
The Landscape of Featured
Metabolism-Related Genes and
Imbalanced Immune Cell Subsets in
Sepsis
Han She1,2, Lei Tan1, Yuanqun Zhou2, Yu Zhu2, Chunhua Ma2, Yue Wu2, Yuanlin Du1,
Liangming Liu2, Yi Hu1*†, Qingxiang Mao1*† and Tao Li2*†

1Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China, 2State Key Laboratory of Trauma,
Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University,
Chongqing, China

Sepsis is a heterogeneous disease state triggered by an uncontrolled inflammatory host
response with high mortality and morbidity in severely ill patients. Unfortunately, the treatment
effectiveness varies among sepsis patients and the underlying mechanisms have yet to be
elucidated. The present aim is to explore featuredmetabolism-related genes thatmay become
the biomarkers in patients with sepsis. In this study, differentially expressed genes (DEGs)
between sepsis and non-sepsis in whole blood samples were identified using two previously
published datasets (GSE95233 and GSE54514). A total of 66 common DEGs were
determined, namely, 52 upregulated and 14 downregulated DEGs. The Gene Set
Enrichment Analysis (GSEA) results indicated that these DEGs participated in several
metabolic processes including carbohydrate derivative, lipid, organic acid synthesis
oxidation reduction, and small-molecule biosynthesis in patients with sepsis.
Subsequently, a total of 8 hub genes were screened in the module with the highest score
from the Cytoscape plugin cytoHubba. Further study showed that these hub DEGs may be
robust markers for sepsis with high area under receiver operating characteristic curve
(AUROC). The diagnostic values of these hub genes were further validated in myocardial
tissues of septic rats and normal controls by untargeted metabolomics analysis using liquid
chromatography-mass spectrometry (LC-MS). Immune cell infiltration analysis revealed that
different infiltration patterns were mainly characterized by B cells, T cells, NK cells, monocytes,
macrophages, dendritics, eosinophils, and neutrophils between sepsis patients and normal
controls. This study indicates that metabolic hub genes may be hopeful biomarkers for
prognosis prediction and precise treatment in sepsis patients.
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INTRODUCTION

Sepsis, a life-threatening organ dysfunction induced by an exaggerated, uncontrollable immune
response to an infection, is one of the major public health concerns with high hospitalization and
mortality rate (Singer et al., 2016; Scott, 2017). According to a systematic review extrapolated from
published population estimates to the global population, approximately 30 million sepsis episodes
and 6 million sepsis-related mortality occur per year (Fleischmann et al., 2016). In mainland China,
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sepsis affects one-fifth of intensive care unit (ICU) admissions
with a 90-day mortality rate of 35.5% (Xie et al., 2020). Despite
enormous international efforts and achievements in multi-
disciplinary approaches, sepsis remains a major contributor to
the growing global burden of morbidity and mortality (Rudd
et al., 2018). Rapid early diagnosis and proper management are
necessary to improve the outcomes in patients with sepsis
(Rhodes et al., 20162017). Besides symptoms and signs for the
early diagnosis of sepsis, available biomarkers are important for
the following treatment of sepsis. Some biological markers have
been established such as lactate, C-reactive protein (CRP),
procalcitonin (PCT), B-type natriuretic peptide (BNP), and
soluble RAGE (sRAGE) in sepsis, while lack of sensitivity and
specificity limit their clinical application (Oberhoffer et al., 1999;
Phua et al., 2008; Hamasaki et al., 2014; Débora Maria da Gomes
Cunha and Yoshio Hamasaki, 2019). It is of prime importance to
identify more effective technologies and specific biomarkers for
sepsis.

The early organ failure of sepsis typically occurs without
grossly evident histological changes, while the metabolic and
immune responses to sepsis occur early and have associations
with organ failure (Michie, 1996; Singer, 2014; Lewis et al., 2016).
Ignorance of changes in cell metabolic and immune functions
may lead to the failure of sepsis treatment (Koutroulis et al.,
2019). Therefore, metabolic and immune biomarkers are needed
to predict prognosis of sepsis.

An increasing number of studies on diseases are focusing on
the role of metabolic changes that occur during the development
of diseases and can also lead to subsequent pathophysiological
changes of diseases. The metabolome, the underlying biochemical
layer of the host’s genome, transcriptome, and proteome, can
reflect all the external and internal cellular activities modulated
throughout all other omic layers (Jacob et al., 2019; Djande et al.,
2020). Given that the metabolome is closely associated with the
phenotype, metabolism-related genes provide new opportunities
for personalized diagnosis, monitoring, and treatment towards
specific pathophysiological mechanisms related to metabolism in
patients (Zhang et al., 2015; Itenov et al., 2018). Among the
mechanisms of sepsis and the development of organ dysfunction,
various molecules and miRNAs have been studied, such as IL-
17A, TLR4, C5a, MIF, miR-132, miR-146, miR-150, and miR-155
(Pop-Began et al., 2014). Metabolic reprogramming has also been
observed early in sepsis and is proposed to be adaptive to limit
additional injury, maintain energy balance, preserve cellular
composition, and prevent DNA damage (Singer et al., 2004).
The use of metabolomics in sepsis patients may provide new
approaches to explore sepsis markers and enable precision
medicine.

