which
was hidden from the model during the training stage) to provide an unbiased
performance evaluation of the developed models.

Python built-in data analysis and machine learning packages (Numpy, Pandas,
and Scikit-learn) were used for statistical analysis, data normalization, train-test
split sampling, and reporting the performance metrics (accuracy, MSE, etc.) of
models. The neural networks were implemented using Keras package. Additional
information on the neural networks is provided in the Supplementary Note 3. The
source-code and instructions on running the neural network models are available
on GitHub at: https://github.com/CIDARLAB/DAFD.

Data reduction study. The bounded dataset (888 data-points) consists of 474 data-
points in the dripping regime and 414 data-points in the jetting regime, therefore,
the size of the randomly selected sub-samples of the train-sets were incremented as
50, 100, 150, 200, 250, 300, and 325 data-points (the maximum train-set size was set
to be smaller than the train-set size for jetting regime, i.e., 0.8 × 414= 331 data-
points). These sub-samples were then used to train all four DAFD neural networks
and evaluated on the test-set with metrics previously described. The test-set was
randomly selected from the bounded dataset (20%). This process was repeated ten
times to account for possible biases in random selection.

Neural optimizer. The software back-end was based on Python, using Flask as the
microweb framework, Scikit-learn, and Keras packages for machine learning and
neural network implementation. The front-end was built with Bootstrap and
jQuery. Neural Optimizer provides a GUI-based service to build and deploy neural
networks at the click of buttons and keeps algorithm implementation, data pipe-
line, and codes hidden from the view. The pipeline for building machine learning is
parameterized and fed to various custom-built Python functions (e.g., data parser,
neural network architecture builder, performance metrics, and evaluation methods
selectors, etc.). The software is built following the Model-View-Controller frame-
work67, where all data input and requests are handled by the view and passed
through several routers to the controller, which execute the corresponding algo-
rithms and call the model to interpret the neural network architecture. The
machine learning pipeline is implemented via the Pipeline module of Scikit-learn
library, which makes the modular implementation of cross-validation, train-
holdout validation, and hyperparameter optimization approaches possible. More
details on the algorithms used to develop Neural Optimizer are provided in the
Supplementary Note 6. Neural Optimizer source code is available at: https://github.
com/CIDARLAB/neural-optimizer.

Transfer learning. Two small-scale data-sets on droplet generation using six
different flow-focusing geometries were generated. The first data-set was generated
using NF 350 mineral oil and lysogeny broth (LB) bacterial cell media (L3022,
Sigma Aldrich), for a total of 36 unique data-points with 19 and 17 data-points in
dripping and jetting regimes, respectively. The second data-set was generated using
DI water and light mineral oil with a viscosity of 21.4 mPa s (M8410, Sigma
Aldrich) with added 2% Span 80 (instead of NF 350 mineral oil with a viscosity of
57.2 mPa s, with 5% added Span 80), for a total 18 data-points in the dripping
regime. The surface tension difference between DI water and mineral oil, DI water
and light mineral oil, and LB bacterial cell media and mineral oil was assumed to be
negligible. For the LB bacterial cell media, the dataset was split into four non-
overlapping folds. To compare the performance of transfer learning to a neural
network trained from scratch, both neural network models (with and without
transfer learning) were trained on the same 3-folds (train-set) and their perfor-
mance was evaluated against the 4th fold (test-set). This process was repeated by
training new models on the other 3-folds sets until all folds are used as the test-set
once. To implement transfer learning, the structure and the weights of the opti-
mized neural network models trained on the original dataset (888 data-points on
DI water and mineral oil) were saved (called pre-trained models). The first two
layers of the pre-trained models were loaded without the ability to be re-trained
(frozen layers) and the weights of the last two layers of the new models were
updated to better fit the new dataset. A similar approach was used for the light
mineral oil dataset, with the slight change that only the first layer of the pre-trained
model was frozen, due to the greater fluid properties differences between this
dataset and the original dataset, and additional layers were added to better fit the
light mineral oil dataset. Data normalization and performance evaluation are done
as previously described in the performance prediction methods. Keras package is
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used to save and load the pre-trained models and fine tune the new models.
Transfer learning source code is available at: https://github.com/CIDARLAB/
neural-optimizer.

Design automation. The design automation algorithm starts with finding a point
in the dataset, which has an observed performance closest to the user-specified
desired performance. To this end, all points in the dataset are ranked according to a
fitness value based on the specified desired performance and design constraints (see
Supplementary Note 8). If a data-point exists with an observed and predicted
performance close to the desired performance (within the tolerance of the pre-
dictive models, see Supplementary Note 8), that point on the dataset is returned as
the final design. However, if the performance difference between the data-point
and the desired performance is outside the tolerance of the predictive models, then
that point is taken as the starting iteration for an optimization process to achieve
the desired performance. The optimization algorithm adjusts the design parameters
by increasing and decreasing each parameter by a same normalized step-size. Given
that there are 8 design parameters in total, 16 new devices are proposed at each
iteration. The predictive models are then used to predict the performance of these
16 new designs. A cost function is evaluated for the proposed designs to determine
the optimal design parameters at each iteration, as given in Eq. (7):

CðxÞ ¼ Ddes: � Dpred:

