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Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The
autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus
affecting neuromuscular transmission. The major disease subtypes of autoimmune
MG are defined by their antigenic target. The most common target of pathogenic
autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by
muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG
patients present with similar symptoms independent of the underlying subtype of
disease, while the immunopathology is remarkably distinct. Here we highlight these
distinct immune mechanisms that describe both the B cell- and autoantibody-mediated
pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion
of the AChR subtype, we focus on the role of long-lived plasma cells in the
production of pathogenic autoantibodies, the IgG1 subclass mediated pathology,
and contributions of complement. The similarities underlying the immunopathology
of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK
MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG
autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange
(FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate
into two halves and recombine with other half IgG4 molecules resulting in bispecific
antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune
diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating
polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are
emphasized through presentation of biological therapeutics that provide clinical benefit
depending on the MG disease subtype.

Keywords: myasthenia gravis, B cells, B lymphocytes, autoimmunity, immunopathology, autoantibodies,
AChR, MuSK

INTRODUCTION

Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission.
MG patients suffer from muscle weakness and increased muscle fatigability due to diminished
neuromuscular signaling (1, 2). The impairment in autoimmune MG is caused by autoantibodies
that target components of the neuromuscular junction (NMJ) (1). The different subtypes of MG
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are defined by the antigen specificity of the autoantibody
(2, 3). The most common subtype of autoantibody-mediated
MG (approximately 85% of patients) is characterized by
autoantibodies against the nicotinic acetylcholine receptor
(AChR) (2). In the remaining 15% of patients, autoantibodies
targeting muscle-specific kinase (MuSK) (4) or lipoprotein
receptor-related protein 4 (LRP4) (5, 6) can be found. Another
small fraction of patients does not have detectable circulating
autoantibodies to known targets. Accordingly, these patients are
diagnosed as having seronegative MG (SNMG).

Numerous in vitro approaches have substantiated that
autoantibodies against AChR and MuSK in MG are pathogenic
(3, 7–11). Their pathogenic capacity has been further
demonstrated through passive transfer of patient-derived
serum or immunoglobulin (12), maternal-fetal autoantibody
transmission (13, 14), and neonatal transfer (15, 16), all of which
reproduce MG symptoms. The direct role of autoantibodies
in the pathology of MG places it in a rare category of
autoimmune diseases caused by autoantibodies with well-
established pathogenic affects. Accordingly, MG serves as an
archetype for B cell-mediated autoimmune disorders.

Although MG patients with different subtypes share similar
disease presentations, the underlying immunopathology of
several subtypes are remarkably distinct, contradicting the
uniformity in the disease phenotype. MG subtypes share
features broadly associated with MG, which can be elicited
by clinical examination (17, 18). However, without the
results of autoantibody testing in-hand, it is not possible to
uniformly assess the subtype through clinical examination alone.
Thus, autoantibody testing is necessary for establishing
the MG subtype. AChR and MuSK MG, in particular,
highlight the distinct immunopathology of the subtypes.
The immunopathology of AChR MG is characterized by IgG
subclasses (IgG1, IgG2, and IgG3) with effector functions
that can mediate tissue damage at the NMJ. AChR-specific
autoantibodies are thought to originate from long-lived plasma
cells. Conversely, MuSK MG is largely caused by autoantibodies
with an IgG subclass (IgG4) that mediates pathology through
the direct disruption of AChR signaling by interfering with
NMJ protein-protein interactions. Short-lived plasmablasts are
thought to be the source of these autoantibodies (19). These stark
differences in immunopathology have been elucidated through
laboratory-based studies and reinforced through both successful
and failed outcomes in the testing of biological therapeutics.
A deeper understanding of the mechanisms underlying the
differences in immunopathology is highly important for both
the patient and clinician – the accurate determination of
autoantibody-related subtype has important consequences for
care. Treatments that are anticipated to work well in one subtype
may not have a biological basis for use in the other subtype(s).

In this review, we focus on the most common subtypes of
MG. Rare congenital, presynaptic autoimmune, and thymoma-
associated subtypes of MG do exist, but they are not discussed
here and are reviewed elsewhere (20–22). The LRP4 and SNMG
subtypes are presented, but given the limited information
about the underlying immunobiology, they are not emphasized
throughout. Rather, the immunobiology underlying the AChR

and MuSK subtypes of MG are highlighted. Particular attention
is given to AChR and MuSK autoantibody characteristics, B
cell subsets, mechanisms of immunopathology, and the effects
of treatment with biological agents. Insight is drawn from
laboratory-based research using human specimens, clinical trial
outcomes, and parallels to other autoimmune diseases.

IMMUNOPATHOLOGY OF AChR
MYASTHENIA GRAVIS

Characterization of B Cells in AChR
Myasthenia Gravis
AChR MG can be divided into subtypes that are defined, in part,
by age of onset and gender (23, 24). Patients who develop the
disease before the age of 40–50 are often women. This subset
is termed early-onset (EOMG), while those developing disease
after the age of 40–50 fall into the late-onset LOMG category and
are more often men. Patients in the EOMG category generally
have conspicuous morphological changes of their thymus. This is
primarily characterized by follicular hyperplasia and the presence
of B cells and antibody secreting cells that organize into structures
that share the characteristics of germinal centers (25–28). These
structures are observed in approximately 70% of EOMG patients
(29). There is a considerable amount of data that points to a
major role in both the initiation and sustained production of
AChR autoantibodies by B cells in the hyperplastic thymus. It
was found that AChR-specific IgG (30) is present in the thymus
along with activated B cells (31). A fraction of these activated
B cells produces AChR-specific autoantibodies (32–34). The
in vitro production of AChR autoantibodies by thymus-resident
B cells can be spontaneous or driven by mitogens. Cells that
spontaneously produce autoantibodies are most likely resident
plasmablasts or plasma cells – both of which are known to
occupy thymus tissue (32, 33, 35, 36). Thymic B cells requiring
in vitro stimulation to produce autoantibodies are likely memory
B cell populations, which require additional signals in order to
differentiate to an antibody-secreting cell (ASC) phenotype (37,
38). Further confirmation that the thymus contributes to AChR
autoantibody production was achieved through transplantation
of thymus tissue from AChR MG patients into immunodeficient
mice. AChR-specific autoantibodies were observed to deposit
at the NMJ in these mice, demonstrating that AChR MG
thymic tissue is sufficient for the production of AChR-specific
antibodies and can cause muscle weakness in this rodent model
(39). Sequencing of thymic B cell receptor repertoires identified
clonal expansions of B cells in the thymus, although it has not
been established if these expanded clones are specific for AChR
(40, 41). The isolation of AChR-specific mAbs has provided
additional details regarding the nature of the B cell repertoire
producing them. Given that autoantibody-producing B cells
are enriched in the thymus of many AChR MG patients (32,
36), several studies have used thymus tissue to isolate AChR-
specific B cells. Sequencing of the antibody-variable regions
afforded the characterization of these autoreactive B cells. It was
demonstrated that B cells expressing AChR autoantibodies are
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clonally heterogeneous, class switched, and have accumulated
somatic hypermutations (41–43), all of which are properties
of antigen-driven maturation. At this time, a limited set of
human AChR-specific B cells have been isolated. Studies using
newer single cell technologies are certain to provide larger sets,
so that the B cell receptor repertoire characteristics of these
autoantibody-producing cells can be better understood.