Over the last few decades, the diagnostic criteria for sepsis have
being updated periodically, but the primary pathophysiology
remains constant—the presence of inflammation during
disease (Nedeva et al., 2019). However, patients with sepsis
may have distinct inflammatory responses and unique profile
of immune activation against the pathogen (Pinheiro da Silva and
César Machado, 2015). Therefore, the desirable way to decipher
the heterogeneity and advance the treatment of sepsis may be

identifying companion biomarkers for better assessing immune
status and stratifying patients (Venet and Monneret, 2018).

The complex inflammatory responses and metabolism-related
genes during sepsis have not been fully elucidated. Herein, we
integrated two datasets to identify differentially expressed
metabolism-related genes using a support vector machine
(SVM) and further explored the value of these genes in the
diagnosis of sepsis. The immune cell infiltration analysis
between sepsis patients and normal controls were further
performed by CIBERSORT. Metabolic mechanisms underlying
the inflammatory responses during sepsis were also investigated
by using LC-MS to identify potential novel therapeutic targets
and pathways for patients with sepsis.

MATERIALS AND METHODS

Ethics Statement
The study protocol was approved by the Research Council and
Animal Care and Use Committee of the Research Institute of
Surgery, Daping Hospital, ArmyMedical University (No. DHEC-
2012-069). All the animal experiments were performed in
accordance with the principles of the Guide for the Care and
Use of Laboratory Animals set forth by the United States National
Institutes of Health (NIH Publications, 8th edition, 2011).

Animal Management
Adult female and male Sprague–Dawley rats (n = 22) weighing
200–220 g were purchased from the Experimental Animal
Center of the Research Institute of Surgery, Daping
Hospital, Army Medical University. All animals were bred
in the animal facility under filtered positive-pressure
ventilation on a 12:12-h dark/light cycle. The temperature
and relative humidity of the breeding room were
maintained constant at 23–25°C and 55%–65%, respectively.
The rats were allowed to acclimatize for 3 days before use and
they were solid-food restricted with water ad libitum for 8 h
prior to the initiation of surgery.

Sepsis Model Establishment and Sample
Preparation
The rats were randomly divided into two groups: sepsis and
control group. They were anesthetized for the surgical procedure
with sodium pentobarbital (45 mg/kg, i.p.), which is a short-
acting anesthetic agent with limited impact on cardiovascular
functions for anesthesia. Cecal ligation and puncture were
performed to reproduce a previously described sepsis model
(Zhu et al., 2016). Briefly, the cecum was carefully exposed,
ligated after a midline laparotomy, and punctured 0.7 cm from
the distance with a 1.5-mm-diameter triangular needle, allowing
fecal matter to flow into the abdominal cavity freely. After closure
of the abdomen, the rats were returned to the cages with ad
libitum access to food and water. Myocardial tissues were
harvested at 12 h after CLP and samples were stored at −80°C
until analysis.
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Microarray Data
To identify differentially expressed genes (DEGs), the microarray
data for sepsis were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE95233 (Tabone et al., 2018) and
GSE54514 (Parnell et al., 2013). To explore a prognostic gene
expression signature for sepsis, dataset GSE95233 was used as the
training dataset and then applied to verify the performance of the
SVM classifier. Background correction and quantile
normalization were performed using linear models for the
microarray data (LIMMA) software package. All these data
were freely available online.

Screening of Differentially Expressed
Metabolism-Related Genes
The metabolism-related genes were obtained from the Molecular
Signatures database (MSigDB) v7.4 (http://software.
broadinstitute.org/gsea/msigdb) by searching using the term
“metabolism”. The C2sub-collection (c2. cp.kegg.v7.4. symbols.
gmt) was selected as the reference gene set. Next, we extracted the
metabolism-related gene expression matrix from the GSE95233
and GSE54514 datasets using the merge function in R. The
analysis of differentially expressed metabolism-related genes
between sepsis patients and normal controls was conducted
using the LIMMA package implemented in the R statistical
package. The threshold for the identification of DEGs was set
at a p value of <0.05. Then, these DEGs were divided into
upregulated and downregulated DEGs in each dataset.

Functional Enrichment Analysis of DEGs by
DAVID, FunRich, and GSEA
In order to analyze the functions of DEGs, Gene Ontology (GO)
analysis was performed using the DAVID online database. The
biological functions of DEGs were validated by the FunRich
platform. The cellular components, molecular function,
biological process, and biological pathway of these DEGs were
then analyzed by using FunRich platform. p < 0.05 was
considered statistically significant. At the same time, the gene
set enrichment analysis (GSEA) was performed using the GSEA
4.1.0 software. The MSigDB of c2 (c2. cp.kegg.v7.4. symbols.gmt)
was used as the reference gene set in GSEA. The number of
permutations was set to 1,000 and the phenotype labels were high
and low expression. FDR <0.25 and p < 0.05 were set as the cutoff
criteria to confirm significant gene sets.

