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Abstract
In this paper, we analyze the complexity of an eco-epidemiological model for phytoplankton–zooplankton system in

presence of toxicity and time delay. Holling type II function response is incorporated to address the predation rate as well

as toxic substance distribution in zooplankton. It is also presumed that infected phytoplankton does recover from the viral

infection. In the absence of time delay, stability and Hopf-bifurcation conditions are investigated to explore the system

dynamics around all the possible equilibrium points. Further, in the presence of time delay, conditions for local stability are

derived around the interior equilibria and the properties of the periodic solution are obtained by applying normal form

theory and central manifold arguments. Computational simulation is performed to illustrate our theoretical findings. It is

explored that system dynamics is very sensitive corresponding to carrying capacity and toxin liberation rate and able to

generate chaos. Further, it is observed that time delay in the viral infection process can destabilize the phytoplankton

density whereas zooplankton density remains in its old state. Incorporation of time delay also gives the scenario of double

Hopf-bifurcation. Some control parameters are discussed to stabilize system dynamics. The effect of time delay on

(i) growth rate of susceptible phytoplankton shows the extinction and double Hopf-bifurcation in the zooplankton popu-

lation, (ii) a sufficiently large value of carrying capacity stabilizes the chaotic dynamics or makes the whole system chaotic

with further increment.

Keywords Plankton � Toxicity � Local stability � Time delay � Hopf-bifurcation � Chaos

1 Introduction

Viral infection in planktonic species affects the bloom

dynamics and causes behavioral as well as other changes in

the aquatic and marine systems. The capability of regu-

lating the plankton dynamics is still far from understand-

ing. Algal viruses perform a remarkable component in the

evolutionary driving force of the aquatic system and

responsible for biogeochemical cycles across all the

microbial communities. It effectively accounts for the

idealization of mathematical biology that handles the new

ecological and epidemiological challenges. Viruses have

notable prospects as mortality agents for phytoplankton

and play a dominant role in extinction and survival

behavior among all the planktonic species. Several new

developments concerned with the dynamical and behav-

ioral complexity of the prey–predator system have been

addressed in the area of ecology and epidemiology (An-

derson and May 1986; Das and Chattopadhyay 2015;

Thakur and Ojha 2020a). Mathematical models are facili-

tated to demonstrate the qualitative functioning of the

prey–predator system and help to examine the long-term

relationship among interacting species of the ecosystem.

Many authors assumed only one infected population in

their model system, i.e., either prey or predator population

is infected, whereas others assumed as both the populations

are infected (Gao et al. 2020c; Goyal et al. 2020; Singh

et al. 2018; Atangana 2017, 2020, 2018). A number of new

observations by using fractional derivative operators have
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been addressed by Atangana (2017), Atangana (2018),

Atangana (2020), Cattani (2018), Gao et al. (2020d), Gao

et al. (2020b), İlhan and Kıymaz (2020) and Cattani and

Pierro (2013). Eco-epidemiological models are also con-

sidered to describe the coronavirus pandemic that describes

the real phenomena (Gao et al. 2020a, e). The pioneering

work of Kermack and McKendrick (1927) has established a

classical SIR model (susceptible, infectious, recovered

model) with the idea of plankton disease to study how the

population is influenced by infection. Beltrami and Carroll

(1994) developed an eco-epidemiological model based on

prey–predator in which the prey population seems to be

infected by viral contamination and forms an infected

group. They found that the system has been destabilized by

a minute amount of infection agents otherwise stable tropic

configuration noticed. Gakkhar and Negi (2006) studied the

role of viral infection and toxic substances on the plankton

system and concluded that higher infection rates control-

ling the plankton blooms. Dhar and Sharma (2010) pre-

sented a phytoplankton dynamics along with viral infection

and incubation class and found that the absence of incu-

bation class makes the phytoplankton system unstable,

whereas the presence of incubation class in the form of

delay makes the phytoplankton system stable.

A good number of reviews are available on prey–

predator dynamics with disease and infection and also their

possible ecological and biological impact specified in

Biswas et al. (2010), Saifuddin et al. (2016) and Zhao and

Jiang (2014). Upadhyay et al. (2008) proposed an eco-

epidemiological model based on the Salton sea which

contains an infected fish population and tried to explain all

the possible ways to the existence of chaos in a detrimental

wetland ecosystem. Das et al. (2016) focused on a phyto-

plankton–zooplankton model system with virally infected

species and studied the essential features of plankton

dynamics by taking two important parameters, i.e., mor-

tality of phytoplankton and viral infection of zooplankton.

Auger et al. (2009) modeled a predator–prey system by

using simple Lotka–Volterra equations with disease-af-

fected predator population is considered. Tannoia et al.