In both LOMG and EOMG patients, autoantibody-producing
B cells can occupy other tissue compartments in addition to
the thymus. Using in vitro cell culture approaches, it has been
demonstrated that B cells expressing AChR autoantibodies exist
within the circulation, lymph nodes, and in the bone marrow (44–
48). Other studies have identified autoantibody-producing B cells
in the circulation through production of recombinant human
monoclonal AChR autoantibodies (mAb) from these cells (49).

Properties of AChR-Specific
Autoantibodies
The first recombinant AChR-specific autoantibodies were cloned
from phage display libraries isolated from thymocyte-associated
immunoglobulin sequences (31, 43, 50). Several additional
AChR-specific human-derived mAbs have been produced using a
number of different approaches, including single-cell technology
(49). These recombinant human-derived mAbs emulate the
properties of AChR autoantibodies found in the serum: They
compete for binding to regions of the AChR recognized by
serum-derived autoantibodies (50), and they possess pathogenic
properties demonstrated through passive transfer of MG (49).
These mAbs, coupled with investigations using human serum-
derived AChR autoantibodies, have provided a clear illustration
of the three AChR autoantibody pathogenic mechanisms. The
first pathogenic mechanism is the inhibition of acetylcholine
binding to the AChR. These autoantibodies can block this
interaction by either binding to the same site on the AChR,
or in proximity to the binding site, which results in inhibition
of acetylcholine-dependent signaling at the NMJ (51–53). The
second mechanism is termed antigen modulation, which results
in internalization of the AChR following autoantibody-mediated
crosslinking. Antibodies are structured as dimeric molecules
that have two identical heavy and light chain pairs with two
antigen binding sites and a constant region that determines
the effector function. Monovalent antigen-binding fragments
(Fabs), which are derived from whole antibodies, have one
single antigen binding site. These Fabs have been shown to
lack the ability to crosslink the AChR, while whole antibodies
can crosslink the AChR through bivalent binding with two
binding sites. Subsequent to the receptor crosslinking, there is
internalization of the AChR, which diminishes the number of
receptors at the NMJ (54, 55). Finally, the third pathogenic
mechanism involves the immunoglobulin effector functions of
the AChR autoantibodies. The effector functions of IgG1 and
IgG3 are key properties of their pathogenic capacity. Among
their principle effector functions is the ability to initiate the
complement cascade. AChR autoantibodies are predominantly of
the IgG1 or IgG3 subclass and effectively activate complement,
leading to the formation of the membrane attack complex

and consequent tissue damage at the NMJ (56–59). Early
studies demonstrated that complement-mediated damage to
the postsynaptic NMJ results in reduction of the postsynaptic
junctional folds, elimination of AChR from the membrane, and
an increase in synaptic distance (59, 60). It is unmistakable that
complement plays a key role in AChR MG pathology, given the
successful treatment of patients (61) with complement inhibitors
(discussed below).

Similarities Between Neuromyelitis
Optica and AChR Myasthenia Gravis
Parallels between AChR MG and autoimmune neuromyelitis
optica (NMO) suggest that additional studies on the role of
complement in AChR MG are warranted. Like AChR MG,
NMO is mediated by pathogenic autoantibodies, primarily of the
IgG1 and IgG3 subclasses, that include complement activation
among the mechanisms of autoimmune pathology (62). Studies
of complement in NMO have led to a detailed understanding
of pathogenic mechanisms, which may take place in AChR MG
as well. In NMO, aquaporin-4 (AQP4)-IgGs targeting a distinct
epitope in an extracellular loop, regardless of affinity, enhanced
complement dependent cytotoxicity (CDC). Furthermore,
particular AQP4 isoforms can form supramolecular orthogonal
arrays that arrange in a manner that benefits autoantibody
multimeric complexes supporting Fc-Fc interactions that are
critical for CDC (63). Whether or not a similar phenomenon
may occur in the context of AChR-specific MG has yet to be
explored. However, at the NMJ, the AChR is tightly clustered by
the intracellular scaffolding protein, rapsyn; thus, such organized
formations of self-antigen may support Fc-Fc interactions
facilitating efficient CDC, by AChR autoantibodies recognizing
particular epitopes. Thus, parallels to pathogenic mechanisms
that occur in NMO warrant investigation.

IMMUNOPATHOLOGY OF MuSK
MYASTHENIA GRAVIS

Characterizations of B Cells in MuSK
Myasthenia Gravis
Among the notable differences in the pathophysiology of
MuSK and AChR MG is the role of the thymus in causing
disease. As discussed previously, the thymus is a source for
B cells specific for AChR in patients with AChR MG. While
conspicuous in its pathogenic role in many AChR MG patients,
abnormal thymus histopathology is not observed in patients
with MuSK MG (64, 65). There are very few studies in which
MuSK autoantibody-producing B cells have been identified
and isolated. To date, these B cells have been found only
in the circulation (66) and have a memory B cell or short-
lived circulating plasmablast phenotype (19, 67). The variable
region sequences of these autoantibodies revealed that they
exhibit hallmarks of affinity maturation, including a high
frequency of somatic hypermutation. They are oligoclonal,
but the number of mAbs is currently too limited to draw
firm conclusions about whether or not they share unique
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repertoire properties with each other, such as restricted variable
region gene usage.