Analysis of Hub Genes by String and
GeneMANIA
The STRING database (https://string-db.org/) focuses on
collecting, scoring, and integrating known and predicted
protein–protein interaction (PPI) information. We first
conducted a PPI network analysis of differentially expressed
hub genes to explore the potential interactions via STRING.
Next, the most important hub genes were screened using the
Cytoscape software plugin cytoHubba. GeneMANIA (http://

www.genemania.org) is an online analysis tool providing
information to predict the function of genes and gene sets,
protein and genetic interactions, pathways, co-expression, co-
localization, and protein domain similarity of submitted gene
lists. In the present study, GeneMANIA was applied to construct
a gene–gene interaction network for hub genes.

Real-Time Quantitative RT-PCR (qRT-PCR)
RNA was extracted from rat myocardial tissues using TRIzol
reagent according to the manufacturer’s instructions
(Cat#15596018, Thermo). cDNA was synthesized using an RT
reagent Kit with gDNA Eraser (Perfect Real Time) for real-time
quantitative qRT-PCR (Cat#RR047A, Takara). SYBR Premix Ex
Taq II (TliRNaseH Plus) (Cat#RR820B, Takara) was applied to
analyze mRNA expression of hub genes. The relative RNA
expression levels were calculated with the efficiency corrected
2–ΔΔCT method using β-actin as an internal control. Gene-specific
primer pairs used in this experiment are listed in Table1.

Hierarchical Clustering Analysis for Hub
Genes and Support Vector Machine
Classifier Construction
Hierarchical clustering of hub genes was applied to explore the
differences in expression patterns between sepsis patients and
healthy controls in the training dataset GSE95233. The average
linkage method was used to conduct hierarchical clustering and
Pearson correlation method was used to set the clustering
distance in ClustVis (http://biit.cs.ut.ee/clustvis/) (Metsalu and
Vilo, 2015). SVM was used to construct a classification model on
the basis of the optimal feature subset with a 10-fold cross-
validation method for identifying sepsis patients from healthy
controls. A machine learning method that combined SVM with
recursive feature elimination (RFE) was applied to construct a
classifier verifying the hub genes that can discriminate sepsis
patients from normal controls. The receiver operating
characteristic (ROC) curve was constructed, and the area
under the ROC curve (AUC) was calculated in MedCalc
(version 14.10.20, http://www.medcalc.org/).

Analysis of Immune Cell Infiltration
Based on the gene expression matrix, CIBERSORT software was
used to characterize the relative proportion and corresponding
p-value of 22 immune cells in each sample in the training dataset
GSE95233. The statistical significance of the deconvolution

TABLE 1 | PCR primer sequences of hub genes.

Genes Forward primers Reverse primers

Pole4 CTTGGTGAAGGCAGACCCTG AGCACAGCAGTAGGCATCTT
Pold4 ATGGGCCTTGCACAGGTATC AGTGGGTAGAGATGCCAGAGG
Polr21 GATCATCCCAGTTCGCTGCT CATCCCCCTCGGTGTACTCT
Polr2j ACGCTTGCTTGTTCACCATC GGGGTGAGGGACTTTGTAGC
Nme6 CTGCCGGAGGTTTTACCGAG AGGATGTAGGCTCGGATTGG
Nme1 TCTCGGGGAACCTACATCCTG GGCTGTTCAGCTGGGATCAT
Entpd1 TCTCGGGGAACCTACATCCTG GGCTGTTCAGCTGGGATCAT
Adcy3 ATGTTGCACGCCATTTCCTG GGCAAGGAGGCAAACATGAC
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consequences of all cell subsets was reflected by the CIBERSORT
p-value. The number of permutations was set to 1,000, and a
threshold p-value of <0.05 was the criterion for successful
computation of the samples. Then, heatmaps were constructed
to visualize differentially infiltrated immune cells between sepsis
and healthy control. Pearson’s correlation analysis in R software
was used to investigate correlation matrix in all pairs of immune
cells and the association of the hub genes with infiltrating
immune cells, respectively.

Cytoscape
Cytoscape 3.7.2 (https://js.cytoscape.org/) was used to the
visualize biomedical networks composed of metabolic and
gene interactions. MetScape 3 (http://MetScape.ncibi.org) is a
Cytoscape plug-in for building and analyzing networks of genes
and compounds, identifying enriched pathways, and visualizing
changes in metabolite data. The data obtained from metabolites
and the hub genes identified between healthy control and sepsis
patients were imported into MetScape to detect the metabolomics
network regulated by the hub genes.

Metascape
Metascape (http://metascape.org/gp/index.html) was employed
for integrated functional enrichment, gene annotation, and
interactive group analysis. The hub genes were inputted into
Metascape for producing enriched pathways of hub genes.

