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Abstract

As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial

for efferocytosis, a process that requires remodeling of the cell membrane and adjacent

actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial

cells during inflammation, particularly during neutrophil transendothelial migration (TEM)

and during changes in permeability. However, MERTK’s function in endothelial cells

remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil

TEM and endothelial barrier function. In vitro experiments using primary human pulmonary

microvascular endothelial cells found that neutrophil TEM across the endothelial monolay-

ers was enhanced when MERTK expression in endothelial cells was reduced by siRNA

knockdown. Examination of endothelial barrier function revealed increased passage of dex-

tran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain

endothelial barrier function. MERTK knockdown also altered adherens junction structure,

decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, pro-

viding potential mechanisms of how MERTK regulates endothelial barrier function. To study

MERTK’s function in vivo, inflammation in the lungs of global Mertk-/- mice was examined

during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to

the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tis-

sue was also greater in Mertk-/- mice. To analyze endothelial MERTK’s involvement in these

processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When simi-

larly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutro-

phil TEM into the inflamed lungs or in vascular permeability compared to control mice.

These results suggest that deletion of MERTK in human pulmonary microvascular endothe-

lial cells in vitro and in all cells in vivo aggravates the inflammatory response. However,

selective MERTK deletion in endothelial cells in vivo failed to replicate this response.
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Introduction

Expressed in many different tissues, the Mer receptor tyrosine kinase (MERTK) plays impor-

tant roles during developmental, physiological, and pathological processes [1–6]. MERTK

belongs to the TYRO3/AXL/MERTK (TAM) receptor tyrosine kinase family. All three TAM

kinases are expressed in many adult tissues such as the nervous system, reproductive organs,

the lungs, hematopoietic cells, the vasculature, and more [5–7]. This widespread expression

pattern correlates with their involvement in various key cellular processes, including growth

and differentiation, adhesion, migration, and immune regulation [6–9]. Among these, their

importance in maintaining tissue homeostasis has been underscored by studies with single,

double, and triple TAM kinase knockout mice [10–12]. Mice lacking MERTK develop mild

autoimmunity [12, 13] while mice lacking all three TAM kinases develop severe autoimmu-

nity, partially caused by hyperactivation of antigen-presenting cells and hyperproliferation of

lymphocytes [14]. All three TAM kinases facilitate binding of apoptotic cells by phagocytic

cells via their ligands [6, 15, 16]. MERTK kinase activity is crucial for the engulfment of apo-

ptotic thymocytes by macrophages [17, 18]. The mechanism appears to be through MERTK-

mediated activation of PKC and Rho GTPase signaling, which induces membrane and cyto-

skeleton reorganization in phagocytic cells, driving apoptotic cell uptake in a process known as

efferocytosis [19, 20]. Inability to clear apoptotic cells due to the lack of MERTK can lead to

retinitis pigmentosa [9].

Similar highly regulated cell-cell interactions and cytoskeleton remodeling seen during

phagocytosis are also observed during leukocyte transendothelial migration (TEM) [21, 22].

TEM is an important process during the inflammatory response whereby leukocytes exit the

circulation, cross the vascular endothelium, and migrate towards the site of injury or infection.

This process is normally under strict control, as the endothelial barrier allows leukocyte emi-

gration only upon proper stimulation. TEM facilitates immune surveillance and response, but

when dysregulated, it can also contribute to inflammatory disorders such as atherosclerosis

and acute respiratory distress syndrome. Studies on this multi-step process have elucidated

how leukocytes interact with endothelial cells to initiate TEM [21–27], but the exact mecha-

nisms by which adherent leukocytes ultimately transmigrate across the endothelial barrier

remain incompletely understood.

One of the key regulators of TEM is the endothelial adherens junction [28–33]. Endothelial

cells form dynamic junctions that regulate the passage of molecules and cells between the cir-

culating blood and tissues. The morphology of endothelial junctions varies both in vivo
throughout the vascular tree and in vitro in endothelial cells from different organs and cultured

in different conditions. In cultured quiescent cells immunostained to identify VE-cadherin,

the adherens junctions display a linear distribution or appear as a reticular network along the

cell-cell borders [34], a morphology likely caused by cell-cell overlap. Upon stimulation by

inflammatory cytokines such as TNFα and thrombin, the adherens junctions can assume a dis-

torted “zigzag” appearance, reflecting the tension exerted on the junctions by actin bundles.

These tension-modified junctions recruit vinculin and have been referred to as “focal adherens

junctions” [35]. The stability of adherens junctions can be influenced by many factors such as

cytoskeletal tethering to the junctions, phosphorylation status of junction proteins, and

mechanotransduction signaling [28, 30, 36]. Changes in junction stability further affect the

barrier function and permeability of endothelial cells. Inflammatory stimuli can influence

TEM by changing endothelial barrier function. Interestingly, all TAM kinases have been sug-

gested to participate in regulation of endothelial permeability. AXL is essential for VEGF-A-

induced permeability in endothelial cells [37, 38], and activation of TYRO3 by its ligand Pro-

tein S facilitates maintenance of the blood brain barrier during ischemia [39]. MERTK has also
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been implicated in maintenance of the blood brain barrier during viral infection [40]. Given

that TAM kinase functions often overlap [6, 41] and MERTK is expressed in the endothelial

cells [5, 42, 43], we investigated the possible involvement of MERTK in endothelial permeabil-

ity and TEM.

Specifically, we examined MERTK function in normal and inflammatory conditions using

an in vitro model of cultured human endothelial cells and an in vivo mouse model of acute

pneumonia. We tested the hypothesis that MERTK-mediated signaling regulates two aspects

of the inflammatory process, neutrophil recruitment and endothelial permeability. Our in
vitro findings demonstrate that endothelial MERTK contributes to maintaining proper endo-

thelial barrier function by regulating neutrophil TEM and endothelial permeability. Our in
vivo results show that global deletion of MERTK in mice leads to a more severe inflammatory

response to acute P. aeruginosa pneumonia, enhancing neutrophil recruitment to the lungs

and vascular permeability in the lungs. In contrast, endothelial cell-specific deletion of

MERTK alone does not result in this enhanced inflammatory response.

Materials and methods

Endothelial cell culture

Human lung microvascular endothelial cells (ECs) isolated from two healthy donors (one

7-year-old female and one 9-year-old female) were purchased from Lonza (HMVEC-L, CC-

2527, Lot-0000677243 & Lot-0000318000) and cultured according to manufacturer instruc-

tions. MV2 medium from Promo Cell (C-39221) and Lonza (CC-4147) were used. Post-trans-

fection medium was normal MV2 medium with 10% FBS and no antibiotics. For all

experiments except the XPerT assay, culture dishes or wells were coated overnight at 37˚C

with 10μg/mL human fibronectin (FN) resuspended in PBS. ECs were used up to passage 6.

Antibodies and reagents

MERTK and AXL siRNA oligonucleotides were obtained from Santa Cruz (SC-37127, SC-

29769) and from Sigma [44–46]. The sequences of all siRNA oligonucleotides and the control

siRNA against luciferase are shown in Table 1. Western blot antibodies for MERTK (4319),

AXL (8661), TYRO3 (5585), and ICAM-1 (4915) were purchased from Cell Signaling. Western

blot antibodies for PECAM-1 (376764), VCAM-1 (8304), E-selectin (137054), and VE-cad-

herin (9989) were purchased from Santa Cruz. Western blot antibody for actin (1501) was pur-

chased from Millipore and western blot antibody for Rac1 (610651) was purchased from BD.