Properties of MuSK Myasthenia Gravis
Autoantibodies
MuSK autoantibodies differ from their AChR-specific
counterparts in terms of their subclass. MuSK autoantibodies are
predominantly of the IgG4 subclass (68). Antibodies of the IgG4
subclass have an ambivalent role in immunity. In the context of
allergy, especially studied in beekeepers, IgG4 antibodies dampen
inflammatory reactions by competing with disease-mediating IgE
antibodies for the same antigen, namely phospholipase A2 (69–
71). In addition, beekeepers who were tolerant to bee venom had
increased venom-specific IgG4 levels, while the venom-specific
IgE levels were almost undetectable (69). This change toward
protective IgG4 production seems to be modulated by sensitized
regulatory T and B cells that secrete IL-10, leading to increased
IgG4 and decreased IgE levels (72–74). The protective function
of IgG observed in allergies has also been described in the
autoimmune disease systemic lupus erythematosus (SLE) (75);
the amount of complement deposition was negatively correlated
with the amount of IgG4 antibodies in an in vitro deposition
assay. The mechanism underlying this observation might be
that IgG4 antibodies block and prevent autoantibodies of other
subclasses and their effector functions – a similar approach using
an antibody lacking effector functions called aquaporumab is
currently under development in the treatment of NMO (76).
In contrast to this regulatory and anti-inflammatory aspect of
IgG4 immunology, several autoimmune disorders including
MuSK MG, pemphigus vulgaris (PV), and chronic inflammatory
demyelinating polyneuropathy (CIDP), include pathogenic IgG4
autoantibodies (77–79). IgG4 antibody effector function is clearly
distinct from that of IgG1 antibodies. IgG4 subclass antibodies
cannot activate the complement cascade via the classical pathway
due to their poor affinity for C1q and Fc receptors (80–82). Thus,
similar to the observed protective functions of IgG4 antibodies,
MuSK autoantibodies exert their pathogenicity through blocking
the interaction between MuSK and LRP4 that is required for the
clustering of the AChR (83, 84).

An intriguing feature of human IgG4 antibodies is their
exclusive ability to participate in “Fab-arm exchange” (Figure 1)
(85). Fab-arm exchange (FAE) is a process whereby antibodies
can dissociate to produce two identical half molecules each
formed of a heavy chain and a light chain (Figure 1). These
half molecules can then recombine, producing antibodies with
two distinct variable regions which cannot crosslink identical
antigens and are therefore functionally monovalent. FAE has
been shown to play an important role in the immunopathology of
MuSK MG (84). The mechanism of FAE is not fully understood,
but key amino acid residues and conditions required for the
exchange process have been elucidated. The Fc region plays a
key role in the process of FAE. Two major interactions between
the Fc regions are crucial for holding the two parts of the
IgG molecule together: interchain disulfide bonds in the core
hinge region and non-covalent interactions in the third constant
heavy domain (CH3) of the respective chains (85, 86). Specific

amino acids at these sites in the IgG4 molecule facilitate the
dissociation of the two halves of the antibody and enable FAE.
Although the sequences of the different IgG subclasses share
similarities, some small changes have a large effect on the stability
of the IgG molecule. The core hinge region in IgG1 contains
the motif 226cys-pro-pro-cys-pro230 which confers stability. By
contrast, IgG4 contains a serine at position 228 which enhances
hinge flexibility and promotes dissociation of the molecule (87).
Site-directed mutagenesis studies have shown that replacing the
endogenous serine with a proline at position 228 in IgG4 reduces
the formation of half molecules (88, 89) and prevents FAE
from occurring in vivo and in vitro (89–91). Moreover, non-
covalent interactions in the third constant (CH3) domain play
a vital role in holding the two chains together (87). The lysine
at position 409 in the CH3 region of IgG1 contributes to the
stability of the molecule. Mutating this lysine to an arginine
residue has been shown to destabilize the interchain links and
lead to its dissociation into half molecules (92–95). Mutating
lysine to arginine may not appear to be a particularly significant
substitution but it should be noted that there are there are other
examples of this mutation having rather profound effects in vivo
(96, 97). Producing an arginine-to-lysine mutation in IgG4 CH3
was shown to cause a 10- to 100-fold change in the dissociation
constant, which was enough to make the difference between
enabling and inhibiting FAE (86, 98). FAE can occur under
certain physiological conditions. Under non-reducing conditions
IgG4 acts as a regular bivalent antibody (99). IgG4 can participate
in half molecule exchange only under reducing conditions, which
can be induced in vitro with low concentrations of the reducing
agent glutathione (GSH) (85, 100). It is thought that the reduction
of interchain disulfide bonds in the hinge region is a pre-requisite
step for FAE (87, 101). Moreover, the reaction occurs more
efficiently at physiological temperatures rather than at room
temperature (85). Other factors contributing to FAE alongside
amino-acid sequence, temperature, and reducing environment
have been considered (e.g., time course for exchange, IgG ratio,
and concentration of antibody), however, these factors have not
been explored in depth (86, 102, 103). It was also found that
plasma components have only a minor effect on the extent and
duration of FAE in vitro (103).

Comparison Between MuSK Myasthenia
Gravis, Pemphigus Vulgaris, and Chronic
Inflammatory Demyelinating
Polyneuropathy
MuSK MG shares several features with other autoimmune
diseases like PV and CIDP. PV is an autoimmune disorder
characterized by autoantibodies that target integral parts within
the skin structure that are important for cell adhesion (104–
108), most often desmoglein 1 and desmoglein 3 (109, 110).
Consequently, PV manifests with skin blisters, often involving
the oral mucosal membrane (111). CIDP patients present
similarly to MG with muscle weakness. CIDP is a heterogeneous
autoimmune disease affecting peripheral nerves. Autoantibodies
in CIDP interrupt the conduction along the nerves (112), in
contrast to MG where the immunopathology is located at the
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FIGURE 1 | Schematic of IgG4 Fab-arm exchange in MuSK MG. Human IgG4
antibodies can participate in a process termed Fab-arm exchange. In the
MuSK autoantibody subtype of MG, MuSK-specific IgG4 autoantibodies can
undergo Fab-arm exchange with other circulating IgG4 antibodies. The
antibodies that were formerly divalent – with two identical antigen binding
sites – become monovalent and bispecific after a heavy and light chain pair is
switched with a heavy and light chain pair of another antibody. The process is
thought to be critical for the development of pathogenic autoantibodies in
MuSK MG.