Metabolomics Profiling
Metabolomics profiling was performed in tissues of septic rats
and sham control by using a UHPLC system (Vanquish, Thermo
Fisher Scientific) with a UPLC BEH Amide column (2.1 mm ×
100 mm, 1.7 μm) coupled to a Q Exactive HFXmass spectrometer
(Orbitrap MS, Thermo, United States). The QE HFX mass
spectrometer was used to acquire MS/MS spectra on
information-dependent acquisition (IDA) mode in the control
of the acquisition software (Xcalibur, Thermo, United States).
The resulting three-dimensional data involving the peak number,
sample name, and normalized peak area were used as the input
for performing principal component analysis (PCA) in the
SIMCA14 software package (Umetrics, Umea, Sweden). The
annotated differently expressed metabolites were illustrated as
a Volcano plot. Chord diagram was applied for biomarker
metabolites depicting distributions and links between potential
metabolites. The expression levels of the significantly changed
metabolites and metabolic pathway analysis between septic rats
and sham group were analyzed by a heatmap and a bubble plot
generated by TBtools (Chen et al., 2020), respectively.

Statistical Analysis
All statistical analyses were performed in SPSS 17.0 (IBM,
United States). The differentially expressed metabolism-related
genes were identified using the Limma package with p < 0.05 as
the criteria. Hierarchical clustering analysis was used for the
identified featured genes using the heatmap package in R. The
SVM classifier was constructed using the e1071 R package with
10-fold cross-validation. ROC analysis was performed and the
AUC was calculated to evaluate the predictive performance of the

classifier. The correlation of co-expression was adjusted by
Pearson’s correlation, and the strength of the correlation was
determined according to the following absolute value criteria: r =
0.00–0.19 (very weak), r = 0.20–0.39 (weak), r = 0.40–0.59
(moderate), r = 0.60–0.79 (strong), and r = 0.80–1.0 (very
strong). p < 0.05 was considered to indicate a statistically
significant correlation. All statistical analyses were performed
using the R software (version 4.0.5, http://www.r-project.org).

RESULTS

Identification of Differentially Expressed
Metabolism-Related Genes
The flow chart of this study is shown in Supplementary Figure
S1. To identify sepsis-associated genes, we first analyzed genes
differentially expressed in whole blood samples between sepsis
and non-sepsis patients from the GEO database. As shown in the
results of the PCA, gene expression patterns were significantly
different between sepsis patients and healthy people (Figure 1A).
Compared with non-sepsis samples, a total of 544 DEGs were
identified in GSE95233, 297 of which were upregulated and 247
were downregulated (Figures 1B,C). A total of 203 DEGs were
observed in GSE54514, 133 upregulated and 70 downregulated
(Figures 1B,C). Intersection analysis of these DEGs showed 66
genes, which were simultaneously differentially expressed in the
two datasets, including 52 upregulated and 14 downregulated
DEGs (Figure 1D). To explore the co-expression network of
these differentially expressed metabolism-related genes,
Pearson’s correlation coefficient was used to evaluate the
correlation between a given pair of DEGs in the training
cohort GSE95233 (Figure 1E). A heatmap of the 66 DEGs was
constructed to compare sepsis patients and healthy controls in the
training cohort GSE95233 (Figure 1F).

Functional Enrichment Analysis of DEGs
In order to elucidate the underlying functions of these
differentially expressed metabolism-related genes in sepsis,
enrichment analyses were performed using the DAVID 6.8
enrichment analysis. GO annotation analysis showed that
these DEGs were involved in metabolic processes such as
small-molecule catabolic process, lipid catabolic process, and
so on (Figure 2B). Cellular component analysis showed that the
DEGs were mainly related to secretory granule lumen,
cytoplasmic vesicle lumen, lysosomal lumen, and so on
(Figure 2B). Further molecular function analysis found that
the common DEGs were engaged in metabolism-related
nucleotidyltransferase activity, phosphotransferase activity,
vitamin binding, nucleobase-containing compound kinase
activity, and NAD+ kinase activity (Figure 2B). KEGG
analysis was further utilized to define the possible pathways
linked to the functions of these DEGs. The metabolic pathways
were remarkably enriched, including pyrimidine metabolism,
purine metabolism, sphingolipid metabolism,
glycerophospholipid metabolism, pyruvate metabolism, and
glutathione metabolism (Figure 2A). The above enrichment
results were validated by the FunRich software v.3.1.3 that
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showed that the mitochondrial respiratory chain, catalytic
activity, hydrolase activity, metabolism, and energy pathways
were significantly enriched among DEGs (Figures 2C–F). Gene
set enrichment analysis (GSEA) was then performed to further
validate the pathways that were differentially enriched among
DEGs. The significantly enriched signaling pathways were

presented based on their normalized enrichment score (NES).
As expected, “carbohydrate derivative metabolism”, “cellular
lipid metabolism”, “lipid metabolism”, “organic acid
metabolism”, “organonitrogen compound biosynthesis”,
“organophosphate metabolism”, “oxidation reduction”, and
“small molecule biosynthesis” were differentially enriched in