The antibodies used for flow cytometry are listed in Table 2. Human fibronectin (354008) was

Table 1. siRNA sequences.

siRNA molecule Sense sequence Antisense sequence

Ctrl (Luciferase) CGUACGCGGAAUACUUCGAdTdT UCGAAGUAUUCCGCGUACGdTdT

Mer-A CCAUCUACAUCGAAGUACAdTdT UGUACUUCGAUGUAGAUGGdTdT

Mer-B CCACAUCUGUACCAAAUCAdTdT UGAUUUGGUACAGAUGUGGdTdT

Mer-C CUAGGUGUGUGUAUAGAAAdTdT UUUCUAUACACACACCUAGdTdT

Axl-A CCACUGAAGCUACCUUGAAdTdT UUCAAGGUAGCUUCAGUGGdTdT

Axl-B CAGCGAGAUUUAUGACUAUdTdT AUAGUCAUAAAUCUCGCUGdTdT

Axl-C CUGUGAGUCUUUGGUUCUAdTdT UAGAACCAAAGACUCACAGdTdT

The sequences of siRNA molecules targeting MERTK (Mer-A, Mer-B, and Mer-C) and AXL (Axl-A, Axl-B, Axl-C) were obtained from Santa Cruz. siRNA targeting

luciferase was used as control (Ctrl) siRNA.

https://doi.org/10.1371/journal.pone.0225051.t001
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purchased from Corning. Oligofectamine (12252–011) and Calcein-AM dye (C34852) were

purchased from Thermo Fisher Scientific. Opti-MEM (31985–070), DPBS (14190–144), RPMI

medium 1640 (11875–093), and Trypsin-EDTA (25300–054) were purchased from Gibco.

Trypsin Neutralizer Solution (CC-5002) was purchased from Lonza. TNFα (210-TA) was pur-

chased from R&D Systems. N-Formylmethionyl-leucyl-phenylalanine (fMLP) was purchased

from Sigma (F3506). 70kD FITC-conjugated dextran was purchased from Invitrogen (1823),

resuspended in PBS at 12.5mg/mL, and stored at -20˚C. DNase I (LS002140) and collagenase

type I (LS004197) used for lung digestion were purchased from Worthington.

siRNA knockdown experiments

ECs were cultured on 10cm dishes to 60% confluency. For each 10cm plate, 15μL of 20μM

siRNA oligos were mixed with 22.5μL Oligofectamine and 820μL Opti-MEM. The mixture

was incubated at room temperature for 25 minutes as reported. ECs were washed once with

Opti-MEM and left in 4mL of Opti-MEM for the addition of siRNA mix. After incubation

with siRNA for 4–5 hours at 37˚C, 8mL of post-transfection medium was added to each 10cm

plate. ECs were cultured with siRNA at 37˚C for 69–72 hours.

Cell lysates and immunoblotting

ECs were lysed in 2X sample buffer (200mM Tris pH 6.8, 20% glycerol, 5% B-mercaptoetha-

nol, 4% SDS, 0.03% bromophenol blue) and boiled for 10 minutes. Lysates were loaded into

polyacrylamide SDS-PAGE gels for protein separation by electrophoresis. The proteins were

then transferred to 0.45μm PVDF membrane (Millipore IPVH00010) at 100V room tempera-

ture in transfer buffer (192mM glycine, 25mM Tris, 20% methanol) for 60–90 minutes. Mem-

branes were blocked in TBST (50mM Tris, 150mM NaCl, 0.1% Tween-20, pH7.6) containing

either 2% BSA or 5% milk at room temperature for 2 hours before being incubated with pri-

mary antibodies overnight at 4˚C. Membranes were then washed, incubated with secondary

antibodies, and developed as previously described [25].

Neutrophil isolation

Human neutrophils were isolated from peripheral blood from healthy donors as previously

described [47, 48]. All studies received approval from the University of North Carolina at

Chapel Hill Institutional Review Board. Briefly, blood was drawn into BD vacutainer tubes

(362761) containing sodium citrate and centrifuged at 1500g room temperature for 20 min-

utes. The cell layer containing both neutrophils and red blood cells (RBCs) was collected.

RBCs were lysed by resuspension in cold RBC lysis buffer (155mM NH4Cl, 10mM KHCO3,

0.1mM EDTA, pH 7.4) and incubation on ice for 25 minutes. Purified neutrophils were then

washed 2X with cold RBC lysis buffer and 1X with cold PBS before being resuspended in a

small volume of RPMI medium containing 10% FBS for further use. To fluorescently label live

neutrophils, purified neutrophils were resuspended at 106 cell/mL in RPMI medium

Table 2. Flow cytometry antibodies and their targeted cell populations.

Antibody Targeted Cells Company Catalog #

APC anti-mouse CD31, clone 390 Endothelial Cells BioLegend 102410

Pacific blue anti-mouse CD45, clone 30F11 Leukocytes BioLegend 103126

APC/Cy7 anti-mouse Ly-6G, clone 1A8 Neutrophils BioLegend 127624

Zombie Aqua Dye Dead cells BioLegend 423101

PE anti-mouse MERTK antibody, clone 2B10C42 All cells expressing MERTK BioLegend 151505

https://doi.org/10.1371/journal.pone.0225051.t002
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containing 10% FBS. 5μL of 1mM calcein-AM in DMSO was added for each 1mL of neutro-

phils (106 cells). These cells were incubated in the dark at room temperature for 5 minutes fol-

lowed by washing 1X with 10-15mL of PBS. Labelled cells were resuspended in RPMI medium

containing 10% FBS for further use.

TEM live microscopy

After 69–72 hours of siRNA treatment, ECs were trypsinized and replated onto FN-coated

35mm glass-bottom dishes at confluent density (450k cells per dish). At 6–7 hours post replat-

ing, ECs were treated with 10ng/mL TNFα for 18–20 hours and transferred to a Viva View FL

Incubator Microscope (Olympus) for phase contrast imaging. Freshly isolated neutrophils

were activated by 10-minute-incubation at 37˚C. Neutrophils (2.2 x 105 cells/dish) were added

to each 35mm dish, and neutrophil TEM was imaged every 15–30 seconds for 30 minutes.

TEM in transwells

After 69–72 hours of siRNA treatment, ECs were trypsinized and replated onto FN-coated

8μm-pore, 6.5mm transwells (Corning 3422) at confluent density (1.5 x 105 cells/transwell). At

6–7 hours post replating, ECs were treated with 10ng/mL TNFα for 18–20 hours. Freshly iso-

lated neutrophils labeled with calcein-AM were activated by a 10-minute-incubation at 37˚C.

MV medium containing 10μM fMLP, a neutrophil chemoattractant, was added to the lower

chamber of each transwell to induce neutrophil TEM. Neutrophils (2.0 x 105 cells/transwell)

were added to the upper chamber of each transwell and allowed to transmigrate for 30 min-

utes. The number of neutrophils that transmigrated through the EC monolayer was quantified

by measuring calcein-AM fluorescence intensity in medium from the lower chamber via

EnSpire 2300 Multilabel Reader (PerkinElmer). For each experiment, the medium from 5–6

transwells per condition was sampled and plotted.

Dextran permeability

After 69–72 hours of siRNA treatment, ECs were trypsinized and replated onto FN-coated

0.4μm-pore, 6.5mm transwells (Corning 3470) at confluent density (1.5 x 105 cells/transwell).

At 6–7 hours post replating, ECs received either normal MV2 medium or MV2 medium con-

taining 10ng/mL TNFα, and were cultured for another 19 hours. Afterwards, the medium in

the upper chamber was replaced with medium containing 1mg/mL FITC-conjugated 70kD

dextran. After 90 minutes, medium in the lower chamber was sampled, and FITC fluorescence

intensity was measured at 488nm via EnSpire 2300 Multilabel Reader (PerkinElmer).

XPerT assay and image analysis

15mm glass coverslips were coated with biotinylated gelatin as previously described [49, 50].

These coverslips were then coated with FN as described above before the experiment. After

69–72 hours of siRNA treatment, ECs were trypsinized and replated onto these coverslips at

confluent density (2.5–3.0 x 105 cells/coverslip). At 6–7 hours post replating, ECs received

either normal MV2 medium or MV2 medium containing 10ng/mL TNFα, and were cultured

in the given medium for 19–20 hours. To measure permeability, MV2 medium containing

1:500 diluted FITC-conjugated streptavidin (Thermo Fisher Scientific S11223) was added to

each coverslip (1mL per coverslip) and cells were incubated at 37˚C for 2 minutes before being

washed once and then fixed with 3.7% formaldehyde/PBS. Hoechst dye (1:20,000) was used to

stain for nuclei. Coverslips were imaged at 10X in the 488nm channel for FITC-streptavidin

and the 350nm channel for Hoechst using a Zeiss epifluorescence microscope. In each
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experiment, two coverslips were plated per condition, and four imaging fields were randomly

picked from each coverslip for image analysis. Images were then assigned a random file name

for blinded analysis. The percentage of FITC-streptavidin positive area and the number of

nuclei per imaging field were quantified with ImageJ.