NMJ. CIDP autoantibodies have been found to target contactin
1, neurofascin, and other self-antigens, which are associated
with the node of Ranvier (79, 113). The autoantibodies in
PV and CIDP are predominantly of the IgG4 subclass; thus
sharing a key feature with MuSK MG (77–79). However, the
only disease in which FAE has, to date, been shown to play a
role in is MuSK MG (84). Yet, evidence is available showing
that FAE may be a common occurrence in human biology.
The biological therapeutic natalizumab was engineered using
the IgG4 subclass; it has a wildtype core hinge region that
does not contain the stabilizing serine to proline mutation at
position 228 (114). It has been shown that natalizumab exchanges
Fab-arms with endogenous human IgG4 in natalizumab-treated
individuals (114). However, the role of FAE in healthy individuals
is currently not known.

FAE plays a key role in the pathogenicity of MuSK
autoantibodies. Several passive transfer models have shown that
the IgG4 autoantibodies in MuSK MG are pathogenic in vivo
(115, 116) and that serum-derived IgG4 autoantibodies are also
pathogenic after Fab-arm exchange using an established in vitro
assay (117). Using monoclonal patient isolated autoantibodies,
we and others recently found that divalent MuSK autoantibodies
could slightly induce agrin-independent AChR clustering by
crosslinking MuSK at the NMJ leading to autophosphorylation
of MuSK (66, 67). A stronger pathogenic effect of isolated MuSK
autoantibodies was observed by testing these as monovalent Fabs
(thus emulating FAE products); the monovalent Fabs could not
crosslink MuSK on the cell surface and exerted their pathology
through blocking the MuSK and LRP4 interaction, leading to a
robust reduction in AChR clusters (66, 115–118).

The effect of valency on pathogenic autoantibodies in CIDP
is not known at this time. The pathogenic effect of monovalent
Fabs has been demonstrated for PV (119–122), but pathogenic
autoantibodies in PV can be divalent as well, indicating that
pathogenicity is not dependent on FAE as it is in MuSK
MG. That FAE appears to be necessary for efficient pathology
in MuSK MG, but not PV, may be explained by the very
different functional contributions each of the antigen targets

make to the cells in which they are expressed. MuSK is a
transmembrane kinase, responsible for delivering a signal to
induce AChR clustering. Desmogleins are adhesion-molecule
superfamily members that mitigate cell-to-cell interactions.
Therefore, when MuSK is crosslinked by a divalent autoantibody,
which induces phosphorylation, the resulting affect is agonistic
(signal delivered), and that is coupled with the blocking of the
interaction between LPR4 and MuSK. When the autoantibody
is monovalent (after FAE), the only effect is blocking LPR4
interaction and consequential pathology due to failed signaling
for AChR clustering. On the other hand, in PV, autoantibody
binding to the desmogleins interrupts their binding to partners;
thus, monovalent or divalent autoantibody binding equally effect
interference. Overall, not enough mechanistic detail is available
regarding the role of FAE in CIDP, PV, and most intriguingly,
normal immune responses in healthy individuals.

Finally, similarities in the immunopathology of CIDP, PV, and
MuSK MG are also observed in responses to treatment. Patients
with all three diseases respond very well to the treatment with the
B cell depleting drug rituximab (123–125), the benefit of which
can last for years (126). This effect seems to be common among
autoimmune diseases that are mediated by IgG4 and is further
discussed below.

LRP4 AND SERONEGATIVE
MYASTHENIA GRAVIS

Compared to what we know about AChR MG, there is a
scarcity of information concerning the immunopathology of
LRP4 MG and SNMG. However, that which is understood of
the immune mechanisms contributing to LRP4 MG indicate
that similarities to AChR MG can be found. Autoantibodies
against LRP4 have been found in patients who were previously
identified as seronegative (6, 127, 128). These autoantibodies
were shown to disrupt the Agrin-LRP4 signaling and to be mainly
of the complement activating IgG1 subclass (6). In contrast to
findings, which show that that AChR and MuSK autoantibodies
are specific for MG (129), LRP4 antibodies appear to cross
disease boundaries. For example, LRP4 autoantibodies have been
detected in some patients with amyotrophic lateral sclerosis
(ALS) who presented with myasthenic symptoms (130, 131).
The role of the thymus in LRP4 MG was recently investigated
in a small pilot study (132). This study showed that there
was a heterogeneity in thymus morphology among the four
tested patients. Two out of these four patients seemed to
benefit from thymectomy after a one-year follow up, while
one of those two patients needed no additional treatment
after thymectomy. Overall, there have been few investigations
of the immunopathology that contributes to LPR4 MG, and
thus caution should be taken such as not to generalize
these early findings.

Some patients originally categorized as seronegative were later
found to have detectable AChR, MuSK, or LRP4 autoantibodies
due to either improved test sensitivity or increased titers above
the lower limit reference on repeat measurement (133). Other
SNMG patients remain defined by the absence of detectable
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autoantibodies. This could be the consequence of sensitivity
limitations within our current detection assays or due to the
fact that other unidentified autoantigens are present within these
patients. Indeed, when highly sensitive cell-based assays (CBAs)
were introduced for the detection of AChR autoantibodies, a
number of SNMG cases tested positive for circulating AChR
autoantibodies. Similarly, both MuSK MG and LRP4 MG were
identified through investigating novel targets in SNMG patients.
Several new autoantibody targets within the NMJ, including
agrin, collagen Q, cortactin, and the voltage-gated potassium
channel, Kv1.4, have been proposed (134–138); however, these
autoantibodies have not, as yet, been shown to have pathogenic
capacity. Autoantibodies against the intracellular proteins, titin,
and the ryanodine receptor were found to be potential candidate
biomarkers for disease monitoring in MG (139–141). These
autoantibodies together with other striational autoantibodies
have been observed in patients with MG (142), however,
their direct contribution to pathogenicity is unlikely, given the
intracellular location of their targets.

Some SNMG patients respond to immunosuppression, IVIG,
and plasmaphereses, which indicates that an autoantibody-
mediated mechanism may contribute to the pathology (143,
144). The effect of thymectomy in SNMG is not clear. Some
studies found positive therapeutic effects similar to seropositive
MG (145–147), while other studies failed to show a beneficial
effect (144, 148). Optimal treatment paradigms and outcomes
for SNMG patients are uncertain. Further compounding
the problem, SNMG patients are often not included in
clinical trials in which autoantibody-positive patients participate.
Consequently, these patients are not managed with standardized
treatment approaches due to a lack of understanding of the
disease mechanisms. It is reasonable to suspect that SNMG
is, in many cases, a misnomer. Rather SNMG is likely a
heterogeneous disease consisting of patients who have pathogenic
autoantibodies directed against indeterminate NMJ targets, or
known autoantibodies (AChR, MuSK, or LRP4) that are below
the level of detection with current commercial diagnostic tests.