FIGURE 1 |Metabolism-related genes are among DEGs found in sepsis patient versus healthy control whole blood. (A) Principal components analysis (PCA) score
plot of GSE95233 and GSE54514. Red represents control patients, and blue represents sepsis patients. (B)Heatmap of GSE95233 and GSE54514. (C) Volcano plot of
GSE95233 and GSE54514. Gray dots indicate downregulated DEGs while red dots indicate upregulated DEGs. Statistically significant DEGs were identified as those
with Student’s t-test p-values < 0.05. (D) Venn diagram of DEGs identified from the two GEO datasets (-UP: upregulated DEGs, -DOWN: downregulated DEGs).
(E) Co-expression network of the differentially expressed metabolism-related genes identified from GSE95233. Red depicts high gene expression and blue depicts low
gene expression. (F) Heatmap of the 66 DEGs between patients with sepsis and healthy controls in the training cohort GSE95233.
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FIGURE 2 | Metabolism-related pathways are involved in the pathophysiology of sepsis. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG). (B) Gene
ontology (GO) results of biological process (BP), cellular component (CC), and molecular function (MF). (C) Cellular component (CC). (D) Molecular function (MF). (E)
Biological process (BP). (F) Biological pathway.
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the sepsis group compared to those in healthy controls
(Supplementary Figure S2). These results indicated that
metabolism-related pathways may be involved in the
pathophysiology of sepsis.

The Metabolomics Profiling in Heart Tissue
of Septic Rats
To verify the metabolomics change following sepsis,
untargeted metabolomics analysis was performed in heart

tissue following sepsis in rats by LC-MS. PCA score plot and
volcano plot showed metabolite difference from
discrimination analysis (Figures 3A,B). Then, a data-
driven correlation analysis using the chord diagram of the
group lasso-selected metabolites was performed to visualize
the interplays between significant metabolites and their
relevant metabolic pathways (Figure3C). Most
interconnections arose between “lipids and lipid-like
molecules”, “nucleosides, nucleotides and analogues”,
“organic acids and derivatives”, and “organoheterocyclic

FIGURE 3 |Metabolic changes were identified by metabolomics profiling in hearts of septic rats and sham controls. (A) Principal components analysis (PCA) score
plot for metabolomics analysis in septic rats and normal control. Orange represents sepsis rats, and blue represents normal control. (B) Volcano plot, (C) circle diagram,
and (D) heatmap analyzed by TBtools showing the significantly changed metabolites in septic rats and normal control. (E) Bubble plot of the metabolic pathway
enrichment analysis identified in septic rats and normal control. The different color depths of circles represent the p-value of pathway enrichment analysis.
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compounds”. To compare the expression levels of the 22
metabolites identified to be significantly between septic
rats and normal control, an interactive heatmap was
constructed with Tbtools (Figure 3D). Moreover, pathway
enrichment analysis found that the most significantly

changed pathways were involved with glycerophospholipid
metabolism, pyrimidine metabolism, purine metabolism, and
pentose phosphate pathway (Figure 3E). The results
validated that metabolism changes were a vital feature
following sepsis.

FIGURE 4 | Hub genes were identified by the PPI network complex of metabolic DEGs. (A) Sixty-six DEGs with 66 nodes and 119 edges were
displayed using STRING. (B) The 8 most important hub genes were screened using the Cytoscape software plugin cytoHubba. The PPI network
data from STRING was further analyzed by Cytoscape and hub genes identification was performed by cytoHubba. (C) Gene–gene interaction networks
and functions of 8 hub genes in GeneMANIA. (D)The landscape of metabolic network of hub genes. (E) Enriched pathways of hub genes in
Metascape.
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Protein–Protein Interaction Network and
Hub Genes
To further explore the potential interactions among these
differentially expressed metabolism-related genes, a PPI
network analysis was conducted with the STRING database.
The 66 nodes and 119 edges in a PPI network were built
among the 66 common DEGs (Figure 4A). The visual analysis
and hub gene screening were presented by the Cytoscape software
in combination with STRING results. The hub genes included
NME/NM23 Nucleoside Diphosphate kinase 1 (NME1), NME6,
DNA polymerase Delta4 Accessory Subunit (POLD4), DNA
polymerase Epsilon 4 Accessory Subunit (POLE4), RNA
polymerase II Subunit J (POLR2J), RNA polymerase II, I And
III Subunit L (POLR2L), Adenylate cyclase 3 (ADCY3), and
Ectonucleoside Triphosphate diphosphohydrolase 1 (ENTPD1)
(Figure 4B). To further investigate their networks and
functions, GeneMANIA was applied to construct their gene
networks. A total of 20 nodes representing genes and 180
links were associated with the above 8 hub genes in co-
expression, shared protein domains, co-localization, pathway,
and physical interactions. The top 10 genes related to the hub
genes were AP003419.1, POLR2J3, NME1-NME2, POLR2J2,
POLR1D, NME2, NME3, NME4, NME7, and ENTPD8. Further
functional analysis revealed that these hub genes were
significantly correlated with nucleoside-diphosphatase activity
(FDR = 5.37E-17), followed by nucleoside phosphate catabolic
process (FDR = 1.75E-10), nucleoside diphosphate metabolic
process (FDR = 4.07E-10), nucleobase-containing small-
molecule biosynthetic process (FDR = 1.11E-9),
organophosphate catabolic process (FDR = 1.01e-8),
nucleotidyltransferase activity (FDR = 3.53E-7), and 5′-3′
RNA polymerase activity (Figure 4C). These results suggest
that these hub genes played important metabolic roles in sepsis.

