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Strengths and limitations of this study

►► Deep learning using the image of corneal co-
lour-coded maps with anterior segment optical 
coherence tomography (AS-OCT) based on clinical 
diagnosis has not so far been investigated for kera-
toconus detection and grade classification.

►► Deep learning using colour-coded maps obtained 
from the AS-OCT will be an aid not only for the 
screening of keratoconus, but also for the grade 
classification of the disease.

►► This deep learning was not applied to other corneal 
disorders such as forme fruste keratoconus, sub-
clinical keratoconus, or postsurgical eyes.

►► The arithmetic mean outputs from the six classifiers 
without any weighting were utilised for classifying 
the grade of the disease.

Abstract
Objective  To evaluate the diagnostic accuracy of 
keratoconus using deep learning of the colour-coded maps 
measured with the swept-source anterior segment optical 
coherence tomography (AS-OCT).
Design  A diagnostic accuracy study.
Setting  A single-centre study.
Participants  A total of 304 keratoconic eyes (grade 
1 (108 eyes), 2 (75 eyes), 3 (42 eyes) and 4 (79 eyes)) 
according to the Amsler-Krumeich classification, and 239 
age-matched healthy eyes.
Main outcome measures  The diagnostic accuracy of 
keratoconus using deep learning of six colour-coded maps 
(anterior elevation, anterior curvature, posterior elevation, 
posterior curvature, total refractive power and pachymetry 
map).
Results  Deep learning of the arithmetical mean output 
data of these six maps showed an accuracy of 0.991 in 
discriminating between normal and keratoconic eyes. 
For single map analysis, posterior elevation map (0.993) 
showed the highest accuracy, followed by posterior 
curvature map (0.991), anterior elevation map (0.983), 
corneal pachymetry map (0.982), total refractive power 
map (0.978) and anterior curvature map (0.976), in 
discriminating between normal and keratoconic eyes. 
This deep learning also showed an accuracy of 0.874 in 
classifying the stage of the disease. Posterior curvature 
map (0.869) showed the highest accuracy, followed by 
corneal pachymetry map (0.845), anterior curvature map 
(0.836), total refractive power map (0.836), posterior 
elevation map (0.829) and anterior elevation map (0.820), 
in classifying the stage.
Conclusions  Deep learning using the colour-coded 
maps obtained by the AS-OCT effectively discriminates 
keratoconus from normal corneas, and furthermore 
classifies the grade of the disease. It is suggested that this 
will become an aid for improving the diagnostic accuracy 
of keratoconus in daily practice.
Clinical trial registration number  000034587.

Introduction
Keratoconus is one of progressive corneal 
disorders characterised by anterior protru-
sion and thinning. The progressive thinning 
and the subsequent bulging of the cornea 

are often accompanied by high myopic astig-
matism, as well as by irregular astigmatism, 
resulting in severe visual impairment. The 
elimination of keratoconus is essential for 
refractive surgery candidates, since iatrogenic 
keratectasia can occur when performing kera-
torefractive surgery in such eyes.

Deep learning is one of the machine 
learning techniques dealing with the training 
of multilayer artificial neural networks. 
Machine learning is a general technique to 
find appropriate parameters or functions 
to classify input data from large amounts of 
training data. Many methodologies to imple-
ment machine learning, such as support vector 
machines, decision trees, or neural networks, 
have so far been advocated. In recent years, 
multilayered neural networks, especially 
convolutional neural networks, have achieved 
impressive results in many types of image 
classifications in many scientific fields.1–3 
Number of layers often referred to as a kind 
of depth, and then machine learning with 
multilayered neural network is called deep 
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learning. In ophthalmology, it has been mainly applied in 
the diagnosis of retinal diseases4–6 and glaucoma.7–9 Until 
now, there have been several studies on the sensitivity and 
the specificity of keratoconus detection using machine 
learning.10–22 However, most previous studies have merely 
used either topographic numeric indices measured with a 
Placido disk-based corneal topographer, or tomographic 
numeric indices measured with a scanning slit tomogra-
pher and a rotating Scheimpflug camera, for machine 
learning in order to discriminate keratoconus from 
normal corneas. Accordingly, deep learning using the 
whole image of corneal colour-coded maps with the ante-
rior segment optical coherence tomography (AS-OCT) 
based on clinical diagnosis, which enables us to precisely 
determine the curvature and the elevation of the anterior 
and posterior corneal surfaces even in eyes with opaque 
cornea, has not so far been performed to determine the 
diagnostic accuracy or the grade of keratoconus. It may 
give us intrinsic insights on keratoconus detection espe-
cially in the preoperative screening of the candidates for 
corneal refractive surgery, because it can result in unpre-
dictable outcomes and subsequent corneal ectasia, when 
applied to such eyes. The aim of the current study is to 
assess the accuracy of deep learning using anterior and 
posterior corneal elevations, curvatures, total refractive 
power, and pachymetry map, obtained by the AS-OCT, 
in order to discriminate between normal and kerato-
conic eyes, as well as to classify the stage of the disease, 
according to the Amsler-Krumeich classification.