Immunofluorescence

After 69–72 hours of siRNA treatment, ECs were trypsinized and replated onto FN-coated

15mm glass coverslips at confluent density (2.5–3.0 x 105 cells/coverslip). At 6–7 hours post

replating, ECs received either normal MV2 medium or MV2 medium containing 10ng/mL

TNFα, and then were cultured for 19–20 hours. ECs were washed once and then fixed with

3.7% formaldehyde/PBS for immunofluorescence staining. After permeabilizing with 2% Tri-

ton-X/TBS and blocking with 2% BSA/TBS, ECs were first stained with VE-cadherin antibody

(Santa Cruz 9989, 1:500), followed by anti-mouse secondary antibody (1:250), phalloidin

(1:500), and Hoechst dye (1:20,000). Coverslips were imaged at 20X in the 568nm channel for

actin, 488nm channel for VE-cadherin, and the 350nm channel for Hoechst using a Zeiss epi-

fluorescence microscope. In each experiment, two coverslips were plated per condition.

Rac1 assay

After 69–72 hours of siRNA treatment, ECs were trypsinized and replated onto FN-coated

6cm dishes at confluent density (1.5–1.6 x 106 cells/dish). At 26–27 hours post replating, ECs

were lysed to assay Rac1 activity as previously described [25].

Gene array analysis

Human ECs were grown on fibronectin-coated plates for 76 hours before mRNA was col-

lected. Microarray analysis was carried out using the Affymetrix HuGene 2.1 array. Array qual-

ity was evaluated using ThermoFisher/Affymetrix Transcriptome Analysis Console v4.0

software (Grand Island, NY) based on summary statistics. All samples passed all quality con-

trol metrics. Expression signals from CEL files were preprocessed and normalized using Affy-

metrix Power Tools (APT), by Robust Multiarray Average (RMA) background correction, GC

content correction, quantile normalization, and median polish summarization of probe signals

mapped to specific genes. Custom probeset-to-gene mappings in the form of meta-probeset (.

mps) files were generated based on ENSEMBL release 91 transcript remaps of Affymetrix

probesets.

Tamoxifen oil preparation

Tamoxifen (Sigma, T-5648) was resuspended in sterile corn oil (Sigma, C-8267) at a concen-

tration of 20mg/mL and was rotated at 37˚C overnight. The resuspended tamoxifen oil was

kept at 4˚C and used for up to a month.

Mice

Adult C57BL/6 (WT) mice were originally purchased from Jackson Laboratory (Bar Harbor,

ME), and the colony was bred in the UNC facility. Mice deficit in Mertk were generated by

introducing a neomycin resistance cassette into exon 18, the last exon encoding the 3’ end of

the kinase domain [10, 11]. These Mertk-/- mice are catalogued in Jackson Laboratory (Stock

No. 011122) and were obtained from the Earp lab colony. Floxed Mertk (Mertkfl/fl) mice were

generated for the Earp lab by the UNC Lineberger Animal Models Core Facility. Mice express-

ing the tamoxifen-inducible Cre-recombinase (Cre-ERT2) under the regulation of the vascular
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endothelial cadherin promoter (VECad), denoted Cdh5-CreERT2, were originally generated

by Monvoisin et al. [51] and are available at Taconic (Model #13073). These mice were kindly

provided by Dr. James E. Faber (Department of Cell Biology and Physiology, University of

North Carolina Chapel Hill). The primer sequences for genotyping these mice are provided in

Table 3. Mice were bred and housed side by side in microisolator cages within ventilated racks

in a specific pathogen-free facility.

A tamoxifen-inducible endothelial-specific Mertk-/- (iEC Mertk-/-) mouse line was gener-

ated by crossing the Cdh5-CreERT2 mice with the Mertkfl/fl mice. Cre- littermates of the Cre

+ iEC Mertk-/- mice were used as controls. To induce expression of Cre, mice of both geno-

types (Cre- and Cre+) received 2mg tamoxifen per day (intraperitoneal injection of 100μL of

20mg/mL stock) for 5 consecutive days, beginning at age 4–6 weeks. Mice were closely moni-

tored daily and provided with easier access to food and water during the injection period.

Experiments with the Cre+ iEC Mertk-/- male mice and Cre- littermates were carried out 11–

16 days (6 to 8 weeks of age) after the first tamoxifen injection. Age-matched male wild type

(WT) and Mertk-/- mice were used at 6 to 8 weeks of age for studies of pneumonia.

All animal studies were performed in compliance with the U.S. Department of Health and

Human Services Guide for the Care and Use of Laboratory Animals. Animal studies were

reviewed and approved by our Institutional Animal Care and Use Committee. For the acute

pneumonia experiments carried out in this study, animals were monitored at 15min, 1h, and

2h following instillation of P. aeruginosa. Health and well-being was assessed at each time

point by evidence of distress, as documented by high respiratory rates, ruffled hair, lethargy,

and decreased activity.

Initiation of bacterial pneumonia

Gram-negative bacteria Pseudomonas aeruginosa (strain PA01) were grown at 37˚C with 5%

CO2 on trypticase soy agar containing 5% sheep blood (BD 221261) for 16–18 hours prior to

experiments. Suspensions of bacteria were prepared in sterile PBS at a concentration of 0.1

OD absorbance measured at 600nm via Genesys 10UV Spectrophotometer (Thermo Fisher

Scientific). Pneumonia was induced by intratracheal instillation of the prepared bacterial sus-

pension into the left lung (2.27 μL of the bacterial suspension per gram of mouse body weight).

Male mice of age 6 to 8 weeks and weight 18 to 25g were studied. The number of bacterial

Table 3. The sequences of PCR primers for each of the three transgenic mouse lines.

Primer Sequence PCR Product Size

floxed Mer WT loxP / WT loxP / loxP

5’ loxP_Forward ATTAGAGATTCAAAGATGGA 217 bp 217bp

5’ loxP_Reverse TTTACTATAGTATGAATTCACTGA 177bp 177bp

3’ loxP_Forward CAATGCCCATTCCCT 228 bp 228 bp

3’ loxP_Reverse CCAGTCTGGAATGGGTC 188bp 188bp

Full Mer knockout WT heterozygotes Full Mer KO

Mut Forward ATC AGC AGC CTC TGT TCC AC 250bp 250bp

WT Forward TGC CAT TAT ACC TGG CTT TCA 235bp 235bp

Common Reverse CAT CTG GGT TCC AAA GGC TA

Inducible VE-cadherin Cre Cre-/Cre- Cre+/Cre- Cre+/Cre+

Cre Forward GACCAGGTTCGTTCACTCA

Cre Reverse TAGCGCCGTAAATCAAT no band ~400bp ~400bp

RAP Forward AGGACTGGGTGGCTTCCAACTCCCAGACAC

RAP Reverse AGCTTCTCATTGCTGCGCGCCAGGTTCAGG ~600bp ~600bp ~600bp

https://doi.org/10.1371/journal.pone.0225051.t003
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colony-forming units (CFU) instilled was quantified by plating serial dilutions of the bacterial

suspension in sterile PBS on trypticase soy agar containing 5% sheep blood. Bacterial colonies

were counted on culture plates after overnight incubation at 37˚C and 5% CO2. The range of

CFU instilled was 1.02–1.62 x 108 CFU/mL instillate or 5.2–8.7 x 106 CFU/mouse.

Blood sampling and bronchoalveolar lavage

Mice were euthanized by isoflurane overdose, and blood (0.2–0.5mL) from the inferior vena

cava was obtained using heparin-coated 25G needles (BD 305122) and syringes (BD 309659).

Bronchoalveolar lavage (BAL) was performed as described [52, 53]. Briefly, 0.9 mL of ice-cold

PBS containing 2mM EDTA was instilled into the lungs via a 24G intratracheal catheter (BD

381412), and the fluid was carefully aspirated. The lavage was repeated another five times with

fresh buffer and the fluid samples were pooled. Leukocyte concentration in the blood and the

BAL fluid (BALF) were determined using a hemocytometer. Differential counts were deter-

mined using blood smears and cytospins [54] stained with Hema3 (Thermo Fisher Scientific

22–122911) by a researcher blinded to the sample genotypes.