(2012) discussed a system for transmissible diseases which

is disseminating among predators and found that the per-

sistence of oscillation behavior for the system. Bairagi

et al. (2007) investigated a comparison-based study of a

model with an infected prey–predator population where the

predator response function is governed by three different

responses function. They observed that when prey is

affected with a disease, then species coexistence is not

possible whereas some diverse outcomes yield. Later,

many investigations have been made by numerous authors

to study the eco-epidemiological model in different eco-

logical scenarios where the population is influenced by

external toxicity, external disease transmission, prey

refuge, Allee effect, etc. (Biswas et al. 2016; Hethcote

et al. 2004; Kumar et al. 2019; Venturino 2002). Among

them, the toxin-producing phytoplankton–zooplankton

system has played a prominent role in marine as well as

freshwater ecosystems. Toxicity not only maintains the

high diversity of phytoplankton but also reduces the graz-

ing pressure of zooplankton. Some observations show that

toxin substance has huge consequences on zooplanktons

growth and affects the whole plankton community (Saha

and Bandopadhaya 2009; Thakur et al. 2016). Rapid

appearance and disappearance of algal bloom are not well

understood till now but several scientific inquiries have

been done for the virally infected plankton system under

the consideration of toxin-producing phytoplankton toge-

ther with other controlling parameters to understand the

significance of toxicity on the survival scenario of plank-

ton. Chattopadhayay et al. (2002a, b) have divulged that

the toxicants released by phytoplankton may perform an

essential factor for the action of termination of the plankton

bloom and act as a bio-controller. Chakraborty and Das

(2015) have established two zooplankton and one phyto-

plankton model system by using Holling type II functional

responses that focuses on the mechanism of toxicity with

constant harvesting. Upadhyay and Chattopadhyay (2005)

have considered a TPP-zooplankton-fish model and

observed that TPP in aquatic systems plays a pivotal role

by showing stabilizing contribution in population dynam-

ics. Huang et al. (2018) have studied the aquatic toxicity by

a simple mathematical model and concluded that the high

toxin can lead to the extirpation of the population.

A well-known truth is that time delays exist in every

biological process and influence the dynamics of the

aquatic as well as the marine ecosystem and its whole

community. It can be seen in the form of gestation, mat-

uration, incubation, resource regeneration, etc., into many

population models. It reflects the complexity in such a

model by showing stability transition phenomenon for

equilibria, the occurrence of Hopf-bifurcation, chaotic

oscillations and extinction dynamics (Ojha and Thakur

2020; Meng et al. 2011; Wang et al. 2014). One such

interesting phenomenon due to time delay is the double

Hopf-bifurcation in which the system possesses two critical

values of time delay (Jiang et al. 2015). Recently, Thakur

and Ojha (2020b) have investigated a three-tier delayed

plankton-fish model system and considered the effect of

delay on the extinction behavior of fish. They obtained that

the increasing value of time delay helps to stabilize the fish

dynamics after the extinction through the double Hopf-

bifurcation phenomenon. Time delay has an enormous

capacity to change system dynamics. It can make the

unstable system stable by showing its positive impact,

whereas it can also be responsible for making the whole

system chaotic (Sharma et al. 2014; Zhang and Rehim
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2017). Beretta and Kuang (2002) have substantially studied

the biological models by incorporating the effect of time

delay. Zhang and Rehim (2017) dealt with a toxic-phyto-

plankton–zooplankton system in the context of plankton

toxicity and found some excitable results of time delay.

Sharma et al. (2014) have analyzed the effect of toxin

liberation with time delay in the nutrient-plankton system

in which planktonic bloom showed oscillation through

chaotic behavior. Thakur et al. (2020) have established the

plankton-fish model under the consequence of multiple

gestation delays and demonstrated that the two equal ges-

tation delays may promote the chaotic phenomenon in the

plankton system.

Recently, many studies considered the delay induced

infection models to investigate the combined effect of

infection and time delay on population models. Gakkhar

and Singh (2010) proposed a delayed plankton model, and

the results showed that infection in a population may

ensure the complexity as well as beneficial for controlling

the chaos. It is also very interesting to point out that fluc-

tuation in the toxic parameter pays uniform importance

toward the chaos. Furthermore, Agnihotri and Kaur (2019)

established a delayed plankton system with viral infection

and noticed that system does not get any meaningful

behavior without delay but after introducing a time delay in

toxin liberation process, the system switches its behavior

from stable to unstable periodic oscillations. Meng et al.

(2018) considered a delayed eco-epidemiological model

under the assumption of predator’s existence in the system

where disease disseminates in the prey populations. They

found that time delay in the incubation period is harmful to

the transmission of infectious diseases. Biswas et al. (2017)

discussed optimal harvesting policy and Allee effect for a

prey–predator eco-epidemiological model with time delay.

They have briefly studied the bistability between all the

equilibrium points. Further, the authors concluded that

beyond the bifurcation point of time delay, the system

produces complex dynamical outcomes together with

chaos. Xu and Zhang (2013) explored the global dynamics

of disease transmission in a predator population with ges-

tation time delay. It has been shown that the disease-free

equilibrium leads to the existence of Hopf-bifurcation with

the accumulated value of time delay.

With the above motivation, we have considered two

interacting components consisting of toxin-producing

phytoplankton and zooplankton population in the presence

of virally infected phytoplankton. A discrete-time delay is

incorporated in the form of incubation period of infected

phytoplankton dynamics. Further, we have assumed zoo-

plankton predate both susceptible and infected phyto-

plankton. This fact has been exhibited through Holling type

II function form for the model system. Our main objective

of the present article is to study the consequences of some

important parameters like toxicity, viral infection, and

incubation time delay on the prey–predator dynamics

where the prey population is infected by some diseases.