To detect the metabolomics network regulated by the hub
genes, the network visualization of the compound, gene, enzyme,
and reaction was conducted using Cytoscape andMetScape. Each
node represents a metabolite and the edge represents the
correlation coefficient between nodes (Figure 4D). The
correlation-based metabolic network showed that the featured
hub genes in sepsis played vital roles in various metabolism-
related processes. The metabolic pathway analysis of hub genes
was performed by Metascape (Figure 4E). A total of 5 metabolic
pathways (p value <0.01) were related to hub genes in sepsis
patients, namely, purine metabolism, pyrimidine metabolism,
GAP-filling DNA repair synthesis and ligation in TC-NER,
nucleobase-containing small-molecule biosynthetic process,
and HTLV-I infection. The results indicated that there were 8
metabolic hub genes that might be predictors for sepsis.

Diagnostic Value of Eight Featured Hub
Genes in Sepsis
To further explore the diagnostic value of these hub genes in
sepsis, mRNA levels of eight hub genes were compared in
myocardial tissues between septic (n = 3) and healthy rats
(n = 3) with quantitative real-time PCR. The results show that
RNA expression levels of seven genes in sepsis were significantly

higher than those in health, whereas one gene, POLR2J, showed
an opposite trend in rats (Figure 5J).

Hierarchical clustering analysis further revealed that
patients with sepsis could be clearly separated into two
clusters based on the expression levels of the eight
identified hub genes (Figure 5I). Consistent with the trend
observed in the hierarchical clustering analysis, the mRNA
levels of seven featured genes in sepsis patients were
significantly higher than those in the control group except
for that of POLR2J (Figures 5A–H). To further validate the
diagnostic abilities of the identified hub genes for sepsis, ROC
curve of SVM classifier was applied to the training dataset.
The SVM classifier of the eight hub genes demonstrated
excellent discriminatory ability between patients with sepsis
and normal controls with high area under the ROC curve,
high sensitivity, and specificity (Figure 6). These analyses
indicated that the eight hub genes had potential diagnostic
roles in sepsis.

Immune Cell Infiltration Evaluation and
Correlation Analysis
Previous studies demonstrated that immune disorder plays a
vital role in the occurrence of sepsis and that metabolic profile
determines the immune state (Fitzpatrick and Young, 2013).
Therefore, we analyzed the immune cell infiltration
proportions, correlation coefficients, and immune-cell
proportion comparisons between sepsis patients and healthy
controls. We first presented the different immune cell
infiltrations by using CIBERSORT in each sample of the
training dataset GSE95233 as shown in Figure 7A. Next,
the distribution of 22 immune cells between sepsis and
healthy control was visualized by a heatmap (Figure 7B).
Compared to the healthy control group, the fractions of
naïve B cells (p < 0.0001), CD8 T cells (p < 0.0001), CD4
naïve T cells (p < 0.001), CD4 memory-activated T cells (p <
0.001), resting NK cells (p < 0.0001), M2 macrophages (p <
0.0001), and resting dendritic cells (p < 0.05) had a lower
abundance in patients with sepsis, while the fraction of T cells
and plasma cells (p < 0.0001), resting CD4 memory (p < 0.05),
gamma delta T cells (p < 0.0001), monocytes (p < 0.0001), M0
macrophages (p < 0.0001), eosinophils (p < 0.0001), and
neutrophils (p < 0.0001) was significantly higher than those
in the control group (Figure 7D). In order to further evaluate
whether 22 kinds of immune cells showed convergent effects
during infiltration, correlation analysis was used to elucidate
the potential one-to-one association. The proportions of
different immune cell subpopulations exhibited weak to
moderate correlation with each other (Figure 7C). Next, we
explored whether the mRNA expression level of identified hub
genes was associated with the infiltrations of immune cells in
sepsis. The results showed that the expression level of most
candidate hub genes was significantly positively correlated
with the infiltrating levels of macrophages and significantly
negative correlations with B cells, CD8 T cells, cytotoxic cells,
eosinophils, NK cells, and most subtypes of T cells. In addition,
these hub genes showed weak correlations with DC cells, mast
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cells, Th17 cells, Th2 cells, and Tregs (Figure 7E). In
conclusion, these results revealed the clinical significance of
heterogeneous immune cell infiltration in sepsis. Additionally,
the association analysis between identified hub genes and

immune cell infiltrations indicated an immunosuppressive
and exhausted microenvironment in patients with sepsis,
which may provide evidence and strategies for
immunotherapy.