Total protein concentration in BALF

Total protein concentration in the 1st BALF was analyzed using the Bicinchoninic Acid Pro-

tein Assay (BCA) as previously described [52].

In vivo permeability assay in lungs

A modified Miles assay was used to assess vascular permeability in the lungs [55–58]. Evans

blue dye (200μL per mouse, 0.5% in PBS) was injected into the tail vein of 6–8 week old male

mice weighing between 18-25g. At the time specified for each experiment, mice were eutha-

nized by isoflurane overdose and blood (0.3–0.5mL) from inferior vena cava was sampled. The

pulmonary vasculature of each mouse was perfused with cold PBS containing heparin (7.5mL/

min) through the right ventricle until the lungs were white/gray. Then the lungs were excised,

and Evans blue in the lungs was extracted using 1mL formamide overnight at 75˚C. Blood

samples were centrifuged at 3000 rpm for 10 minutes at 4˚C to obtain plasma. Evans blue

absorbance in PBS-diluted plasma (1:200) was measured at 620nm (E620) and 740nm (E740)

using a spectrophotometer (Genesys 10UV Spectrophotometer, Thermo Fisher Scientific).

After formamide extraction, lung samples were centrifuged at 13,000g for 30 minutes. Evans

blue absorbance in the supernatant was measured at 620nm and 740nm. The following for-

mula was used to correct optical densities (E) for contamination with heme pigments: E620

(corrected) = E620 - (1.426 x E740 + 0.030). Evans blue permeability in the lungs was calcu-

lated as the ratio of E620 (corrected) from the lungs to E620 (corrected) from the plasma.

Preparation of single-cell suspension of lung tissues for flow cytometry

Male mice of age 6 to 8 weeks and weight 18 to 25g were studied. Mice were euthanized by iso-

flurane overdose, and the lung vasculature was flushed as described above. Cold lung digestion

buffer (RPMI containing 0.1% DNase and 0.5% collagenase) was instilled into the trachea

(1mL/mouse), and the lungs were excised as previously described [52–54]. Enzymatic diges-

tion was performed 37˚C for 30 minutes, followed by mincing with forceps and mechanical

disruption using an 18G needle and syringe. The cells were filtered through 100μm filters and

then processed as previously described [52, 53].
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Immunostaining and flow cytometry

Isolated single lung cell suspensions were incubated with antibodies listed in Table 3 at 4˚C for

30 minutes as previously described [52]. After incubation with the appropriate antibodies, cells

were washed once with staining buffer (PBS containing 1.6% BSA and 2mM EDTA) before load-

ing on the CytoFLEX Flow Cytometer (Beckman Coulter) for flow cytometry analysis. Data

obtained from these experiments were analyzed with CytExpert 2.1 software (Beckman Coulter).

Statistics

Groups were compared using a two-tail Student T-test or one-way ANOVA with Tukey post

hoc adjustment in R, as appropriate. Data from in vitro experiments are presented as

mean ± SEM bar graphs unless otherwise specified. Data from in vivo experiments are pre-

sented as dot plots overlaid with box plot, where the mean is the horizontal line inside the box,

the ends of the box are mean ± SD, and the whiskers extended to the highest and the lowest of

the values in the group. Differences between groups were considered significant when p<0.05.

Results

TAM kinases are expressed in ECs

Gene array analyses of TAM kinase expression in ECs detected all three TAM kinases at the

mRNA level (Fig 1A). Expression of TAM kinases in ECs was further confirmed by examining

TAM protein levels in total cell lysates (Fig 1B). Because of difficulty in detecting TYRO3 from

cell lysates, we pursued studies of MERTK and AXL in pulmonary microvascular endothelial

cells during inflammation.

MERTK depletion increases neutrophil TEM in vitro
To examine the role of MERTK in neutrophil TEM, MERTK expression in ECs was reduced

by siRNA-mediated knockdown using a pool of three different siRNA oligonucleotides

Fig 1. Expression of the three TAM kinases in cultured human lung microvascular endothelial cells (ECs). A, TAM family kinase (TYRO3, AXL,

MERTK) mRNA expression levels in cultured ECs from gene array analysis. Dashed line (log2) indicates the background threshold. B, MERTK, AXL,

and TYRO3 protein expression in lysates from cultured confluent ECs. Lysate loading was increased 3–4 fold for the TYRO3 blot, compared to the

loading amount used for the MERTK and AXL blots. Relevant molecular weight annotations (250 kD, 150kD, 100kD) are shown in red.

https://doi.org/10.1371/journal.pone.0225051.g001
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(Table 1, Fig 2A and S1 Fig). After knockdown, ECs were then re-plated onto FN-coated glass

bottom dishes for imaging and treated with TNFα overnight. Primary human neutrophils iso-

lated from healthy donors were added to the EC monolayers, and TEM events were recorded

by time-lapse microscopy for 30 minutes (Fig 2B and S1 Movie). Interestingly, MERTK deple-

tion in ECs (Mer KD EC) led to increased neutrophil TEM compared to ECs treated with con-

trol siRNA (Ctrl KD EC) (Fig 2C). Increased neutrophil TEM in MERTK-depleted ECs was

also observed in a transwell assay (Fig 2D). In this assay, a commonly used neutrophil che-

moattractant, fMLP, was added to the lower chamber to stimulate neutrophil TEM across the

EC monolayers. Fluorescently-labeled neutrophils were added to the apical side of TNFα-

treated ECs and incubated for 30 minutes. Neutrophil TEM was quantified by accumulated

fluorescence intensity of the medium containing transmigrated neutrophils in the lower cham-

ber. Compared to the control, MERTK-depleted ECs allowed more neutrophil TEM in the

transwell assay, as demonstrated by increased fluorescence intensity (Fig 2E). Taken together,

these results suggest that the expression of MERTK in ECs lessens neutrophil TEM in vitro.

The contribution of MERTK to the expression of leukocyte adhesion molecules and junc-

tional proteins was determined using immunoblots of control and MERTK-depleted ECs.

MERTK depletion increased the expression of two key leukocyte-endothelial cell adhesion

molecules, ICAM-1 and VCAM-1, but did not affect E-selectin, another important leukocyte

adhesion molecule in ECs (Fig 2F and 2G). More high molecular weight VCAM-1 was

detected in Mer KD cells (Fig 2F), suggesting MERTK may regulate post-translational modifi-

cation of VCAM-1. In contrast, expression of VE-cadherin and PECAM-1 were reduced after

MERTK depletion. These proteins are important in regulating junctional integrity. Our data

suggest that important mechanisms through which MERTK may be acting include modulating

the expression of adhesion molecules to decrease leukocyte adhesion and preventing neutro-

phil transendothelial migration by enhancing junctional integrity. Subsequent studies

addressed the contributions of MERTK to junctional barrier function.

MERTK maintains endothelial barrier function in vitro
The increased neutrophil TEM in cultured ECs depleted of MERTK led us to investigate

whether EC permeability was also increased in ECs lacking MERTK. To examine endothelial

permeability, we measured the passage of 70kD FITC-dextran across confluent EC monolayers

grown on transwell inserts (Fig 3A) [59]. Compared to the Ctrl KD ECs, more dextran mole-

cules passed across the Mer KD EC monolayers (Fig 3B). This increased endothelial perme-

ability due to MERTK depletion was also observed after overnight TNFα stimulation (Fig 3B),

suggesting that MERTK is important for maintaining proper barrier function during both

homeostasis and inflammation.

To visually examine endothelial barrier integrity, we applied the “express micromolecule

permeability testing” (XPerT) assay [49, 50]. This assay takes advantage of the high-affinity

interactions between FITC-conjugated streptavidin added in the medium with exposed bioti-

nylated gelatin substrate at sites of localized permeability. MERTK depletion in ECs via two

different single siRNA oligos (Mer-A KD and Mer-B KD) resulted in a higher percentage of

the coverslips being streptavidin-positive compared to control (Ctrl KD) (Fig 3C–3G), suggest-

ing that permeability is increased by MERTK depletion. Equal cell seeding density in all condi-

tions was confirmed (S2 Fig). KD by single siRNAs (Mer-A or Mer-B) achieved similar level of

MERTK depletion as the pooled Mer siRNA used for previous experiments (S1 Fig) and pub-

lished by other studies [44].