Since every species may avoid becoming prey for other

living species and try to escape predation by adopting some

defensive scheme. Toxin-induced anti-predator defense by

phytoplankton is taken that decreases the predation rate as

well as the density of zooplankton. It is also considered

into account that viral infection is not an instantaneous

process, rather than susceptible phytoplankton takes some

time lag to convert into infected class. The paper is orga-

nized into the following manner: In Sect. 2, the formulation

of the plankton system in the presence of viral infection is

briefly presented. In Sect. 3, mathematical analysis such as

boundedness solution, the existence of all positive equi-

libria and local stability of the virally infected model are

discussed. The model system with time delay is described

in Sect. 4 followed by local stability analysis of the delayed

system in this section. Using the application of normal

form theory and center manifold theorem, the stability and

direction of Hopf-bifurcating solution of the delayed sys-

tem are derived in Sect. 5. Numerical validation of the

delayed and non-delayed systems is given in Sect. 6.

Conclusions are carried out in the last section of the paper.

2 Model Formulation

In this section, we consider a plankton interaction model

which is made up of two interacting components such as

phytoplankton and zooplankton. We assume that the phy-

toplankton has the capacity to produce toxins as well as

some of them infected with the viral. At any time t, phy-

toplankton is represented by N(t) and zooplankton is rep-

resented by Z(t). We would like to impose a brief

description of the model system as follows:

(i) We assume that in the absence of viral infection,

phytoplankton N(t) grow logistically with carrying

capacity K and growth rate r which is expressed as

dN

dt
¼ rN 1 � N

K

� �
:

(ii) In the presence of viral infection, the total

phytoplankton density can be classified into two

categories, S(t) represents susceptible phytoplank-

ton density, and I(t) represents infected phyto-

plankton density such that

NðtÞ ¼ SðtÞ þ IðtÞ:

(iii) We assume that only susceptible phytoplankton

S(t) has the capability to reproduce where the

infected phytoplankton does not have the
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capability to reproduce. However, the infected

phytoplankton still contributes to the growth of

phytoplankton population toward the same carry-

ing capacity K. Therefore,

dS

dt
¼ rS 1 � Sþ I

K

� �
:

(iv) Zooplankton predates susceptible phytoplankton

with respect to Holling type II functional form,

and susceptible phytoplankton becomes infected

when they come in contact with infected phyto-

plankton. Viruses are transmitted by the law of

mass action with an infection rate of C. We also

assume viruses only infect the phytoplankton

population. Moreover, infected phytoplankton

does recover with the recovery rate of c.

Therefore,

dS

dt
¼ rS 1 � Sþ I

K

� �
� CSI � gSZ

Sþ a
þ cI:

(v) The interaction of susceptible phytoplankton with

the infected phytoplankton increases the density of

infected population whereas recovered ones

decrease the density of infected population.

Infected phytoplankton will die out their natural

death rate d. Assuming that zooplankton also

predates infected phytoplankton according to

Holling type II functional form, the infected

phytoplankton dynamics becomes

dI

dt
¼ �dI þ CSI � qIZ

I þ a
� cI:

(vi) The consumption of susceptible and infected

phytoplankton gives the growth in zooplankton

density according to Holling type II functional

response at the rate of g and h. In the absence of

phytoplankton, zooplankton will die out at the rate

of d. Additionally, we assume the extra mortality

in zooplankton due to toxin liberation by phyto-

plankton at the rate of h. With this assumption,

zooplankton dynamics becomes

dZ

dt
¼ �dZ þ gSZ

Sþ a
þ hIZ

I þ a
� hðSþ IÞZ

Sþ I þ b
:

Implementing the above assumptions gives the following

phytoplankton–zooplankton model system as:

dS

dt
¼rS

�
1 � Sþ I

K

�
� CSI � gSZ

Sþ a
þ cI;

dI

dt
¼� dI þ CSI � qIZ

I þ a
� cI;

dZ

dt
¼� dZ þ gSZ

Sþ a
þ hIZ

I þ a
� hðSþ IÞZ

Sþ I þ b
;

ð2:1Þ

with associated initial conditions are Sð0Þ[ 0, Ið0Þ[ 0

and Zð0Þ[ 0. Eq. (2.1) describes the interaction among

susceptible phytoplankton, infected phytoplankton and

zooplankton. Susceptible and infected phytoplanktons are

taken as prey components. We assume the initial infected

phytoplankton population and their growth at any time t are

due to viral infection. It is also assumed that infected

populations are being recovered at a constant recovery rate

c. The susceptible phytoplankton grows logistically and per

capita growth rate approaches to zero as population size

approaches a maximum imposed by limited resources in

the environment, whereas the zooplankton population

predates the susceptible and infected phytoplankton popu-

lations at rates g and q, respectively. Here, g\q, as

infected phytoplankton are more vulnerable to predation

than susceptible phytoplankton. Noctiluca scintillans is a

marine planktonic dinoflagellate. Although this species is

not toxin creating, it has been found to accumulate the

poisonous levels of ammonia, which consecutively act as

the killing agent in blooms (Okaichi 1976). Experimental

works demonstrate that in German Bight disease, Noctiluca

scintillans become unable to reproduce (Uhlig and Sahling

1990). The impact of toxins decreases the growth of zoo-

plankton species as per the Holling type II functional

response. It is investigated that the toxin liberation

parameter plays an important role in the occurrence of

bloom. A brief description of parameters and their units of

the model system (2.1) are presented in Table 1.