THERAPEUTIC INTERVENTION
FURTHER HIGHLIGHTS THE DIVERGENT
IMMUNOPATHOLOGY OF AChR AND
MuSK MYASTHENIA GRAVIS

The current standard of care for the treatment of MG largely
targets MG symptoms rather than specific immune components
underlying the disease subtypes. Immunosuppressive agents (i.e.,
corticosteroids) are used most often for this purpose (149).
Cholinesterase inhibitors, such as pyridostigmine, prevent the
degradation of acetylcholine and thus increase its availability
at the NMJ, thus improving neuromuscular transmission (150–
153). Some patients do not respond well to these therapies due
to side effects or incomplete clinical benefit. Approaches that
more directly target the immune system have recently shown
promising effects. While such immune-modifying biologics in
MG have proven to be therapeutically beneficial, they have

also provided a unique opportunity to further understand MG
immunopathology. Laboratory-based study of patient-derived
material before and after such therapeutic interventions have
been leveraged to provide immunomechanistic detail that would
otherwise not be possible in laboratory-based translational
investigations. These include B cell depletion, inhibition of
complement, targeting the BAFF/APRIL system, resection of the
thymus, and interruption of IgG recycling.

Thymectomy
Thymectomy is a well-established treatment option in AChR MG.
Even before experimental studies demonstrated the possibility
that thymus resident B cells could produce AChR-specific
autoantibodies, removal of the thymus had already been widely
accepted as a treatment option for AChR MG (154, 155).
Recently, thymectomy was formally confirmed to be beneficial in
AChR MG patients compared to treatment with corticosteroids
alone (156, 157). The thymus of around 70% of AChR MG
patients is hyperplastic and populated by B and T cells, while
the thymus of healthy subjects is involuted by adulthood (158,
159). Thymectomy was shown to generally lead to a reduction in
overall AChR autoantibody titer, although AChR autoantibody
titers almost never become undetectable (160, 161). In a subset of
patients, only modest decreases of the AChR titer can be found
(162). Whether patients with modest changes in AChR titer are
less likely to go into remission is not known yet (160). About
half (40–50%) of AChR patients experience long-term remission
without relapse following thymectomy when followed for up to
20 years post-procedure (163, 164). While clinical improvement
is observed in half the patients following thymectomy, complete
remission is not achieved in many patients.

It is not clear why there is a heterogeneous response
to thymectomy. Several retrospective studies explored factors
associated with non-remission after thymectomy (162–164).
Non-ocular MG (164), thymoma (162–164), specific surgical
techniques (162, 163), duration of disease prior to resection (162),
and age (163) have all been associated with a failure to respond to
thymectomy. A series of studies have noted the failure of specific
thymectomy approaches to remove the entire thymus, resulting
in residual thymus tissue and symptoms (165, 166).

The thymus may be the site in which AChR B cells are initially
activated and then mature. It is reasonable to speculate that
autoantibody-producing B cell clones residing in the thymus
can also populate compartments in the periphery. Consequently,
surgical resection removes autoantibody-producing B cells but
those which have emigrated from the thymus may continue
to contribute to disease. The distribution of pathogenic AChR
autoantibody-producing cells in anatomic compartments aside
from the thymus, such as in the lymph nodes and bone marrow
of patients with AChR MG (44, 45), must be considered. While
thymectomy will remove a large fraction of thymus-resident
autoreactive B cells and the cells that support their development,
this treatment is performed only once the disease is established.
This may be too late to halt disease progression, as those
thymic B cells that have emigrated contribute to ongoing disease.
Accordingly, combination therapies aimed at targeting residual
thymus-related B cells may prove to be a valuable part of a
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potential therapeutic strategy. The use of B cell depleting agents
such as rituximab – currently used for the treatment of MG –
may fit this approach well. While no controlled studies have
specifically investigated the effect of B cell depletion following
thymectomy, there is some evidence (167) showing that patients
who underwent thymectomy respond to rituximab similarly to
those who did not have the surgery. Firm conclusions cannot
be drawn from restricted numbers of patients, but these data
may again point toward the key role of rituximab-resistant
plasma cells in AChR autoantibody production. Accordingly,
consideration may also be given to anti-CD19 based treatments
that would additionally target plasma cells thought to be spared
by rituximab (168).

While it is clear that thymectomy depletes a population of
B cells that secrete AChR-specific autoantibodies, it is unclear
if therapeutic benefit arises from the removal of pathogenic B
cells alone. That thymectomy includes the removal of pathogenic
T cells, including Tregs that are defective in suppressing T
cell proliferation and conventional T cells that resist Treg-
mediated suppression (169), supports the idea that non-B cell
related disease mechanisms may be interrupted by the procedure.
Abnormal thymus histopathology is not observed in patients with
MuSK MG (64, 65). Given the positive effect of thymectomy
on AChR MG, including cases without measurable thymic
abnormalities (170), thymectomy has been applied as a treatment
option for MuSK MG. However, thymectomy has not been
demonstrated to improve clinical outcomes for MuSK MG
patients (170, 171). Consequently, thymectomy is a possible
therapy for AChR MG only – regardless of the presence or
absence of thymic abnormalities.

B Cell Targeting Therapies
Anti-CD20 and Anti-CD19 Antibodies
CD20 is a surface molecule that is expressed on B cells at almost
every step of B cell differentiation. Only pro B, pre B I, and
plasma cells do not express CD20 (172). The anti-CD20 mAb
rituximab (RTX) is currently a treatment option for MuSK MG
and has been trialed for the treatment of AChR MG. A case
report on the successful treatment of AChR MG in a patient
treated for non-Hodgkin’s lymphoma offered the first evidence
in support of the use of B cell depletion therapy in MG (173).
Several groups have subsequently investigated the efficacy of
RTX in the treatment of AChR and MuSK MG (125, 174,
175). These studies have demonstrated 100% complete stable
remission for the use of RTX in MuSK MG (125, 174), while
56% of AChR patients experienced a relapse within an average
of 36 months after treatment – a finding that was replicated
in another similar independent study (125, 167). Although
MuSK MG patients respond very well to treatment with RTX,
relapses do occur, and the relapse rate is dependent on the
applied RTX treatment protocol (176). Consistent reductions
in AChR autoantibody titers and clinical improvement were
demonstrated in a cohort study involving six patients (174).
These results were similar to those from an independent study
demonstrating symptomatic improvement for AChR patients
undergoing therapy; however, no corresponding fall in AChR
autoantibody titer was observed (125).