Taking a closer examination at the endothelial junctions, we stained VE-cadherin and actin

in ECs. Compared to Ctrl KD ECs, Mer KD ECs displayed far more heterogeneity in

The role of endothelial MERTK during the inflammatory response in lungs

PLOS ONE | https://doi.org/10.1371/journal.pone.0225051 December 5, 2019 10 / 28

https://doi.org/10.1371/journal.pone.0225051


Fig 2. EC MERTK inhibits neutrophil TEM in vitro. A, Efficient reduction of MERTK expression in ECs was achieved by siRNA. B, Schematic diagram

of the neutrophil TEM assay and a sample image during time-lapse microscopy. In the schematic diagram (top), ECs are labeled in yellow and

neutrophils are labeled in pink (cells are not drawn to scale). In the sample image during TEM (bottom), a confluent monolayer of ECs pretreated with

TNFα overnight makes up the image background. A transmigrated neutrophil (white arrow), outlined by a white dashed line, appears flattened and

phase-dark compared to the untransmigrated neutrophils that remain on the apical side of the EC monolayer (yellow arrowheads). C, Quantification of

the total number of TEM events per imaging field (n = 12 for Ctrl KD and n = 11 for Mer KD). Data are pooled from 3 independent experiments.

2-sample student T test was used for statistical analysis. D, Schematic diagram of Transwell TEM assay. Confluent monolayers of ECs were cultured in

The role of endothelial MERTK during the inflammatory response in lungs

PLOS ONE | https://doi.org/10.1371/journal.pone.0225051 December 5, 2019 11 / 28

https://doi.org/10.1371/journal.pone.0225051


junctional VE-cadherin levels. Some Mer KD ECs had notably decreased VE-cadherin at the

junctions, yet no obvious lack of cell-cell contact was detected in unstimulated Mer KD ECs

using immunofluorescence microscopy (Fig 4A and 4B). Whereas Ctrl KD ECs exhibited

reticular junction morphology as defined by Fernández-Martı́n et. al. in many cells across the

monolayer [34], fewer Mer KD ECs had the reticular junction morphology (Fig 4B). In regions

of Mer KD ECs where VE-cadherin intensity was decreased, the junctions were mostly linear

(Fig 4B). In TNFα-treated cells, ECs depleted of MERTK lacked the typical TNFα-induced

elongated cell shape and discontinuous junction morphology that Huveneers et. al. described

as “focal adherens junctions” (Fig 4C and 4D) [35]. Taken together, these results suggest that

MERTK plays an important role in regulating endothelial junction structures and permeabil-

ity, both at resting conditions and after TNFα stimulation.

Examining the role of AXL in ECs

TAM kinases often have overlapping functions in various types of cells [5–7, 41]. Other studies

have demonstrated that AXL contributes to increased endothelial permeability caused by

VEGF signaling [37, 38], which contrasts with the role of MERTK as a suppressor of EC barrier

function seen here in our studies. The third member of the TAM kinase family, TYRO3, was

difficult to detect in ECs. Consequently, we only investigated the role of AXL in TEM and

endothelial barrier function. Knockdown experiments against AXL (Axl, a pool of three differ-

ent siRNA oligos), MERTK (Mer), a combination of AXL and MERTK (Axl+Mer), and con-

trol siRNAs in ECs were performed. Efficiency of AXL and/or MERTK knockdown was

confirmed by immunoblot analysis (Fig 5A and 5B). FITC-dextran permeability assays

revealed that, unlike Mer KD, Axl KD did not significantly increase dextran permeability com-

pared to Ctrl KD in ECs either with or without overnight TNFα stimulation (Fig 5C). XPerT

assay also revealed that Axl KD did not significantly increase FITC-conjugated streptavidin-

positive area across EC monolayers (S3 Fig). Additionally, Axl KD did not increase neutrophil

TEM in the transwell assay, as did Mer KD (Fig 5D). Combined Axl+Mer KD led to pheno-

types more similar to those caused by Mer KD than by Axl KD, and had no additive effect

compared to Mer KD alone (Fig 5C and 5D). These results suggest that in cultured ECs,

MERTK plays a major role in regulating EC barrier function under unstimulated and inflam-

matory conditions, whereas AXL does not.

MERTK depletion in ECs reduces basal Rac1 activity

To understand the mechanisms through which MERTK may be acting in ECs, we examined

signaling downstream of MERTK in ECs. Previous work showed that MERTK regulates the

activity of the small GTPase Rac1 in monocytes [19]. Since Rac1 is one of the key regulators of

EC junctions and leukocyte TEM [25, 30, 60], we examined the effect of MERTK depletion on

Rac1 activity in ECs. When MERTK expression was reduced via siRNA knockdown, Rac1

the upper chamber on a porous membrane support and stimulated with TNFα overnight. Fluorescently labeled neutrophils were added to the upper

chamber, and fMLP (10μM), a neutrophil chemokine, was added to the bottom chamber. Medium from the bottom chamber was sampled after 30

minutes, and fluorescence was measured as an indicator of neutrophil TEM. E, Quantification of neutrophil TEM expressed as fold change. Fluorescence

intensity for all conditions was normalized to Ctrl KD ECs. The positive control was the absence of EC monolayers on the filter (no EC). Total number of

transwells: n = 11 for no EC, n = 24 for Ctrl KD EC and for Mer KD EC. Data are combined from 4 independent experiments. One-way ANOVA with

post hoc Tukey test (p< 0.05) was used for statistical analysis. F, Representative immunoblots of E-selectin, ICAM-1, VCAM-1, VE-cadherin, PECAM-

1, and actin in whole cell lysates. ECs pretreated with indicated siRNA oligos were replated at confluent density and cultured in normal medium

overnight before being lysed for immunoblotting. G, Densitometric quantification of protein expression level of actin, E-selectin, ICAM-1, VCAM-1,

PECAM-1 and VE-cadherin. Graph represents fold change normalized to values from Ctrl KD EC in each experiment (n = 4 independent experiments).

2-sample student T test was used for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g002
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basal activity was decreased (Fig 6A and 6B). By contrast, AXL depletion did not significantly

decrease Rac1 activity (Fig 6A and 6B). The effect of MERTK depletion on Rac1 basal activity

persisted after TNFα stimulation, since less active Rac1 was detected in Mer KD ECs compared

to Ctrl KD ECs after overnight TNFα treatment (Fig 6C and 6D). Given that high Rac1 activity

is associated with tighter EC junctions and enhanced barrier function [60–62], our finding

that MERTK regulates Rac1 activity in ECs provides one mechanism mediating the increased

permeability in MERTK-depleted ECs.

Fig 3. Endothelial MERTK is required for EC barrier function. A, Schematic diagram of transwell permeability assays. 70kD FITC-dextran was added to

the upper chamber for 1.5h. Then medium from the bottom chamber was sampled and measured for fluorescence to quantify permeability. B,

Quantification of dextran leakage expressed as fold change compared to ECs treated with control siRNA. ECs were pretreated with siRNA prior to

replating on transwells at confluent density. ECs plated on transwells were either untreated or treated with TNFα overnight (O/N TNFα) as indicated,

before dextran addition. Fluorescent intensity was normalized to Ctrl KD ECs without O/N TNFα treatment. Data represent 29–39 transwells per

condition, combined from six independent experiments. C-F, Permeability test by xPerT assay. Representative thresholded images of local permeability in

Ctrl KD (C), Mer-A KD (D), and Mer-B KD (E) EC monolayers, as identified by FITC-streptavidin (black) binding to exposed underlying cell substrate.

Ctrl KD with O/N TNFα treatment (F) was used as a positive control for high permeability. Scale bar: 200μm. G, Quantification of percent FITC-positive

area per imaging field, expressed as fold change normalized to Ctrl KD ECs. (n = 24 imaging fields). Results are combined from 6 coverslips per condition

in 2 independent experiments. One-way ANOVA with post hoc Tukey test (p< 0.05) was used for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g003
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TNFα affects MERTK and AXL expression in ECs

Inflammatory cytokines can regulate TAM kinase expression in macrophages [63]. To deter-

mine whether the inflammatory stimulus used in our study, TNFα, affects MERTK and AXL

expression, we compared their protein levels before and after overnight TNFα treatment.

While Mer KD consistently reduced MERTK expression in ECs treated with or without TNFα,

TNFα stimulation alone decreased MERTK and increased AXL expression (S4 Fig).