Materials and methods
Study population
We retrospectively reviewed the data of keratoconic 
patients who underwent corneal tomography obtained 
by a swept-source AS-OCT (CASIA SS-1000, Tomey, Aichi, 
Japan) between March 2013 and April 2018 at Miyata Eye 
Hospital. We enrolled 304 eyes with good quality scans 
of corneal tomography. Keratoconus was diagnosed by 
corneal specialists with evident findings characteristic of 
keratoconus (eg, corneal tomography with asymmetric 
bow-tie pattern with or without skewed axes), and at 
least one keratoconus sign (eg, stromal thinning, conical 
protrusion of the cornea at the apex, Fleischer ring, 
Vogt striae, or anterior stromal scar) on slit-lamp exam-
ination.23 The grade of keratoconus was determined by 
the Amsler-Krumeich classification, based on astigma-
tism, corneal power, corneal transparency, and corneal 
thickness, obtained from the slit-lamp biomicroscopy 
and the AS-OCT.24 The study group was divided into four 
keratoconus subgroups; grade 1 (108 eyes), 2 (75 eyes), 
3 (42 eyes) and 4 (79 eyes), according to this classifica-
tion. Other corneal diseases such as pellucid marginal 
degeneration and eyes with a history of trauma or corneal 
surgery such as corneal cross-linking for progressive kera-
toconus were excluded from the study. The patients were 
recruited in a continuous cohort. The control group 
comprised of 239 eyes in subjects with normal corneal 

and ocular findings applying for a contact lens fitting or 
a refractive surgery consultation. The control subjects 
had a refractive error (spherical equivalent) of less than 
6 dioptres (D) and/or astigmatism of less than 3 D. The 
patients who wore rigid and soft contact lenses were asked 
to stop using them for 3 weeks and 2 weeks, respectively, 
before this assessment. Our Institutional Review Board 
waived the requirement for informed consent for this 
retrospective study. The data that support the findings of 
this study are available from the corresponding author on 
reasonable request.

Anterior segment optical coherence tomography imaging
We obtained six standardised colour-coded maps (ante-
rior elevation (−130 to 130 µm, 5 µm step), anterior 
curvature (9.0 to 101.5 D, 5 D step (35.5 to 50.5 D, 1.5 D 
step)), posterior elevation (−260 to 260 µm, 10 µm step), 
posterior curvature (−3.0 to −10.5 D, 0.3 D step), total 
refractive power (9.0 to 101.5 D, 5 D step (35.5 to 50.5 D, 
1.5 D step)) and pachymetry map (340 to 840 µm, 20 µm 
step)), based on the manufacturer’s instructions, by 
experienced examiners who were masked to the clinical 
condition of the subjects, using the swept-source AS-OCT 
(figure 1). In each map, a colour-scale bar was excluded 
for deep learning. The device utilises a wavelength of 
1310 nm, with an axial resolution of 10 µm, a transverse 
resolution of 30 µm and a scan-rate of 30 000 A-scans/s. 
The patient’s chin was placed on the chin rest and the 
forehead against the forehead strap. The patient was 
asked to open both eyes and stare at the fixation target. 
After attaining perfect alignment, the instrument auto-
matically began obtaining the measurements. The scan 
was initiated when a cross-sectional image of the cornea 
was visualised on a computer screen. Collected data were 
processed by the system to achieve cross-sectional images. 
Image quality was checked, and only one examination 
with a high image quality factor was recorded.

Deep learning
Neural network is one of the powerful tools available for 
classifying data into some groups or categories. Convolu-
tional neural network is a variation of neural network for 
classifying images or two-dimensional data.1–3 A typical 
convolutional neural network consists of mainly two types 
of layers: a convolution layer and a fully connected layer. 
A convolution layer automatically extracts two-dimen-
sional patterns and their geometrical relations to distin-
guish training data, and finds out these characteristics in 
images. Colour-coded maps provide much information of 
the corneal shape as well as two-dimensional patterns, so 
that convolutional neural networks are expected to clas-
sify them well.