FIGURE 5 | The expressions of the hub genes were different between sepsis patients and healthy controls in the training dataset GSE95233. (A–H) Validation of
expression of metabolic-related hub genes in patients with sepsis and normal controls in GSE95233. (I) Hierarchical clustering analysis demonstrates identified
metabolic-related gene expression patterns of heart tissues between septic rat and normal groups in the training cohort. (J)Relative expression of identified hub genes in
myocardial tissues was compared between septic rats and control rats using quantitative real-time PCR. Differences between two groups were analyzed using the
t-test. *p < 0.05, **p < 0.01, ***p < 0.001.
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DISCUSSION

To date, early cognition of sepsis, prompt completion of the 1-h
bundle, and timely administration of broad-spectrum antibiotics
have been contributing to the largest reductions in mortality
(Evans et al., 2018). Despite significant investments in research
and allocation of resources, effective treatments to reduce
mortality related to sepsis are still lacking. The challenge in
developing strategies to manage sepsis is expected to be related
to variability in sepsis presentation due to the complex underlying

pathophysiology (Martin-Loeches et al., 2019; Plevin and Callcut,
2017). This is probably one of the reasons why a single biomarker
cannot adequately stratify the septic syndrome. Although sepsis is
fundamentally defined as an inflammatory disease, it has recently
been established that metabolism-related processes can be
involved in the pathogenesis of sepsis (Englert and Rogers,
2016). However, the potential role of metabolism-related genes
in sepsis remains complex and obscure.

To identify the metabolism-related genes and explore
molecular mechanisms contributing to sepsis, we first

FIGURE 6 | The eight hub genes had potential diagnostic roles in sepsis. (A) ROC of ADCY3. (B) ENTPD1. (C) NME1. (D) NME6. (E) POLD4. (F) POLE4. (G)
POLR2J. (H) POLR2L.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 82127511

She et al. Potential Key Genes of Sepsis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | The expressions of the hub genes were correlated with immune cell infiltration in GSE95233. (A) Composition and distribution of inferred immune cell
infiltration subsets in each sample. (B)Heatmap of visualizing the differentially infiltrated immune cells between sepsis and healthy control. The horizontal bar indicated the
clustering information of samples that were divided into two major clusters. Vertical bars discriminated between upregulated (red) and downregulated (blue) genes. (C)
Correlation matrix displaying the Pearson’s correlation values for each comparison between the immune cells. The intensity of the color indicated the strength of the
correlation between two immune cells. Red indicates positive correlations and green indicates negative correlations. (D) Boxplot of immune-cell proportion comparisons
between sepsis patients and healthy controls (the blue and red boxplots stand for control and sepsis, respectively). Abbreviation: CIBERSORT: Cell type identification by
estimating relative subsets of RNA transcripts. (E) Pearson’s correlation analysis between infiltrating immune cells and identified hub genes. Red nodes indicate positive
correlation while blue nodes indicate negative correlation. *p < 0.05, **p < 0.01, ***p < 0.001.
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integrated two gene datasets (GSE95233 and GSE541514) to
screen DEGs between sepsis patients and normal controls, and
found 66 metabolism-related genes that were differentially
expressed in these two datasets (52 upregulated and 14
downregulated DEGs), suggesting that metabolism-related
genes may play critical roles in the occurrence of sepsis. GO
term analysis indicated that these DEGs were mainly enriched in
metabolic processes and pathways. KEGG pathway enrichment
analysis revealed alterations in several metabolites of pyrimidine,
purine, carbon, sphingolipid, glycerophospholipid, pyruvate,
glutathione, and biosynthesis of antibiotics, resulting in the
pathogenesis of sepsis. Consistent with functional enrichment
analysis of DEGs, these featured DEGs were generally enriched in
metabolism-related processes according to the GSEA analysis.
Furthermore, a total of 8 hub genes were found in the module
with the highest score from the PPI network of all metabolic
DEGs, and their functions were mainly associated with
nucleoside-diphosphatase activity based on GeneMANIA.
Next, these 8 featured metabolism-related genes were
identified to allow for good classification distinguished sepsis
samples from normal samples using the SVM-RFE algorithm.
Therefore, the present study exhibits the potential prognostic
value of these featured genes in sepsis, which may provide useful
strategies for predicting the outcomes of patients with sepsis.

Previously, inflammatory components of sepsis have been
most widely studied and sepsis has been considered primarily
as dysregulated immune response to infection. Matrix
metallopeptidase 9 (MMP9) and Complement C3a Receptor 1
(C3AR1), immune infiltration-associated biomarkers of sepsis,
have been reported to be related with the prognosis of sepsis
patients (Xu et al., 2020). However, recent studies have shown
that the pathogenesis of sepsis is clearly influenced by profound
changes in metabolic homeostasis (Van Wyngene et al., 2018a).
Therefore, novel sepsis biomarkers associated with metabolism
need to be explored. In our study, the metabolomics network of
the compound, gene, enzyme, and reaction regulated by the hub
genes was first conducted, and it indicated that the featured hub
genes play a pivotal role in the interplays among the dysregulated
metabolites in sepsis. We further found that the metabolic
pathways of hub genes were essentially involved in purine
metabolism, pyrimidine metabolism, GAP-filling DNA repair
synthesis and ligation in TC-NER, nucleobase-containing
small-molecule biosynthetic process, and HTLV-I infection,
which was further validated by the LC-MS-based untargeted
metabolomics analysis between septic rat myocardial tissues
and normal myocardial tissues.