Global MERTK depletion in mice leads to greater inflammatory response

during pneumonia

Our in vitro results demonstrated that MERTK is an important regulator of endothelial barrier

function as it acts to block neutrophil TEM and EC permeability. To examine the role of

MERTK in vivo, we challenged global Mertk-/- mice in our P. aeruginosa infection model. At 4

Fig 4. Endothelial MERTK depletion reduced reticular junction formation heterogeneously in vitro. A-D, Representative immunofluorescence

images of VE-cadherin (green) and actin (red) in Ctrl KD ECs (A), Mer KD ECs (B), Ctrl KD with O/N TNFα treatment (C), and Mer KD with

O/N TNFα treatment (D). White arrows point to VE-cadherin in reticular junctions (A), yellow arrowheads point to VE-cadherin in linear

junctions (B-D), and empty white arrowheads point to VE-cadherin in focal adherens junctions (C). Scale bar: 40μm.

https://doi.org/10.1371/journal.pone.0225051.g004
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hours post-infection (hpi) with P. aeruginosa, Mertk-/- mice had similar levels of circulating

leukocytes, monocytes, and lymphocytes compared to WT (Fig 7A). However, circulating neu-

trophils were decreased (Fig 7A). In the lungs, there were more leukocytes in the BALF col-

lected from Mertk-/- compared to WT mice, and this increase was due to an increase in

neutrophils (Fig 7B). BALF macrophages were similar between the two genotypes (Fig 7B). To

measure pulmonary vascular permeability during pneumonia, we intravenously injected

Evans blue dye at 3 hpi and harvested the lungs at 4 hpi (S5A Fig). Mertk-/- mice demonstrated

increased Evans blue leakage into the lungs between these time points than WT mice (Fig 7C).

Unchallenged Mertk-/- mice showed no change in pulmonary permeability compared to WT

mice (S5B Fig), consistent with previous findings that single TAM knockout mice are viable

Fig 5. AXL depletion in ECs in vitro does not affect endothelial permeability or neutrophil TEM. A, Expression of MERTK and/or AXL in ECs was

efficiently and specifically reduced by siRNA KD. Actin was used as a loading control. B, Densitometric quantification of AXL and MERTK protein level from

Ctrl KD EC, Axl KD EC, Mer KD EC, and Axl+Mer KD EC conditions. Graph represents fold change normalized to Ctrl KD EC condition (n = 6 independent

experiments). One-way ANOVA with post hoc Tukey test was used for statistical analyses. C, Quantification of dextran leakage, expressed as fold change

compared to Ctrl KD ECs (n = 17–18 transwells per condition). Data are combined from three independent experiments. ECs were treated with indicated

siRNA prior to replating onto transwells at confluent density. ECs plated on transwells were either untreated or treated with TNFα overnight (O/N TNFα) as

indicated, before dextran addition. Fluorescent intensity was normalized to Ctrl KD ECs. D, Quantification of neutrophil TEM expressed as fold change (total

number of transwells: n = 11 for no EC, n = 18 for all other groups). Data are combined from three independent experiments. Fluorescent intensity was

normalized to Ctrl KD ECs. The positive control was the absence of EC monolayers on the filter (no EC). One-way ANOVA with post hoc Tukey test was used

for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g005
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and superficially healthy [10, 11]. These results suggest that global deletion of MERTK, which

is known to produce a hyperinflammatory state [10], results in increased infiltration of neutro-

phils into the lungs, leading to fewer neutrophils in the circulation, and enhanced vascular

permeability.

Endothelial-specific MERTK depletion in mice does not alter the acute

inflammatory response

To examine whether the aggravated inflammatory response to pneumonia observed in

Mertk-/- mice was caused by specific depletion of MERTK in endothelial cells, we generated a

tamoxifen-inducible endothelial-cell specific Mertk-/- mouse line (iEC Mertk-/-). Cre- litter-

mates of the Cre+ iEC Mertk-/- mice served as controls. After tamoxifen injection, MERTK

expression in endothelial cells was measured by flow cytometry (Fig 8A–8C). MERTK expres-

sion was decreased by 87% in the endothelial cells of Cre+ mice compared to their Cre- litter-

mates (Fig 8C). Both Cre- and Cre+ mice had similar weights (Fig 8D) at 7 weeks of age and

appeared healthy. There was no difference in Evans blue dye leakage into lung tissues of

Fig 6. MERTK depletion in ECs in vitro reduces basal Rac1 activity. A, Representative immunoblots from assays measuring active Rac1 (Rac1-GTP),

compared to total Rac1 in whole cell lysates. ECs pretreated with indicated siRNA oligos were replated at confluent density for 27h before performing Rac1

activity assays. B, Densitometric quantification of Rac1-GTP (active Rac1) to total Rac1 ratio (active/total). Values represent fold change normalized to Ctrl

KD EC in each experiment (n = 3 independent experiments). One-way ANOVA with post hoc Tukey test was used for statistical analyses. C, Representative

immunoblots from assays measuring active Rac1 (Rac1-GTP) compared to total Rac1 in whole cell lysates. ECs pretreated with indicated siRNA oligos were

replated at confluent density and cultured in TNFα-containing medium overnight before performing Rac1 activity assays. D, Densitometric quantification of

Rac1-GTP (active Rac1) to total Rac1 ratio (active/total) after overnight TNFα treatment. Values represent fold change normalized to Ctrl KD EC post

overnight TNFα treatment in each experiment (n = 3 independent experiments). 2-sample student T test was used for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g006
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unchallenged Cre- and Cre+ mice (S5C Fig), suggesting that in uninjured mice, there was no

difference in pulmonary vascular permeability, similar to the case of global Mertk-/- mice.

To determine if Cre- and Cre+ iEC Mertk-/- mice would respond differently to inflamma-

tory stimulus, we challenged them in our acute P. aeruginosa pneumonia model. At 4 hpi, the

number of circulating leukocytes and subtypes in response to acute pneumonia was similar

between the two genotypes (Fig 9A). Analysis of BALF showed no difference in total leukocyte,

neutrophil, or macrophage recruitment to the airways and alveolar space of the lungs in Cre-

and Cre+ iEC Mertk-/- mice (Fig 9B). This was further confirmed by whole lung digestion and

immuno-phenotyping via flow cytometry, which quantifies all neutrophils in the lung tissue

(S6 Fig). Evans Blue permeability assay revealed that both Cre- and Cre+ iEC Mertk-/- mice

Fig 7. Global Mertk-/- mice have increased neutrophil infiltration and endothelial permeability during 4h P. aeruginosa pneumonia. A, Concentration

(106 cells /mL) of circulating leukocytes and subtypes (monocytes, lymphocytes, and neutrophils) from WT and global Mertk-/- (KO) mice at 4h after initiation

of pneumonia. B, Total cell count (106 cells) of leukocytes and subtypes (macrophages, and neutrophils) in BALF obtained from WT and Mertk-/- (KO) mice at

4 hpi. n = 9 per group. C, Quantification of Evans blue (EB) leakage into the lungs expressed as the ratio of EB absorbance measured in whole lung tissues over

EB absorbance measured in the plasma from WT and Mertk-/- (KO) mice between 3h to 4h pneumonia (n = 8 for WT, n = 14 for KO; data were pooled from

two independent experiments). Two-tail student t test was used for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g007

The role of endothelial MERTK during the inflammatory response in lungs

PLOS ONE | https://doi.org/10.1371/journal.pone.0225051 December 5, 2019 17 / 28

https://doi.org/10.1371/journal.pone.0225051.g007
https://doi.org/10.1371/journal.pone.0225051


had similar pulmonary vascular permeability in response to P. aeruginosa pneumonia (Fig

10A). Additionally, total protein concentration in the BALF obtained from mice at 4 hpi was

also similar in Cre- and Cre+ iEC Mertk-/- mice (Fig 10B). Taken together, these results suggest

that while global depletion of MERTK worsens the pulmonary inflammatory response to P.

aeruginosa, deleting MERTK in endothelial cells alone does not alter this response in murine

lungs.