We exported each image data by taking a screenshot 
of the CASIA2 application displaying six types of corneal 
images, and stored it in a lossless compression format 
such as PNG. After that we cut out each type of images 
from the screenshots, we saved it in PNG format for deep 
learning. We used an open source deep learning platform 



3Kamiya K, et al. BMJ Open 2019;9:e031313. doi:10.1136/bmjopen-2019-031313

Open access

Figure 1  A representative example of six colour-coded maps (anterior elevation, anterior curvature, posterior elevation, 
posterior curvature, total refractive power and pachymetry map) measured with an anterior segment optical coherence 
tomography. A colour-scale bar was excluded in each map for deep learning.

Table 1  The output data of deep learning in classifying the 
grading of the disease according to the Amsler-Krumeich 
classification

Actual 
category

Output of convolutional neural 
network

Normal G1 G2 G3 G4 Total

Normal 239 0 0 0 0 239

G1 5 96 7 0 0 108

G2 0 10 51 12 2 75

G3 0 0 8 30 4 42

G4 0 0 8 12 59 79

Note: G denotes grade.

(PyTorch) for deep learning with a network model called 
a ResNet-18. The ResNet-18 is one of the available convo-
lutional neural networks which is pretrained with millions 
of images from the ImageNet database. Each input image 
is resized to 224-by-224 pixels without deformation. The 
output is one value (0–4) that can be mapped to the 
grades (including normal eyes). ‘Normal’ is represented 
as ‘0’, and grades 1, 2, 3 and 4 are denoted as ‘1’, ‘2’, 
‘3’ and ‘4’ in teaching data. The output value of neural 
network for an image is not an integer, so that we aligned 
it to the nearest integer value to interpret. For example, 
if an output is 1.37, it is interpreted as 1, that is, grade 1.

We separately trained six neural networks from each 
image of six colour-coded maps (anterior elevation, ante-
rior curvature, posterior elevation, posterior curvature, 
total refractive power and pachymetry map) without a 
colour-scaled bar. Each network classifies an image into 
0–4. We integrated these six outputs by averaging them. 
For example, if these six classifiers outputs are 2, 2, 2, 3, 
4 and 3, their average is 2.67, resulting in an integrated 
result of 3. We applied a floor function for values such as 
2.5, that is, it was interpreted as 2. A total of 543 eyes were 
split into five groups (108 or 109 eyes in each group). We 
used fivefold cross-validation to increase the reliability of 
the accuracy outcomes of these six classifiers.

Patient and public involvement
Patients were not involved in the development of the 
research question, study design, or conduct of this study.

Results
The output data of deep learning in classifying the kera-
toconus grade of the disease are listed in table 1. Deep 
learning using the arithmetical mean data of these six 
colour-coded maps showed an accuracy of 0.991 (sensi-
tivity 1.000, specificity 0.984) in discriminating between 
normal and keratoconic eyes (table 2). For a single map 
analysis, posterior elevation map (0.993) showed the 
highest accuracy, followed by posterior curvature map 
(0.991), anterior elevation map (0.983), corneal pachym-
etry map (0.982), total refractive power map (0.978) 
and anterior curvature map (0.976), in discriminating 
between normal and keratoconic eyes.
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Table 2  The sensitivity, the specificity, and the accuracy outcomes in classifying the grading the disease according to the 
Amsler-Krumeich classification

Category Positive Negative False-negative False-positive Sensitivity Specificity Accuracy

Normal 239 299 0 5 1.000 0.984 0.991

G1 96 425 12 10 0.889 0.977 0.959

G2 51 445 24 23 0.680 0.951 0.913

G3 30 477 12 24 0.714 0.952 0.934

G4 59 458 20 6 0.747 0.987 0.952

Total 0.874

Note: G denotes grade.

Deep learning using the arithmetical mean data of 
these six colour-coded maps showed an accuracy of 0.874 
(sensitivity 0.889, specificity 0.977 for grade 1, sensitivity 
0.680, specificity 0.951 for grade 2, sensitivity 0.714, spec-
ificity 0.952 for grade 3 and sensitivity 0.747, specificity 
0.987 for grade 4) in classifying the stage of the disease, 
according to the Amsler-Krumeich classification (table 2). 
For a single map analysis, posterior curvature map (0.869) 
showed the highest accuracy, followed by corneal pachym-
etry map (0.845), anterior curvature map (0.836), total 
refractive power map (0.836), posterior elevation map 
(0.829) and anterior elevation map (0.820), in classifying 
the stage of the disease.