3 Analysis of the Model System (2.1)

3.1 Boundedness of Solution

Theorem 1 All solutions of the system (2.1) which initiate

in Rþ
3 are uniformly bounded for suitably taken positive

x1 � minðd; dÞ and qg� gh.

Proof To examine the boundedness of the model system

(2.1), let us consider a function

W ¼ Sþ I þ g
g
Z: ð3:1Þ

Differentiating with respect to time t, we have

dW

dt
¼ dS

dt
þ dI

dt
þ g
g

dZ

dt
:

From Eq. (2.1), we have
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dW

dt
¼ rS

�
1 � Sþ I

K

�
� CSI � gSZ

Sþ a
þ cI � dI

þ CSI � qIZ
I þ a

� cI þ g
g

�
� dZ þ gSZ

Sþ a

þ hIZ

I þ a
� hðSþ IÞZ

Sþ I þ b

�
:

Introducing positive x1 and rewriting, we have

dW

dt
þ x1W � S

�
x1 þ r

�
1 � S

K

��
� d� x1ð ÞI

� g
g
ðd � x1ÞZ � q� gh

g

� �
IZ

I þ a
:

This implies

dW

dt
þ x1W � K

4r
ðr þ x1Þ2 � d� x1ð ÞI

� g
g
ðd � x1ÞZ � q� gh

g

� �
IZ

I þ a
:

ð3:2Þ

Choosing x1 � minðd; dÞ and qg� gh,

dW

dt
þ x1W � K

4r
ðr þ x1Þ2: ð3:3Þ

Using differential inequality theorem in Eq. (3.3), we get

0\W\
K

4rx1

r þ x1ð Þ2
1 � e�x1tð Þ þW0 e�x1tð Þ;

where W0 ¼ WðSð0Þ; Ið0Þ; Zð0ÞÞ.

Moreover,

lim
t!1

supW ¼ K

4rx1

r þ x1ð Þ2:

Hence, all the solutions initiating in R3
þ of Eq. (2.1) are

defined in the region

w ¼
�
ðS; I; ZÞ 2 R3

þ : Sþ I þ g
g
Z ¼ K

4rx1

ðr þ x1Þ2 þ e;

e[ 0

�
:

Thus, all positive solutions of virally infected model sys-

tem (2.1) are uniformly bounded for all t� 0. h

3.2 Existence of Equilibria

In this subsection, we have obtained all possible feasible

equilibrium point of the model system (2.1).

(i) Existence of E0ð0; 0; 0Þ. The trivial equilibrium

always exit.

(ii) Existence of E1ðS1; 0; 0Þ. From Eq. (2.1), it can be

seen that S1 ¼ K. Therefore, positive equilibrium

E1 exits.

(iii) Existence of E2ðS0; I0; 0Þ. From Eq. (2.1), the

susceptible infected equilibrium ðS0; I0; 0Þ exits if

we get S0 and I0 positive. Thus, we have

rS0 1 � S0 þ I0

K

� �
� CS0I0 þ cI0 ¼ 0; ð3:4Þ

Table 1 Brief description of the notation used for parameters with their units

Parameters Units Description

r h�1 Intrinsic growth rate of susceptible phytoplankton population

K l�1 Carrying capacity of phytoplankton population

C lh�1 Rate of infection

g lh�1 Maximum predation rate of susceptible phytoplankton population

c l�1 Rate at which infected phytoplankton become susceptible population

q lh�1 Maximum predation rate of infected phytoplankton population

d lh�1 Total death rate of infected phytoplankton population due to disease

g lh�1 Growth rate of zooplankton due to predation of susceptible phytoplankton population

h lh�1 Growth rate of zooplankton due to predation of infected phytoplankton

d lh�1 Total death rate of zooplankton population

h h�1 The rate of toxin liberation by the toxin producing phytoplankton population

b l�1 Half saturation constant for the toxin producing phytoplankton

a l�1 Represent the half saturation constant measures the extent to which the environment

provides protection to susceptible and infected phytoplankton population
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CS0I0 � dI0 � cI0 ¼ 0: ð3:5Þ

Solving Eqs. (3.4) and (3.5), we get

S0 ¼ dþ c
C

and I0 ¼ rðdþ cÞ KC � ðdþ cÞð Þ
C rðdþ cÞ þ KCdð Þ :

Hence, the equilibrium point E2ðS0; I0; 0Þ exits if

K[ S0.