Fig 8. Endothelial MERTK deletion in iEC Mertk-/- mice. A, Representative images and gating strategies of flow cytometry analyses to isolate EC

population (CD31+CD45-) from the whole lung digest. After singlet cells were identified, dead cells were excluded. By gating on CD31 and CD45,

we identified the CD31+CD45- population as the EC population. The expression of surface MERKT was then assessed on ECs. B, Representative

images of MERTK staining in CD31+CD45- EC population. Panels (left to right): fluorescence minus one control (FMO: no MERTK), Cre-, and

Cre+ mice. C, Quantification of MERTK-positive EC fraction from Cre- and Cre+ mice (n = 9 Cre-; n = 11 Cre+). D, Body weight of Cre- and Cre

+ mice aged between 6 to 8 weeks (n = 13 Cre-; n = 14 Cre+).

https://doi.org/10.1371/journal.pone.0225051.g008
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Fig 9. Endothelial-specific MERTK deletion does not increase neutrophil infiltration into the lungs during 4h P. aeruginosa pneumonia in mice. A,

Concentration (106 cells /mL) of circulating leukocytes and subtypes (monocytes, lymphocytes, and neutrophils) from Cre- and Cre+ iEC Mertk-/- mice at

4h after initiation of pneumonia. B, Total cell count (106 cells) of leukocytes and subtypes (macrophages, and neutrophils) in BALF obtained from Cre- and

Cre+ iEC Mertk-/- mice at 4h pneumonia. (n = 6 Cre-, n = 8 Cre+ mice; data were pooled from two experiments). Two-tail student T test was used for

statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g009

Fig 10. Endothelial-specific MERTK deletion does not increase endothelial permeability in the lungs during 4h P. aeruginosa pneumonia in

mice. A, Quantification of Evans blue (EB) leakage into the lungs expressed as the ratio of EB absorbance measured in whole lung tissues over EB

absorbance measured in the plasma from Cre- and Cre+ iEC Mertk-/- mice between 3h to 4h pneumonia (n = 13 Cre-, n = 14 Cre+ mice; data were

pooled from three independent experiments). B, Quantification of total protein concentration in BALF obtained from Cre- and Cre+ iEC Mertk-/-

mice at 4h pneumonia (n = 6 Cre-; n = 9 Cre+ mice; data were pooled from two experiments). Two-tail student T test was used for statistical analyses.

https://doi.org/10.1371/journal.pone.0225051.g010
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Discussion

Herein, we report that in vitro, MERTK contributes to endothelial barrier function in unsti-

mulated ECs and after TNFα, modulating both neutrophil TEM and endothelial permeability.

When MERTK was depleted from ECs, more neutrophil TEM occurred and endothelial per-

meability was increased. MERTK depletion also increased the expression of two adhesion mol-

ecules, ICAM-1 and VCAM-1, and decreased the expression of two junctional proteins, VE-

cadherin and PECAM-1, in ECs. The decreased VE-cadherin level upon MERTK knockdown

corresponded to a heterogeneous junction morphology that is distinct from control: some Mer

KD ECs presented more linear and fewer reticular junctions compared to Ctrl KD ECs. These

observations suggest that MERTK may regulate endothelial barrier function by modulating

junction formation and stability in ECs. In contrast, depletion of AXL, another TAM kinase

that exhibits overlapping functions with MERTK in various cell types [5, 13], did not alter

either neutrophil TEM or endothelial permeability. Ruan and colleagues showed previously

that AXL is required for the increase in endothelial permeability that occurs downstream of

VEGF signaling, and its absence prevents this increase [37, 38]. These data suggest that

MERTK and AXL regulate endothelial permeability differently. In addition to the opposing

roles of attenuating versus enhancing permeability, there seem to be other differences in the

types of responses they modulate. For example, AXL may be more important during angiogen-

esis, whereas MERTK may regulate permeability during homeostasis and inflammation. The

contribution of TYRO3, the third member of the TAM family, to maintaining proper blood

brain barrier under hypoxic conditions [39] further suggests that TAM kinases take on unique

roles in regulating EC functions. However, we did not investigate the role of TYRO3 because

we had difficulty detecting it in ECs.

One potential mechanism through which MERTK regulates endothelial barrier function is

by modulating junction architecture. Endothelial adherens junctions mediate adhesion

between neighboring cells via homophilic interactions of VE-cadherin and associated cortical

actin bundles [30]. One type of adherens junctions, the reticular adherens junctions, are main-

tained by PECAM-1 and contribute to endothelial barrier function [34]. Both PECAM-1 and

VE-cadherin were reduced in Mer KD ECs (Fig 2F and 2G). Additionally, we observed that

some regions in the MERTK-depleted EC monolayers displayed fewer reticular junctions (Fig

4B). These observations suggest that MERTK is involved in retaining barrier-enhancing reticu-

lar junctions via maintaining PECAM-1 and VE-cadherin levels in ECs. This barrier-protec-

tive function is important in limiting endothelial permeability in vitro.

In addition to modulating junction protein expression, MERTK may also maintain endo-

thelial barrier function by regulating Rac1 activity. Rac1-GTP level was reduced in ECs lacking

MERTK but not AXL. These findings are consistent with a previous study in monocytes,

which reported that MERTK regulates Rho family GTPases via interacting with the GEF Vav1

to reorganize the cytoskeleton [19]. Since physiological activation of Rac1 is important in

maintaining the peripheral actin cytoskeletal network and junction integrity [61, 64],

decreased Rac1 activity upon MERTK depletion may lead to enhanced endothelial permeabil-

ity. Timmerman et. al. also pointed out a link between Rac1 activity and junctional VE-cad-

herin stabilization [61]. The N-terminal GEF domain of Trio that activates Rac1 is required to

prevent nascent VE-cadherin junctions from disassembling in endothelial cells. Additionally,

Trio is highly associated with junctional VE-cadherin in recently confluent endothelial cells

[61], a condition similar to that used in our experiments. This study poses interesting ques-

tions about whether the reduced VE-cadherin level, reticular junctions, and Rac1 activity in

MERTK-depleted endothelial cells are interconnected events.
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The role of MERTK in maintaining the endothelial barrier in homeostasis and in attenuat-

ing neutrophil TEM and endothelial permeability during TNF-induced inflammation is inter-

esting in light of other studies investigating the function of endothelial MERTK. Fraineau and

colleagues show that, in human umbilical vein endothelial cells, endothelial MERTK mediates

protein S-induced activation of SHP2 and inhibition of VEGF-A–stimulated proliferation

[42]. They document a protein S/Mer/SHP2 axis that inhibits VEGFR2 signaling, suggesting

protein S as an endogenous angiogenesis inhibitor via binding to MERTK [42]. Using Mertk-/-

mice, Miner and colleagues show that MERTK maintains the blood-brain barrier during viral

infection with either West Nile or La Crosse encephalitis viruses [40]. They provide evidence

that the mechanism is through enhancing Type I interferon signaling [40]. A series of papers

by Zhen, Shao, and colleagues show that MERTK is expressed on glomerular endothelial cells

and it downregulates renal inflammation induced by nephrotoxic serum [65–67]. They identi-

fied several mechanisms through which MERTK tames inflammation, such as suppressing

Stat1 and Stat3 expression, reducing ERK1/2 and Akt activation, inhibiting NF-kB, and pro-

moting SOCS3 expression [66]. These scattered reports in different organs and inflammatory

processes come together with our studies to suggest that endothelial MERTK regulates inflam-

matory processes and endothelial repair.

In global Mertk-/- mice, the lack of MERTK resulted in increased neutrophil infiltration and

pulmonary vascular permeability during acute P. aeruginosa pneumonia. These important

inflammatory parameters indicate that Mertk-/- mice develop a more severe inflammatory

response to P. aeruginosa than WT mice. Thus, our in vivo data are consistent with our in vitro
results demonstrating a role for MERTK in suppressing neutrophil TEM and changes in

permeability.

In endothelial-specific Mertk-/- (iEC Mertk-/-) mice, however, we did not observe increased

neutrophil infiltration or pulmonary vascular permeability in response to P. aeruginosa com-

pared to Cre- controls. Neither neutrophil migration into the alveolar space nor into the pul-

monary parenchyma was changed by deficiency of endothelial MERTK. These findings are in

contrast to our in vitro results, where MERTK strikingly suppresses TEM and permeability in

ECs. This discrepancy may result from several differences between our in vivo and in vitro
studies. First, differences between human and murine endothelial cells must always be consid-

ered, though studies from two different groups have suggested a similar suppressive role for

MERTK during inflammation in human endothelial cells and in primary endothelial cells iso-

lated from Mertk-/- mice [40, 66]. Second, differences in the junctional complexes between in
vitro cultures and in vivo pulmonary endothelium are certain to be present. This may contrib-

ute particularly to the observed role for MERTK in homeostasis only within the cultured ECs.