In general, there is a poor correlation between the titer
of AChR-specific autoantibodies and overall clinical progress
(125). The titer of MuSK autoantibodies associates with the
clinical improvement observed after B cell depletion therapy,
the same is not true in AChR MG. These contrasting results
are well highlighted by a study (125) that demonstrated clear
clinical improvement in both AChR and MuSK MG, but only
MuSK autoantibody titers diminished, while intra-patient AChR
autoantibody titers increased, decreased, or stayed the same.
The poor correlation with clinical severity has been known
since the earliest initial studies that established the use of assays
measuring AChR autoantibody titers (160). This likely reflects
the polyclonal nature of anti-AChR antibodies, their different
specificities, subclasses, local concentrations and complement,
modulating, and blocking activity. It is important to point
out that the assays used to diagnose MG by measuring AChR
binding, provide no information whatsoever on their pathogenic
capacity. It is possible that a fraction of autoantibodies that
bind in the laboratory assays have little pathogenic capacity
in vivo. Furthermore, circulating AChR autoantibodies, by
definition, are not present at the site where the disease
pathology occurs (the NMJ). Combinations of these factors
may contribute to a disassociation between circulating titer and
disease severity. However, several studies have shown that intra-
patient longitudinal AChR autoantibody titers may correlate
with disease severity progress (160, 177). Establishing the use
of relative – as opposed to absolute – AChR autoantibody as a
trial endpoint may prove to be a useful biomarker in the future.
Given that the RIA or CBA used to diagnose patients and provide
AChR titer values are wholly unable to discriminate between
the detection of these autoantibodies and their pathogenic
properties, applying an assay suite that can quantitate the
extent of AChR autoantibody-mediated complement activation,
blocking, or modulating within an individual patient may
associate with disease severity better than simple AChR binding
titer measurements.

Recently, a phase-2 trial called BeatMG, designed to test the
efficacy of RTX treatment in AChR patients with mild to severe
disease, ended (ClinicalTrials.gov Identifier: NCT02110706),
while a phase-3 trial called RINOMAX is currently in
progress with patients that have moderate to severe disease
(ClinicalTrials.gov Identifier: NCT02950155). The BeatMG study
showed slightly favorable effects of treatment with rituximab
especially in patients with more severe courses of disease,
although there was no statistical difference between the rituximab
and placebo groups (178). The data from the clinical trials
aimed at investigating the efficacy of RTX in MuSK and AChR
MG offer unique insight into the distinct immunopathology of
these two MG subtypes (125, 167, 174). In general, RTX does
not efficiently deplete tissue-localized B cells in lymph nodes,
tonsils, and bone marrow (179–182). Moreover, RTX has been
particularly efficacious in diseases mediated by pathogenic IgG4
antibodies such as PV, and CIDP in addition to MuSK MG (124,
183). Long-lived plasma cells populations residing in the thymus
produce some of the circulating AChR-specific autoantibodies;
plasma cells express low levels of CD20 (32, 34). In contrast,
circulating plasmablasts, such as those that secrete MuSK-specific
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autoantibodies, typically express higher levels of CD20 than
their tissue resident plasma cell counterparts (19, 184), although
some refractory B cell clones were found to emerge during
relapse in MuSK MG after treatment with RTX (185). Thus,
differences in the efficacy of RTX in AChR and MuSK MG may
reflect differences in the tissue localization of disease-causing B
cell subsets and/or the susceptibility of different autoantibody-
producing B cell subsets (plasmablasts in MuSK MG and plasma
cells in AChR MG, each expressing different levels of CD20) to
anti-CD20 depletion.

Although it is well-understood that MuSK MG patients
responds remarkably well to B cell depletion therapy, there
are patients who respond less well to this treatment and a
small fraction who do not improve (186). This highlights the
heterogeneity that is invariably observed among MG patients.
While it is not understood why non-responders have emerged,
one can speculate that some MuSK patients may produce
autoantibodies from a subset of B cells that do not express
CD20, such as plasma cells as in AChR MG, or they utilize
plasmablasts with low surface CD20 expression levels. Other
possible mechanisms include diminished complement activity,
the mechanism by which anti-CD20 mediates cell death.

Alternative strategies of B cell depletion therapy have recently
emerged, including mAbs targeting CD19. CD19 is a gene surface
marker that is expressed over a wider range of B cell subsets
than CD20. CD19 is expressed before the expression of CD20
in pro-B cells and declines after the expression of CD20 in
plasma cells. A larger proportion of plasma cells expresses CD19
in comparison to CD20 (187). Thus, anti-CD19 agents could
potentially enhance the depletion of disease-causing plasma cell

TABLE 1 | Autoimmune characteristics differentiating AChR and MuSK MG
subsets and consequent response to immunomodulating therapies.

AChR MG subtype MuSK MG subtype

Immunomechanisms

Thymus Hyperplasia (in a
subset)

Normal

Autoantibody IgG
subclass

IgG1 and IgG3 IgG4

Role for complement Major Not significant

B cell subtype
responsible for
autoantibody
production

CD20neg Plasma cells Plasmablasts

Treatment response

Thymectomy Clinical benefit Clinical benefit not
observed

Complement inhibitors Clinical benefit Clinical benefit not
expected

Anti-CD20 (rituximab) Some clinical benefit Clinical benefit
observed

FcRn inhibition Clinical benefit
expected

Clinical benefit
expected

Anti-CD19 Clinical benefit
expected

Clinical benefit
expected

Proteasome inhibitors Clinical benefit
expected

Clinical benefit not
expected

populations. MEDI-155 or inebilizumab is an IgG monoclonal
antibody that was initially demonstrated to be more effective
than anti-CD20 depletion in EAE, a mouse model for multiple
sclerosis (188, 189). This study showed that the improved efficacy
of anti-CD19 depletion could be explained by the depletion of
plasma cells in the bone marrow. Consequently, two phase 1
trials were initiated for its use in relapsing-remitting multiple
sclerosis (190) and systemic sclerosis (191) with promising
results. Moreover, a phase-2/3 clinical trial was initiated for its
use in the treatment of NMO called NM-omentum (192). The
NM-omentum trial showed a clear efficacy of the treatment
with anti-CD19 over placebo (168). The treatment with anti-
CD19 therapy is a possible option for both MuSK and AChR
MG. In comparison to anti-CD20 based therapy, targeting CD19
could have an increased effect on the AChR autoantibody-
producing B cell subsets.