Discussion
In the present study, our results showed that deep learning 
using the colour-coded maps obtained by the AS-OCT 
provided an accuracy of 0.991 in discriminating between 
keratoconic and normal eyes, suggesting that it will be an 
aid to improve the diagnostic accuracy as a keratoconus 
screening test. Our results also showed that it provided an 
accuracy of 0.874 in determining the keratoconus stage, 
indicating that it will also be helpful to classify the grade 
of the disease. We applied the Amsler-Krumeich classi-
fication, since there is no other standardised classifica-
tion of the disease, and thus it is still often used in daily 
practice. As far as we can ascertain, this is the first study 
on deep learning using the whole image of each colour-
coded map for keratoconus detection and grade classifi-
cation based on clinical diagnosis. We believe that deep 
learning will be an aid for the screening and the staging 
of keratoconus in a clinical setting, because the precise 
preoperative screening of early keratoconus for refractive 
candidates is still challenging in daily practice.

To date, there have been several studies on machine 
learning for the screening of keratoconus, as listed 
in table 3. Using 8, 11 and 10 indices measured with a 
Placido disk-based corneal topography, Maeda et al10 11 
and Smolek and Klyce12 demonstrated that the accuracy 
of distinguishing keratoconus from other conditions 
was 96%, 80% and 100%, respectively. Using 9 indices 
measured with another corneal topography, Accardo and 
Pensiero13 showed that the sensitivity and the specificity 

was 94.1% and 97.6%, respectively. Using 11 indices 
measured with a scanning-slit corneal tomography, Souza 
et al14 described that the sensitivity at 75% and 90% spec-
ificity was 43%–100% and 22%–100%, respectively, and 
that the area under the curve was 71%–99%. Arbelaez 
et al15 reported that the support vector machine algo-
rithm, using the data from anterior and posterior corneal 
surfaces and pachymetry measured with a Scheimp-
flug camera combined with Placido corneal topog-
raphy, increased its sensitivity from 89.3% to 96.0% in 
abnormal eyes, 92.8%–95.0% in eyes with keratoconus, 
75.2%–92.0% in eyes with subclinical keratoconus, and 
93.1%–97.2% in normal eyes. Using 55 indices measured 
with a dual Scheimpflug camera, Smadja et al16 stated that 
the sensitivity and the specificity were 100% and 99.5%, 
respectively. Using 15 and 22 indices measured with a 
Scheimpflug camera, Kovács et al17 and Ruiz Hidalgo et 
al18 19 mentioned that the sensitivity and the specificity 
were 100% and 95%, and 99.1% and 98.4%, respectively. 
Yousefi et al20 recently demonstrated that the specificity in 
identifying normal from keratoconus eyes was 94.1% and 
the sensitivity of identifying keratoconus from normal eyes 
was 97.7%, based on Ectasia Status Index diagnosis labels. 
Dos Santos et al21 reported that the custom neural network 
architecture could segment both healthy and kerato-
conus images with high accuracy, and that deep learning 
algorithms could be applied for OCT image segmenta-
tion in various clinical settings. Issarti et al22 stated that 
computer aided diagnosis detected suspect keratoconus 
with an accuracy of 96.56% (sensitivity 97.78%, specificity 
95.56%), suggesting that the algorithm is highly accurate 
and provides a stable screening platform to assist ophthal-
mologists with the early detection of keratoconus. Since 
the inclusion criteria, the category of the disease, and 
the sample size, were different among these studies, we 
cannot directly compare the sensitivity and the specificity 
outcomes between these previous and current studies. 
Especially the category of the disease might affect the 
outcomes in this kind of the diagnostic accuracy test in 
a clinical setting. However, most previous studies have 
merely used topographic and tomographic numeric 
values for machine learning, except for one study.21 These 
numeric values are simple and easy to grasp the overall 
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Table 3  Previous studies on the diagnostic accuracy of keratoconus using machine learning

Author Year
Sample 
size Device

Machine 
learning Input Sensitivity Specificity Accuracy

Maeda et 
al10

1994 200 TMS-1 Expert system Eight 
parameters

89% 99% 96%

Maeda et 
al11

1995 183 TMS-1 Neural network 11 parameters 44–100% >90% 80%

Smolek 
and 
Klyce12

1997 300 TMS-1 Neural network 10 parameters 100% 100% 100%

Accardo 
and 
Pensiero13

2002 396 EyeSys Neural network Nine 
parameters

94.1% 97.6% N.A.

Souza et 
al14

2010 318 Orbscan II Neural network, 
support vector 
machine and 
radial basis 
function neural 
network

11 parameters N.A. N.A. 71–99% 
(AUROC)

Arbelaez et 
al15

2012 3502 Sirius Support vector 
machine

Seven 
parameters

95.0% 99.3% 98.2%

Smadja et 
al16

2013 372 GALILEI Decision tree 55 parameters 100% 99.5% N.A.