(iv) Existence of E3ð �S; 0; �ZÞ. From Eq. (2.1), the

infection-free equilibrium E3ð �S; 0; �ZÞ exits if we

get �S and �Z positive. Thus, we have

�S ¼ aðd þ hÞ � bðg� dÞ þ
ffiffiffiffiffi
d1

p

2ðg� ðd þ hÞÞ ;

�Z ¼ r

g

�
1 �

�S

K

�
ð �Sþ aÞ;

where

d1 ¼ g� dð Þb� a d þ hð Þ2
� �

� 4dab g� d þ hð Þð Þ:

Hence, the equilibrium point E3ð �S; 0; �ZÞ exits if

K[ �S, a
b [ g�d

hþd and g[ hþ d.

(v) Existence of non-trivial equilibrium point

E�ðS�; I�; Z�Þ, where S�, I� and Z� satisfy the

following algebraic nonlinear equations, let

rS� 1 � S� þ I�

K

� �
� CS�I� � gS�Z�

S� þ a
þ cI� ¼ 0;

ð3:6Þ

CS�I� � qI�Z�

I� þ a
� dI� � cI� ¼ 0; ð3:7Þ

gS�Z�

S� þ a
þ hI�Z�

I� þ a
� dZ� � hðS� þ I�ÞZ�

S� þ I� þ b
¼ 0:

ð3:8Þ

Simplifying Eq. (3.8), we get the following

quadratic equation

f ðS�Þ ¼ S�2 þ AS� þ B ¼ 0;

where

A ¼ m1

m3

;

B ¼ m2

m3

;

m1 ¼ ðbþ I�Þððgþ hÞI� þ aðg� dÞÞ � ðd � hÞ
� ðaða� I�Þ þ I�2Þ þ ðh� hÞI�a� dI�ðbþ aÞ;

m2 ¼ aðbþ I�ÞðI�ðh� dÞ � adÞ � haI�ðI� þ aÞ;
m3 ¼ ðI� þ aÞðg� d � hÞ þ hI�:

Roots of above quadratic equation are given by

S� ¼ �A�
ffiffiffiffiffiffiffiffiffiffi
A2�4B

p

2
, from which at least one root will

be positive provided one of the following condi-

tion holds:

(a) A\0, B\0,

(b) A\0, B[ 0 and A2 � 4B[ 0,

(c) A[ 0, B\0.

From Eq. (3.7), we have

Z� ¼ I� þ að Þ CS� � dþ cð Þð Þ
q

:

Clearly, Z� exists if S� [ ðdþcÞ
C . Now, the value of

Z� substituted in Eq. (3.6), we get

I� ¼ rqS� K � S�ð Þ S� þ að Þ � KgS�a CS� � dþ cð Þð Þ
q S� þ að Þ rS� þ K CS� � cð Þð Þ þ gKS� CS� � dþ cð Þð Þ :

Clearly, I� exists if S� [ c
C, S� [ cþd

C and K[ S�.

3.3 Stability Analysis

In this subsection, we have discussed the stability condition

around all the existing equilibrium point. Hence, we have

computed the variational matrix around the positive equi-

libria, we get

JðS; I; ZÞ ¼

S
of1
oS

þ f1 S
of1
oI

S
of1
oZ

I
of2
oS

I
of2
oI

þ f2 I
of2
oZ

Z
of3
oS

Z
of3
oI

Z
of3
oZ

þ f3

0
BBBBBB@

1
CCCCCCA
;

where

of1
oS

¼ � r

K
þ gZ

ðSþ aÞ2
� cI
S2

;
of1
oI

¼ � r

K
� C þ� c

S
;

of1
oZ

¼ � g
Sþ a

;
of2
oS

¼ C;
of2
oI

¼ qZ

ðI þ aÞ2
;

of2
oZ

¼ � q
I þ a

;
of3
oS

¼ ag

ðSþ aÞ2
� bh

ðbþ Sþ IÞ2
;

of3
oI

¼ ah

ðI þ aÞ2
� hb

ðbþ Sþ IÞ2
;

of3
oZ

¼ �d þ gS

Sþ a
þ hI

I þ a
� hðSþ IÞ
Sþ I þ b

:

(i) The trivial equilibrium point E0ð0; 0; 0Þ exists. The

Jacobian matrix corresponding to the equilibrium

point E0 is given by
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JðE0Þ ¼
r c 0

0 � ðdþ cÞ 0

0 0 � d

0
B@

1
CA:

The eigenvalues around E0 are ðr;�ðdþ cÞ;�dÞ.
Therefore, the equilibrium point E0 is stable man-

ifold along I � Z direction and unstable manifold

along S-direction.