��� ��� þ Fdes: � Fpred:

��� ���
þ Ddes: � Dinf :j j;

ð7Þ

where Ddes. is the desired droplet diameter, Dpred. is the predicted droplet diameter,
Fdes. is the desired generation rate, Fpred. is the predicted generation rate, and Dinf. is
the inferred droplet diameter (i.e., using the droplet volume, which is calculated by
dividing the dispersed phase flow rate by the predicted generation rate) calculated
by Eq. (8):

Dinf : ¼ 106�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qw

Fpred:
� 6
π

s
; ð8Þ

where Dinf. is the inferred droplet diameter in μm and Qw is the dispersed phase
flow rate in m3/s. Dinf. is added to the cost function to ensure the compliance of the
neural networks that predict the droplet diameter and generation rate. This avoids
areas in the design space where either one or both models predict the performance
less accurately. Thus, allowing the design automation accuracy to surpass the
accuracy of the predictive models in most cases. Once the cost function of the new
designs are calculated, the design that reduced the cost function the most is taken
as the new starting design for the next iteration, until accurate design automation is
achieved. The algorithms are implemented in Python and NumPy library was used
to speed up our computations. This algorithm is further explained in Supple-
mentary Note 8. The algorithms used for design automation were created by our
group and the source-code is available on GitHub: https://github.com/CIDARLAB/
DAFD.

Design tolerance study. The relative effect of each design feature on device
performance was first evaluated with variance-based sensitivity analysis68,69. In
brief, quasi Monte-Carlo samples are generated within the bounds of parameter
hypercube set by a user-input tolerance. Next, the variances from first and second
order interactions are evaluated as:

VarðXiÞ ¼ VarXi
ðE½YjXi�Þ; ð9Þ

VarðX ijÞ ¼ VarX ij
ðE½YjXi;Xj�Þ � VarðXiÞ � VarðXjÞ; ð10Þ

where X represents input features and Y is the output performance (in this case
droplet diameter or generation rate). Once variances from first and second order
interactions are calculated, the total-effect index of each parameter is found, which
represents the effect of a single parameter on total variance through both first and
second order interactions. The design feature with the highest total-effect index
value was then perturbed in a “tolerance grid” along with every other design
feature. Each combination was then run through the machine learning based
predictive models and visualized in a heatmap to show how changes to each feature
affect the performance. The effects of continuous and dispersed flow rates was also
predicted to provide a guideline for microfluidic operators to understand how to
correct possible deviations in performance caused by tolerances in fabrication or
testing. The tolerance study is an available option for both performance prediction
and design automation for all users at http://dafdcad.org. Variance-based sensi-
tivity analysis was integrated into the tool using the SALib library70. The source-
code for tolerance study is available on https://github.com/CIDARLAB/DAFD.

Cell concentration calculation. Cell encapsulation often occurs through a random
process dictated by Poisson distribution51, as given by Eq. (11):

Pðλ; kÞ ¼ e�λ λ
k

k!
; ð11Þ

where λ is the average number of cells per droplet volume and k is the number of
cells encapsulated in a droplet. P(λ, k) is the probability that k cells are

encapsulated in a single droplet for a given cell concentration (λ). To ensure single-
cell encapsulation, the cells entering the device are out-numbered by the number of
droplets generated per unit of time, therefore, λ is typically kept between
0.05–0.151. The ability of the developed tool to predict the dispersed phase flow rate
and droplet generation rate enables the required cell concentration for single-cell
encapsulation to be calculated using Eq. (12):

Ccells ¼ 60 � F � λ
Qw

; ð12Þ

where Ccells is the inlet cell concentration (cells/μl), F is droplet generation rate
(Hz), and Qw is dispersed phase flow rate (μl/min).

Single-cell (bead) encapsulation. Ten micrometer yellow-green fluorescent (505/
515 nm) polystyrene microspheres (Thermo Fisher) were used as cell surrogates. A
droplet diameter of 50 μm at 150 Hz was specified to the design automation tool
while constraining the design to have the lowest allowable aspect ratio (the ratio of
channel depth to orifice width), and normalized water inlet width to keep the beads
at the plane of focus and prevent them from getting trapped in a local flow field.
The microfluidic device proposed by the tool was milled out of polycarbonate and
sealed with a 125 μm thick acrylic adhesive instead of using a PDMS membrane
and pressure distributors, to help visualize the experiment with an inverted
microscope. The DAFD provided flow condition of a Ca number of 0.132, a flow
rate ratio of 10 (0.312 ml/h oil flow rate and 0.52 μl/min water flow rate), and a
bead concentration of 922.8 beads/μl suspended in 0.5 molar CaCl2 DI water (to
delay bead settling in the syringe and tubing) were used to run the experiments. A
high-speed camera (IDT Xstream) mounted on an inverted microscope (Zeiss
Axiovert 200M) operating at both bright-field and fluorescent imaging modes was
used to record the experiments at 1200 frames per second.

Data availability
All experimental data-sets generated and used in this study are available for download at:
http://dafdcad.org.

Code availability
All source code generated and used in this study are available on https://github.com/
CIDARLAB/DAFD and https://github.com/CIDARLAB/neural-optimizer.
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