Additionally, the complexity of in vivo anatomy and physiology in a live organ that contains

multiple cell types and performs complicated functions contrasts with studying MERTK in

one cell type cultured on two-dimensional dishes. In vivo, the endothelial cells are architectur-

ally supported by other cell types, including fibroblasts and epithelial cells that communicate

with the endothelial cells. Third, the in vitro assays used neutrophils isolated and perhaps

altered during their purification from human blood samples, whereas in vivo, the leukocytes

had not been manipulated at all. Purification may result in increased phosphatidylserine on

the neutrophil surface, which can interact with MERTK. Fourth, other considerations are the

differences in the duration of MERTK depletion, which was 72 hours in cultured human ECs

and 2 weeks in the murine endothelial cells (from the start of tamoxifen injection to the initia-

tion of pneumonia). While our in vitro experiments using human ECs ruled out AXL as an

accessory regulator of TEM or endothelial permeability, it is possible that other signaling path-

ways and/or paracrine contributions from other local cell types compensated for deficiency of
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endothelial MERTK in murine lungs. Genetic and epigenetic compensation induced by delete-

rious mutations, but not siRNA-mediated knockdown should also be considered [68, 69].

Finally, in the iEC Mertk-/- mice, not all endothelial cells are completely deficient in

MERTK. On average in our studies, about 8% of endothelial cells in Cre+ iEC Mertk-/- mice

showed detectable expression of MERTK, compared to about 60% of endothelial cells in Cre-

iEC Mertk-/- mice (Fig 8B and 8C). It is possible that this level of expression may, in fact, be

sufficient to prevent excessive neutrophil infiltration and edema. This expression may result

from incomplete deletion by tamoxifen, perhaps due to the number of capillary segments that

are not perfused while tamoxifen is circulating [70]. Alternatively, the observed expression of

MERTK in 8% of endothelial cells from the Cre+ iEC Mertk-/- mice may be due to microparti-

cles from circulating monocytes or those that originate from alveolar macrophages but have

entered the circulation [71]. These microparticles may bind to endothelial cells and result in

apparent MERTK expression that is capable of mediating normal MERTK functions [72].

In summary, our studies show that expression of MERTK occurs on both human and

murine pulmonary endothelial cells. In vitro, MERTK acts to maintain low levels of endothelial

permeability, and to attenuate neutrophil TEM as well as endothelial permeability induced by

TNFα. In mice, global deficiency of MERTK has no effect on the unchallenged lung endothe-

lium, but results in enhanced neutrophil migration into the lungs and in greater pulmonary

vascular permeability. These changes are not observed when MERTK is deficient in lung endo-

thelial cells.

Supporting information

S1 Fig. siRNA knockdown of MERTK in cultured ECs. A, Densitometric quantification of

MERTK protein level from Ctrl KD ECs and Mer KD ECs. Graph represents fold change nor-

malized to Ctrl KD EC condition (n = 5 independent experiments). Two-tail student T test

was used for statistical analysis. B, Efficient reduction of MERTK expression by single siRNA

oligos (Mer-A KD or Mer-B KD). Actin was used as a loading control. C, Densitometric quan-

tification of MERTK protein level from Ctrl KD, Mer-A KD, and Mer-B KD ECs. Graph repre-

sents fold change normalized to Ctrl KD EC condition (n = 7 independent experiments). One-

way ANOVA with post hoc Tukey test was used for statistical analysis.

(TIF)

S2 Fig. Equal seeding cell density confirmation for XPerT assay. A-D, Representative image

fields from XPerT assay, showing cell nuclei (Hoechst stain) from Ctrl KD (A), two different

Mer siRNA oligos: Mer-A KD (B) and Mer-B KD (C) ECs. Ctrl KD with O/N TNFα treatment

(D) was used as a positive control for the XPerT assay. Scale bar: 200μm. E, Quantification of

the number of nuclei per imaging field normalized to Ctrl KD ECs, expressed as fold change.

n = 24 imaging fields pooled from 12 coverslips per condition in 2 independent experiments.

One-way ANOVA with post hoc Tukey test was used for statistical analyses.

(TIF)

S3 Fig. Endothelial AXL depletion in ECs did not affect endothelial permeability in vitro.

A-C, Permeability test by xPerT assay. Representative thresholded images of local permeability

in Ctrl KD (A), and Axl KD (B) EC monolayers, as identified by FITC-streptavidin (black)

binding to exposed underlying cell substrate. Ctrl KD with O/N TNFγ treatment (C) was used

as a positive control for high permeability. D-F, Representative image fields from XPerT assay,

showing EC nuclei (Hoechst stain) from Ctrl KD (D), and Axl KD (E) ECs. Ctrl KD with O/N

TNFα treatment (F) was used as a positive control for the XPerT assay. Scale bars in A and D:

200μm. G, Quantification of percent FITC-positive area per imaging field, expressed as fold
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change normalized to Ctrl KD ECs. H, Quantification of the number of nuclei per imaging

field normalized to Ctrl KD ECs, expressed as fold change. n = 12 imaging fields. Results are

combined from 4 coverslips per condition in 2 independent experiments. 2-sample student T

test was used for statistical analyses.

(TIF)

S4 Fig. Overnight TNFα treatment affected MERTK and AXL expression in ECs in vitro.

A, Representative immunoblots of MERTK, AXL, and actin in whole cell lysates. ECs pretreated

with indicated siRNA oligos were replated at confluent density and cultured in normal medium

or TNFα-containing medium overnight before being lysed for immunoblotting. B, Densitomet-

ric quantification of protein expression level of actin, MERTK, and AXL. Graph represents fold

change normalized to values from Ctrl KD EC in each experiment (n = 8 independent experi-

ments). One-way ANOVA with post hoc Tukey test was used for statistical analyses.

(TIF)

S5 Fig. No endothelial permeability change is observed in the lungs of unchallenged total

Mertk-/- or iEC Mertk-/- mice. A, Schematic diagram of the Evans blue assay. B, Quantification

of Evans blue (EB) leakage into the lungs as expressed by the ratio of EB absorbance measured

in whole lung tissues over EB absorbance measured in the plasma from unchallenged WT and

KO mice at 3h after EB injection (n = 8 for WT, n = 10 for KO; data pooled from two indepen-

dent experiments). C, Quantification of EB leakage into the lungs as expressed by the ratio of

EB absorbance measured in whole lung tissues over EB absorbance measured in the plasma

from unchallenged Cre- and Cre+ mice (n = 10 Cre-; n = 11 Cre+; data pooled from two inde-

pendent experiments). Two-tail student T test was used for statistical analyses.

(TIF)

S6 Fig. Flow cytometry analysis of whole lungs shows no significant difference in leukocyte

or neutrophil infiltration within the lung tissue at 4 h after initiation of pneumonia in iEC

Mertk-/- mice. A, Representative images and gating strategies of flow cytometry analyses to iso-

late leukocyte population (CD45+) from whole lung digest. After singlet cells were identified,

dead cells were excluded. By gating on CD45, we identified the CD45+ population as the leu-

kocyte population. The expression of surface Ly6G was then assessed on leukocytes. B, Repre-

sentative images of Ly6G staining in the CD45+ population. Panels (top to bottom) show cells

from fluorescence minus one control (FMO: no Ly6G), Cre-, and Cre+ mice. C-D, Total cell

counts of infiltrated leukocytes as identified by CD45+ staining (C), and neutrophils as identi-

fied by CD45+ Ly6G+ staining (D) from whole lung digest in Cre- and Cre+ mice. E, Fraction

of leukocytes (to live cells) and F, neutrophils (to leukocytes) from whole lung digest in Cre-

and Cre+ mice. n = 5 Cre-; n = 6 Cre+ mice from one experiment. Two-tail student T test was

used for statistical analyses.

(TIF)

S1 Raw Images. Original images of the immunoblots used in this manuscript.

(PDF)

S1 Movie. Representative movie of in vitro neutrophil TEM.

(AVI)
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