Proteasome Inhibitors
Given that plasma cells are suspected of playing an important
role in the production of disease-causing autoantibodies in AChR
MG, direct plasma cell depletion with proteasome inhibitors has
been proposed for the treatment of this MG disease subtype.
Bortezomib is such a proteasome inhibitor, and it was shown that
it could directly deplete plasma cells (193–195). The proteasome
is connected to cell homeostasis and promotes protein clearance
of cell apoptosis associated and misfolded proteins (196).
Bortezomib was demonstrated to be efficacious for the treatment
of hematologic autoimmune diseases such as autoimmune
hemolytic anemia (AIHA), immune thrombocytopenia (ITP),
and thrombotic thrombocytopenic purpura (TTP) in a phase-2
trial (197). Bortezomib (198) and other proteasome inhibitors
(199) were first shown to be beneficial in EAMG, a mouse
model for MG. Moreover, in vitro studies of AChR MG patients
showed that bortezomib can eliminate thymus-derived plasma
cell populations, reducing pathogenic IgG as well as total IgG
levels (194). Consequently, a phase-2 trial called TAVAB that
investigated the use of bortezomib in generalized AChR MG,
rheumatoid arthritis (RA), and SLE was initiated in 2014,
although results are still not yet available (ClinicalTrials.gov
Identifier: NCT02102594) (200). The plasmablasts that are
thought to produce autoantibodies in MuSK MG are not targeted
by proteasome inhibitors. Accordingly, proteasome inhibitors
may be a possible treatment option for AChR MG only.

Targeting the BAFF/APRIL System
The survival of B-cells is regulated in part by the BAFF/APRIL
system. This system consists of the two ligands B-cell activating
factor (BAFF/BLyS/TALL-1) and a proliferation-inducing ligand
(APRIL), and the three receptors, B-cell activating factor receptor
(BAFF-R), B-cell maturation Ag (BCMA), and transmembrane
activator and CAML interactor (TACI) (201). BAFF and APRIL
are B cell stimulatory molecules that promote B cell proliferation,
autoimmunity, somatic hypermutation and mediate B cell
survival (202). The BAFF/APRIL system is a highly balanced
system controlling B cell survival and proliferation. High levels
of BAFF lead to an imbalance towards B cell proliferation. The
occurrence of high levels of ligands and soluble receptors of the
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FIGURE 2 | Speculative mechanisms of AChR MG immunopathology. The proposed mechanistic path to autoantibody production in AChR MG begins with naïve B
cells (Steps A and B), which likely encounter self-antigen(s) and receive T cell help in the thymus (C). They can then differentiate into autoantibody specific memory B
cells (D), which can be activated into antibody-secreting short-lived plasmablasts (E) or antibody-secreting long-lived plasma cells (F), which reside in the bone
marrow (F1) and may also be present in the thymus (F2) of some patients with AChR MG. It is thought that long-lived plasma cells in the bone marrow and thymus
make major contributions to AChR autoantibody production. Autoantibodies migrate to the NMJ where they bind to the AChR hindering the neuromuscular
transmission by directly interrupting acetylcholine signaling at the AChR. Most of the antibodies are of the IgG1 subclass which can induce the complement
cascade. Several therapeutic strategies target different parts of this process in AChR MG. Thymectomy is thought to directly remove autoantibody-producing B cell
and other pathogenic cell subsets. B cell depletion, mediated by anti-CD20 antibodies is thought to remove autoreactive B cells, which includes memory cells and a
subset of plasmablasts. Anti-CD19 antibodies can additionally target further subsets of plasmablasts and subsets of plasma cells. Proteasome inhibitors target
plasma cells and may target the disease-causing long-lived plasma cells more efficiently. FcRn inhibitors increase the elimination of circulating IgGs, which is
expected to also reduce the levels of pathogenic autoantibodies. Inhibiting complement activity, with complement inhibitors, results in the disruption of the
pathogenic effector functions mediated by AChR autoantibodies.

BAFF/APRIL system is associated with B cell pathologies (203–
206) and high levels of BAFF are linked to autoimmunity (203,
207, 208). The anti-BAFF antibody belimumab was shown to
be efficacious in the treatment of SLE in a phase-3 randomized
controlled trial and it was approved by the FDA for the treatment
of SLE (209). Elevated serum BAFF levels have been observed
in both AChR MG and MuSK MG patients, and BAFF levels
were shown to correlate with autoantibody titer (210–212).
The results from a recent randomized controlled trial on the
use of belimumab in AChR MG, however, failed to meet the
primary endpoint of a change in quantitative myasthenia gravis
(QMG) score (213). High serum BAFF levels have been shown to
correlate with poor responses to rituximab in RA and Sjogren’s
disease, raising the possibility that combination therapy with B

cell depleting agents may hold promise (81, 214, 215). Several
other approaches targeting the BAFF/APRIL system have been
investigated, including atacicept (a soluble decoy receptor for
BAFF and APRIL) which showed beneficial effects in SLE and RA
(216–218). However, adverse effects in its use for the treatment
of multiple sclerosis indicate that it may have a more complex
role within the immune system (219). Additionally, γ-secretase
inhibitors were recently described as an add-on therapy for
multiple myeloma, as the inhibition of the shedding of BCMA
was shown to work synergistically with CAR-T cell therapy (220).
BAFF-R, BCMA, and TACI are expressed differently during all
steps of B cell development (172). Consequently, targeting the
BAFF/APRIL system is a potential therapeutic avenue for both
MuSK and AChR MG.
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FIGURE 3 | Speculative mechanisms of MuSK MG immunopathology. The proposed mechanistic path to autoantibody production in MuSK MG begins with naïve B
cells (Steps A and B), which likely encounter self-antigen(s) and receive T cell help in the lymphoid tissue (C). They then differentiate into memory B cells (D) and
antibody-secreting plasmablasts (E). Most autoantibodies in MuSK MG are of the IgG4 subclass. Antibodies of the IgG4 subclass can undergo the process of
Fab-arm exchange with other antibodies of the IgG4 subclass. Consequently, the divalent mono-specific MuSK autoantibodies become monovalent bispecific
autoantibodies. These autoantibodies migrate to the neuromuscular junction where they bind to MuSK hindering the neuromuscular transmission by blocking the
LRP4 and MuSK pathway which is important for the clustering of the AChR. Several therapeutic strategies target different parts of this process in MuSK MG. B cell
depletion by anti-CD20 antibodies is thought to remove B cells expressing CD20 which includes memory cells and a subset of plasmablasts. Anti CD19 antibodies
can additionally target further subsets of plasmablasts. FcRn inhibitors increase the elimination of circulating IgGs, which is expected to also reduce the levels of
pathogenic autoantibodies.