(ii) The susceptible phytoplankton equilibrium point

E1ðK; 0, 0) exists. The Jacobian matrix corre-

sponding to E1 is given by

JðE1Þ ¼

�r � r � CK
gK

K þ a
0 CK � ðdþ cÞ 0

0 0
gK

K þ a
� hK
bþ a

� d

0
BBBB@

1
CCCCA:

The eigenvalues around E1 are	
� r;�ðdþ cÞ þ CK;�d þ gK

Kþa � hK
bþK



. There-

fore, E1 is locally asymptotically stable provided

K\
ðdþ cÞ

C
; ð3:9Þ

gK

K þ a
\d þ hK

K þ b
: ð3:10Þ

Thus, the equilibrium point E1 ¼ ðK; 0; 0Þ is

locally asymptotically stable provided the condi-

tions (3.9) and (3.10) hold. E1 will be saddle point

if

gK

K þ a
[ d þ hK

K þ b
:

(iii) The zooplankton-free equilibrium point

E2ðS0; I0; 0Þ exists. The Jacobian matrix corre-

sponding to the point E2 is given by

JðE2Þ ¼

r

S0
ðd� CS0ÞI0 � rS0

K
� CS0 þ c

gS0

S0 þ a

CI0 CS0 � ðdþ cÞ � qI0

I 0 þ a

0 0

gS0

S0 þ a
þ hI0

I0 þ a

�d � hðS0 þ I 0Þ
bþ S0 þ I 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

The characteristics equation of the Jacobian

matrix JðE2Þ is given by

k2 þ Crc
dþ c

kþ rd
K

þ rc
K

þ CdI0
� �

� gS0

S0 þ a
þ hI0

I0 þ a
� d � hðS0 þ I0Þ

bþ S0 þ I0
� k

� �
¼ 0:

ð3:11Þ

In the characteristics Eq. (3.11), the quadratic

term gives two negative eigenvalue whereas third

eigenvalue of the characteristics Eq. (3.11) is
gS0

S0þa þ hI0

I0þa � d � hðS0þI0Þ
bþS0þI0, which is either negative

or positive, it is depends on

gS0

S0 þ a
þ hI0

I0 þ a
\d þ hðS0 þ I0Þ

bþ S0 þ I0
; ð3:12Þ

or

gS0

S0 þ a
þ hI0

I0 þ a
[ d þ hðS0 þ I0Þ

bþ S0 þ I0
: ð3:13Þ

Thus, equilibrium point E2ðS0; I0; 0Þ is locally

asymptotically stable if the condition (3.12) holds.

Otherwise, E2 is a saddle point if condition (3.13)

holds.

(iv) The infection-free equilibrium point E3ð �S; 0; �ZÞ
exists. The Jacobian matrix corresponding to the

point E3 is given by

JðE3Þ ¼

r � 2r �S

K
� ag �Z

ð �Sþ aÞ2
� r �S

K
� C �Sþ c � g �S

�Sþ a

0 C �S� q �Z

a
� ðdþ cÞ 0

ag �Z

ð �Sþ aÞ2
� hb �Z

ðbþ �SÞ2

h �Z

a
� hb �Z

ðbþ �SÞ2
0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

One eigenvalue for E3 is C �S� q �Z
a � ðdþ cÞ and

another eigenvalue is roots of sub-matrix

J0ðE3Þ ¼
r � 2r �S

K
� ag �Z

ð �Sþ aÞ2
� g �S

�Sþ a

ag �Z

ð �Sþ aÞ2
� hb �Z

ðbþ �SÞ2
0

0
BBB@

1
CCCA:

The eigenvalue of sub-matrix J0ðE3Þ has negative

eigenvalues if trðJ0ðE3ÞÞ\0 and detðJ0ðE3ÞÞ[ 0.

Therefore,

trðJ0ðE3ÞÞ ¼r � 2r �S

K
� ag �Z

ð �Sþ aÞ2
;

detðJ0ðE3ÞÞ ¼
g �S
�Sþ a

ag �Z

ð �Sþ aÞ2
� bh �Z

ðbþ �SÞ2

 !
:

Now, trðJðE3ÞÞ\0 if the following condition

holds:

r\
2r �S

K
þ ag �Z

ð �Sþ aÞ2
; ð3:14Þ

and detðJðE3ÞÞ[ 0 if the following condition

holds:

ag �Z

ð �Sþ aÞ2
[

bh �Z

ðbþ �SÞ2
: ð3:15Þ
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Thus, the infection-free equilibrium point E3 is

locally asymptotically stable if conditions (3.14)

and (3.15) hold.

(v) Variational matrix around the non-trivial equilib-

rium point E�ðS�; I�; Z�Þ is given by

JðE�Þ ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BB@

1
CCA;

where

a11 ¼ r 1 � 2S� þ I�

K

� �
� CI� � agZ�

ðS� þ aÞ2
;

a12 ¼ � rS�

K
� CS� þ c; a13 ¼ � gS�

S� þ a
;

a21 ¼ CI�; a22 ¼ qI�Z�

ðI� þ aÞ2
; a23 ¼ � qI�

S� þ a
;

a31 ¼ agZ�

ðS� þ aÞ2
� bhZ�

ðbþ S� þ I�Þ2
;

a32 ¼ ahZ�

ðI� þ aÞ2
� hbZ�

ðbþ S� þ I�Þ2
; a33 ¼ 0:

Here, a13\0, a23\0 and a33 ¼ 0. The charac-

teristics equation of the Jacobian matrix JðE�Þ is

given by

V3 þM1V
2 þM2V þM3 ¼ 0;

where

M1 ¼ �ða11 þ a22Þ;
M2 ¼ �a23a32 � a13a31 þ a11a22 � a12a21;