Kovács et 
al17

2016 135 Pentacam Neural network 15 parameters 100% 95% 99% (AUROC)

Ruiz 
Hidalgo et 
al18

2016 860 Pentacam Support vector 
machine

22 parameters 99.1% 98.4% 98.9%

Ruiz 
Hidalgo et 
al19

2017 131 Pentacam Support vector 
machine

25 parameters N.A. N.A. 92.6%, 98.0%

Yousefi et 
al20

2018 3156 CASIA Unsupervised 
machine 
learning

420 
parameters

94.1% 97.7% N.A.

Dos 
Santos et 
al21

2019 142 UHR-OCT Custom neural 
network

72 images N.A. N.A. 99.56%

Issarti et 
al22

2019 851 Pentacam Feedforward 
neural network

19 881 
matrices

97.78% 95.56% 96.56%

Current 543 CASIA Convolutional 
neural network

Six colour-
coded maps

100% 98.4% 99.1%

AUROC, area under receiver operating characteristic; UHR-OCT, ultra-high-resolution optical coherence tomography.

corneal shape, but hide the spatial gradients and distri-
butions of the corneal curvature, elevation, refractive 
power and thickness. In the current study, we used the 
whole images of six colour-coded maps for deep learning, 
instead of topographic and tomographic numeric indices. 
We assume that the use of colour-coded maps has advan-
tages over that of numeric values for machine learning, 
since these colour-coded maps can bring a larger amount 
of corneal information than these numeric values for this 
learning. Contrary to our expectations, the sensitivity to 
detect more advanced keratoconus (grade 2, 3, or 4) was 
lower than that to detect mild keratoconus (grade 1). We 
speculate that the colour-coded maps might not be typical 

for grade 2, 3 and 4, and thus the discrimination between 
grade 2 and grade 3, or that between grade 3 and grade 
4, was still difficult even using this deep learning of these 
colour-coded maps. A further validation using another 
study population is still necessary to clarify this point.

In previous studies, simple multilayer neural networks, 
support vector machines, or decision trees were used for 
machine learning, whereas convolutional neural network 
was applied in our study. We also assume that convolu-
tional neural network has advantages over other machine 
learning methods, since convolutional neural network 
can directly extract the morphological characteristics 
from the obtained images without preliminary learning, 
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and subsequently provide a higher classification preci-
sion, especially in the field of image recognition.

Placido disk-based corneal topography is a highly sensi-
tive and specific diagnostic tool, but it only examines the 
anterior corneal surface. It has been reported that both 
the curvature and the elevation of the posterior corneal 
surface play a vital role in early-stage keratoconus detec-
tion.25–29 Ishii et al28 showed that the cases of lower staging 
had a larger area under the receiver operating charac-
teristic curve in the posterior elevation differences than 
in the anterior elevation differences, suggesting a greater 
diagnostic value of the posterior elevation measurement. 
We29 previously demonstrated that anterior and posterior 
corneal surface height data effectively discriminate kera-
toconus from normal corneas, and may provide useful 
information for improving the diagnostic accuracy of 
keratoconus, especially in the early stage of the disease. 
Interestingly, for a single map analysis, the posterior 
elevation map (0.993) and the posterior curvature map 
(0.869) showed the highest accuracy in discriminating 
between normal and keratoconic eyes and in classifying 
the stage of the disease, respectively, supporting the signif-
icance of posterior corneal information for keratoconus 
detection. Moreover, the AS-OCT may have advantages 
over the Scheimpflug imaging system, in the grading of 
the disease, especially for grade 4 keratoconic eyes.30

There are at least two limitations to this study. One 
limitation is that we used the arithmetic mean outputs 
from these six classifiers, without any weighting. We inves-
tigated some variations to integrate outputs, including 
weighted averaging and machine learning with neural 
network, but the arithmetic mean data without weighting 
resulted in the best accuracy in this study population. 
Another limitation is that we did not include other corneal 
disorders such as forme fruste keratoconus or subclinical 
keratoconus, and did not apply this deep learning to 
other populations. We are currently conducting a new 
study to apply this deep learning to other corneal disor-
ders as well as other populations to confirm the authen-
ticity of our results.

In summary, our results may support the view that deep 
learning using six colour-coded maps obtained from 
the swept-source AS-OCT was effective not only for the 
screening of keratoconus, but also for the grade of the 
disease. It may be an aid for improving the accuracy of 
keratoconus detection in a clinical setting. A further 
study with a large sample size will be helpful to confirm 
our findings.
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