Complement Inhibitors
AChR MG autoantibodies are mainly of the complement-
inducing IgG1 subclass. Accordingly, the complement system has
been shown to be an effective target for the treatment of AChR
MG. Two different therapies are available and have been tested in
refractory AChR positive generalized MG. The first, eculizumab,
is a humanized mAb that binds to C5 and thus inhibits
the terminal complement pathway (221). Eculizumab showed
positive effects in paroxysmal nocturnal hemoglobinuria (PNH)
(222, 223) and was shown to be beneficial in atypical hemolytic
uremic syndrome (aHUS) (224–226). Additionally, eculizumab
was successfully tested in a clinical trial for the treatment
of NMO with a primary endpoint of total relapse frequency
(PREVENT Study; ClinicalTrials.gov Identifier: NCT01997229)
(227, 228). After a promising pilot phase-2 trial of eculizumab
in AChR positive generalized MG (229, 230), a phase-3 clinical
trial of eculizumab was initiated (REGAIN; ClinicalTrials.gov
Identifier: NCT01997229) (231, 232). Although the study did
not achieve its primary endpoint of a statistical difference in
the Myasthenia Gravis-specific Activities of Daily Living scale
(MG-ADL) score for patients, additional sensitivity analyses

of different MG-related scores including the MG-ADL showed
improvements in the eculizumab group in comparison to
the placebo group. Therefore, eculizumab was approved for
the treatment of generalized AChR MG. Pointing again to
heterogeneity within MG patient subtypes, it was interesting
to observe that in the phase-3 clinical trial, 40% of AChR
autoantibody-positive patients did not meet the trial endpoint.
Furthermore, it is now appreciated that some patients have a
conspicuous and rapid response to eculizumab, while others do
not respond or have a more protracted improvement. These
results may reflect heterogeneity among patients in terms of the
relative fractions of AChR autoantibody-mediated complement
activation, blocking or modulating functions (discussed above).

Zilucoplan – a small molecule (synthetic macrocyclic
peptide) – binds to C5 and inhibits the terminal complement
pathway (233). A phase-2 trial showed significant improvement
in generalized MG patients, leading to the approval of a
phase-3 clinical trial which is currently in progress (RAISE;
ClinicalTrials.gov Identifier: NCT04115293). In contrast to
AChR MG, MuSK MG autoantibodies are mainly of the IgG4
subclass, which does not activate complement (discussed above).
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Thus, treatment with complement inhibitors, at this time, is likely
to be mostly beneficial for AChR MG patients. Treatment of
patients with SNMG or LRP4 MG with complement inhibitors
could provide highly valuable information regarding mechanisms
of immunopathology. In SNMG, beneficial outcomes would
point toward autoantibody-mediated pathology, thus providing
key insight toward understanding this disease subset. In
LRP4 MG such outcomes would further support the role of
complement activating autoantibodies in disease pathology.

FcRn Inhibitors
Human IgG is present at high concentration in serum
(approximately 7–17 mg/mL). The half-life of circulating human
IgG is between 3 and 4 weeks. This high-circulating level and
long half-life are not exclusively dependent on synthesis, but
rather due to continuous salvage and recycling. The IgG recycling
pathway is mediated by the neonatal Fc receptor (FcRn) (234).
FcRn inhibitors, which block the interaction of FcRn with IgGs,
effect degradation and fast clearance of IgGs and are leveraged
as such as therapeutics for IgG-mediated diseases (235). An early
stage trial of one FcRn inhibitor called efgartigimod in patients
with AChR MG showed a reduction in the titer of pathogenic
autoantibodies that was associated with an improvement in
disease severity (ClinicalTrials.gov NCT02965573, EudraCT
2016-002938-73) (236). These findings suggest that FcRn
inhibitors may be a valuable treatment approach for MG.
Although FcRn inhibitors have not yet been formally tested in
MuSK MG, they reduce the circulating levels of all IgG subclasses
(including IgG4) (237). Consequently, this treatment modality
has the potential to be effective in treating MuSK MG as well as
AChR MG. Again, this treatment paradigm could be leveraged
to provide highly valuable information regarding autoantibody-
mediated mechanisms of immunopathology of LRP4 MG and
especially SNMG as discussed above.

CONCLUSION

Translational laboratory-based research and clinical trials have
both provided considerable evidence supporting the idea that the
immunopathology of AChR and MuSK MG is distinct (summary
in Table 1). In general terms, AChR MG is characterized
by a key role for the thymus in its immunopathology
and by autoantibodies of the complement activating IgG1
subclass, which are produced by plasma cells residing in
the bone marrow, thymus, and other tissues (Figure 2). By
comparison, MuSK MG autoantibodies are mainly of the IgG4
subclass, which undergo Fab-arm exchange as a prerequisite for

pathogenic capacity. MuSK MG autoantibodies are thought to
be produced by circulating short-lived plasmablasts (Figure 3).
An understanding of these differences is valuable for defining
different mechanisms that underlie human autoimmune disease.
They are also highly important in considering treatment options,
since an understanding of the immunopathology can inform such
decisions. Within both the AChR and MuSK subtypes, further
heterogeneity in disease course and wide-ranging response
to treatment have both been observed. Furthermore, the
immunomechanisms underlying SNMG and LRP4 MG still
need to be more thoroughly understood. Accordingly, additional
studies directed toward understanding the immunopathology,
which associates with MG subtypes and the heterogeneity within
each subtype, are needed. In such efforts, it is critically important
that clinical trial leadership and laboratory-based translational
research groups form partnerships so that highly valuable
specimens, which provide deep insight into mechanisms, are
properly curated and investigated.
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