NME1 plays a role in lipid metabolism. NME1 has been found
to bind to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 1 (pST8SIA1), inhibiting ganglioside GD3
synthesis and neuronal differentiation (Cho et al., 2021). As
lipid metabolism is impaired in sepsis (Chung et al., 2017),
NME1 may be involved in the pathophysiology of sepsis, in
accordance with our finding showing that NME1 expression is
elevated in sepsis patients compared with healthy controls.
NME6, another member of NME family, is associated with
ATP metabolism (Rewcastle et al., 1996). ATP release occurs
during sepsis and activates macrophages, exacerbating prognosis

of sepsis (Dosch et al., 2019). Therefore, NME6may influence the
outcome of sepsis by involving ATP metabolism.

POLD4 encodes the smallest subunit of DNA polymerase delta
and is a metabolism-related gene (Liang et al., 2018). The
genomic instability caused by POLD4 may exacerbate the
prognosis of sepsis patients. POLE4 is a histone H3–H4
chaperone that maintains chromatin integrity during DNA
replication (Bellelli et al., 2018), and may be involved in DNA
metabolism (Abdelmohsen et al., 2012). However, the exact role
of POLE4 in the pathophysiology of sepsis remains unclear.

POLR2J and POLR2L encode two of the subunits of RNA
polymerase II, which is responsible for synthesizing messenger
RNA in eukaryotes. POLR2J and POLR2L are associated with
purine metabolism and pyrimidine metabolism in sepsis patients
(Zhang et al., 2017). In the present study, we also identified
POLR2J and POLR2L as two of the hub genes of sepsis, indicating
the important role of these two metabolism-related genes in the
pathophysiology of sepsis.

Adenylate cyclase 3 (ADCY3) is a membrane-associated
enzyme and catalyzes the formation of the secondary
messenger cyclic adenosine monophosphate (cAMP), being
involved in pathophysiological metabolic processes. ADCY3
has been found to be increased in human dendritic cells in the
condition of inflammation (Midttun et al., 2018). However, the
exact role of ADCY3 in the metabolic changes in sepsis has not
been identified.

Ectonucleoside Triphosphate diphosphohydrolase 1 (ENTPD1)
hydrolyzes extracellular ATP and ADP to AMP and is related to
ATP metabolism and purine metabolism (Bastid et al., 2013). We
identified ENTPD1 as one of the hub genes of sepsis, in
accordance with a study that shows that ENTPD1 increases
extracellular ATP metabolism, inhibits inflammatory signaling,
and attenuates sepsis-associated liver injury (Savio et al., 2017).

These metabolic-related genes may become potential
biomarkers of sepsis. Whether these genes participate in the
pathophysiology of sepsis needs to be further studied.
Targeting these genes may improve outcomes of sepsis patients.

As immune cells can switch back and forth between different
metabolic states and preferentially utilize specific metabolites to
sustain the relative functions of their effectors (Ganeshan and
Chawla, 2014), we then determined the inferred immune cell
infiltration proportions, correlation coefficients, and immune-cell
proportion comparisons between sepsis patients and healthy
controls. Compared with the control group, the fractions of
naive B cells, CD8 T cells, naive CD4 T cells, memory-
activated CD4 T cells, resting NK cells, M2 macrophages, and
resting dendritic cells had a lower abundance in patients with
sepsis, while the fractions of T cells, plasma cells, resting CD4
memory, gamma delta T cells, monocytes, M0 macrophages,
eosinophils, and neutrophils were significantly higher than
those in the control group, indicating that acute inflammation
and cell immunity play a crucial role in the pathophysiology of
sepsis. Reprogramming of metabolism has been shown to be
associated with the changes of immune cell infiltration
proportions (Van Wyngene et al., 2018b). However, the exact
metabolic pathways through which the 8 hub genes affect
immune cell infiltration in sepsis patients need to be further

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 82127513

She et al. Potential Key Genes of Sepsis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


studied. All in all, the clinical significance of heterogeneous
immune cell infiltration will expand our understanding of the
molecular mechanism underlying the occurrence of sepsis and
may provide novel evidence and strategies for immunotherapy.

In conclusion, using a bioinformatics analysis of two
transcriptomic datasets (GSE95233 and GSE54514), we
identified the immune characteristics and the metabolic
mechanism of sepsis. The heterogeneities of immune cell
infiltration could provide new insights into sepsis
immunotherapy. Meanwhile, the present study identified eight
metabolism-related genes (NME1, NME6, POLD4, POLE4,
POLR2J, POLR2L, ADCY3, and ENTPD1) in patients with
sepsis and the identified metabolism-related genes may
represent diagnostic and therapeutic biomarkers of sepsis.
Knowledge of these genes will improve our understanding of
the molecular mechanism underlying the occurrence of sepsis.
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