M3 ¼ �a31a12a23 þ a31a13a22 þ a11a23a32

� a32a13a21;

M1M2 �M3 ¼ ða11 þ a22Þða12a21 � a11a22Þ
þ a31ða11a13 þ a12a23Þ þ a32ða22a23 þ a13a21Þ:

If we assume a11\0, a12\0, a23\0 and a13\0,

then it is easy to verify that M1 [ 0, M2 [ 0 and

M1M2 �M3 [ 0. Thus, from Routh-Hurwitz cri-

teria, the model system (2.1) is locally asymptot-

ically stable around that equilibrium point

E�ðS�; I�; Z�Þ.
With the help of some straightforward calculation, we

construct the following theorem:

Theorem 2 The model system is locally asymptotically

stable at the interior equilibrium point E�ðS�; I�; Z�Þ if the
following conditions are satisfied.

(i) r

�
2S�þI�

K � 1

�
þ CI� [ Z�

�
qI�

ðI�þaÞ2 � ag
ðS�þaÞ2

�
,

(ii) ah
ðI�þaÞ2 [ hb

ðbþS�þI�Þ2,

(iii) ag
ðS�þaÞ2 [ hb

ðbþS�þI�Þ2,

(iv) CI�
�

rS�

K þ CS� � c

�
[ qI�Z�

ðI�þaÞ2

�
r

�
2S�þI�

K � 1

�

þCI� þ agZ�

ðS�þaÞ2

�
,

(v)
�

rS�

K þ CS� � c

��
ag

ðS�þaÞ2 � bh
ðS�þI�þbÞ2

�
[ qI�Z�

ðI�þaÞ2

�
�

ah
ðI�þaÞ2 � bh

ðS�þI�þbÞ2

�
,

(vi)
�
r

�
2S�þI�

K � 1

�
þ CI� þ agZ�

ðS�þaÞ2

��
ag

ðS�þaÞ2 � bh
ðS�þI�þbÞ2

�

[CI�
�

ah
ðI�þaÞ2 � bh

ðS�þI�þbÞ2

�
.

Theorem 3 Assume that the positive equilibrium point

E�ðS�; I�; Z�Þ is locally asymptotically stable in intR3
þ.

Then it is globally asymptotically stable in a subregion of

intR3
þ, provided

(i) ru1 [KgZ�,

(ii) dþ aqZ�

u1
[ kS�,

(iii) d[ gS�

ðS�þaÞ þ hI�

ðI�þaÞ,

(iv)

Ku1u2ðk1CI
� � r

K � CÞ2\ðu1a� gZ�KÞððd� CS�Þu2

þaqZÞ.
where u1 ¼ ðSþ aÞðS� þ aÞ and u2 ¼ ðI þ aÞðI� þ aÞ.

Proof Let us assume a positive definite Lyapunov function

around a positive equilibrium point E�ðS�; I�; Z�Þ:

# S; I; Zð Þ ¼ S� S� � S� ln
S

S�

� �
þ k1

2
I � I�ð Þ2

þ k2

2
Z � Z�ð Þ2:

Differentiating # with respect to time t along the solution

of the system (2.1), we obtain

d#

dt
¼ �

�
r

K
� gZ�

u1

�
ðS� S�Þ2

� k1

�
d� CS� � aqZ

u2

�
ðI � I�Þ2

� k2

�
d � gS�

ðS� þ aÞ �
hI�

ðI� þ aÞ

�
ðZ � Z�Þ2

þ
�
k1CI �

r

K
� C

�
ðS� S�ÞðI � I�Þ

þ k2agZ
u1

� gS�

ðSþ aÞ �
ab

ðSþ aÞðS� þ aÞ

� �
ðS� S�Þ

� ðZ � Z�Þ � k2haZ
/2

� k1qI�

ðI þ aÞ

� �
ðI � I�ÞðZ � Z�Þ:

The above-mentioned equation can be represented as the

sum of quadratics as,
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d#

dt
¼ � 1

2
a11ðS� S�Þ2 þ a12ðS� S�ÞðI � I�Þ

� 1

2
a22ðI � I�Þ2 � 1

2
a22ðI � I�Þ2

þ a23ðI � I�ÞðZ � Z�Þ � 1

2
a33ðZ � Z�Þ2

� 1

2
a11ðS� S�Þ2 þ a13ðS� S�ÞðZ � Z�Þ

� 1

2
a33ðZ � Z�Þ2:

Sufficient conditions for d#
dt to be negative definite are

a11 [ 0; a22 [ 0; a33 [ 0; ð3:16Þ

a2
12\a11a22; ð3:17Þ

a2
13\a11a33; ð3:18Þ

a2
23\a33a22: ð3:19Þ

Under the condition of Theorem 3, we can justify all the

above conditions. h

3.4 Hopf-Bifurcation Analysis

In this subsection, we illustrate the conditions for the Hopf-

bifurcation of the system around E�, when the parameter

passes through some critical value. In fact, we have the

following theorem.

Theorem 4 The system (2.1) undergoes for Hopf-bifur-

cation around the positive equilibrium point E�, whenever
the parameter of the system crosses a critical value bcr. If

the following conditions are satisfied

(i) A1ðbcrÞ[ 0, A2ðbcrÞ[ 0, A3ðbcrÞ[ 0 ,

(ii) A1ðbcrÞA2ðbcrÞ � A3ðbcrÞ ¼ 0,

(iii) R
dkðbÞ
db

h i
b¼bcr

6¼ 0,

then dynamics of the system (2.1) experiences a Hopf

bifurcation around the positive equilibrium points E�.

Proof Under the conditions of Theorem 2, the system is

locally asymptotically stable around equilibrium point E�.
We choose b as a bifurcation parameter and if there exists a

critical value says bcr, then A1ðbcrÞ[ 0, A2ðbcrÞ[ 0,

A3ðbcrÞ[ 0 and wðbcrÞ ¼ A1ðbcrÞA2ðbcrÞ � A3ðbcrÞ ¼ 0.

For the occurrence of Hopf-bifurcation at b ¼ bcr, the

characteristics equation must be in the form

k3ðbÞ þ A1ðbÞk2ðbÞ þ A2ðbÞkðbÞ þ A3ðbÞ ¼ 0; ð3:20Þ

which has three roots k1ðbÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
A2ðbÞ

p
, k2ðbÞ ¼

�i
ffiffiffiffiffiffiffiffiffiffiffi
A2ðbÞ

p
and k3ðbÞ ¼ �A1ðbÞ.

Now, we have to show transversality conditions

R

�
dkjðbÞ
db

�
b¼bcr

6¼ 0; j ¼ 1; 2.

Let kjðbÞ ¼ aðbÞ�ibðbÞ, substituting value of kjðbÞ in

Eq. (3.20) and differentiating with respect to b, we get

/1ðbÞa0ðbÞ � /2ðbÞb0ðbÞ þ lðbÞ ¼ 0; ð3:21Þ

/2ðbÞa0ðbÞ þ /ðbÞb0ðbÞ þ mðbÞ ¼ 0: ð3:22Þ

Here,

/1ðbÞ ¼ 3a2ðbÞ þ 2A1ðbÞaðbÞ þ A2ðbÞ � 3b2ðbÞ ¼ 0;

/2ðbÞ ¼ 6aðbÞbðbÞ þ 2A1ðbÞbðbÞ ¼ 0;

lðbÞ ¼ a2ðbÞA0
1ðbÞ þ A0

2ðbÞaðbÞ þ A0
3ðaÞ � A0

1ðbÞb
2ðbÞ;

mðbÞ ¼ 2aðbÞbðbÞA0
1ðbÞ þ A0

2ðbÞbðbÞ:

We have

R
dkðbÞ
db

� �
b¼bcr

¼ �/1lþ /2m

/2
1 þ /2

2

6¼ 0;

where /1ðbÞlðbÞ þ /2ðbÞmðbÞ 6¼ 0, and k3 ¼ �A1ðbÞ.
Hence, the transversality condition R

dkjðbÞ
db

h i
b¼bcr

6¼ 0

holds. This implies that Hopf-bifurcation occurs

at b ¼ bcr . h

4 Model System (2.1) with Time Delay

In this section, we have assumed that the viral dissemina-

tion among phytoplankton is not an immediate procedure

rather some time lag is essential in the form of an incu-

bation period where the susceptible stay for some definite

period of time and after that leaving the susceptible class

and joining the infected class. With this purpose, we have

introduced discrete-time delay s in the infected phyto-

plankton dynamics. Hence, the corresponding model sys-

tem takes the following form:

dS

dt
¼ rS

�
1 � Sþ I

K

�
� CSI � gSZ

Sþ a
þ cI;

dI

dt
¼� dI þ CSðt � sÞIðt � sÞ � qIZ

I þ a
� cI;

dZ

dt
¼� dZ þ gSZ

Sþ a
þ hIZ

I þ a
� hðSþ IÞZ

Sþ I þ b
;

ð4:1Þ

with the following initial conditions

SðhÞ ¼/1ðhÞ; IðhÞ ¼ /2ðhÞ; ZðhÞ ¼ /3ðhÞ
for all h 2 ½�s; 0	;

where

ð/1;/2;/3Þ 2 Cð½�s; 0	;R3
þÞ; /1ð0Þ; /2ð0Þ; /3ð0Þ[ 0:

To investigate the local stability of system (4.1) about

coexistence equilibrium point E�ðS�; I�; Z�Þ, we introduce

the following perturbations uðtÞ ¼ SðtÞ � S�,
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vðtÞ ¼ IðtÞ � I�, wðtÞ ¼ ZðtÞ � Z�. Then, the transformed

system of equations is given by

du

dt
¼ u100uðtÞ þ u010vðtÞ þ u001wðtÞ;

dv

dt
¼ v010vðtÞ þ v001wðtÞ þ v�100uðt � sÞ þ v�010vðt � sÞ;

dw

dt
¼ w100uðtÞ þ w010vðtÞ;

ð4:2Þ

where

u100 ¼ r � 2rS�

K
� rI�

K
� CI� � agZ�

ðS� þ aÞ2
;

u010 ¼ � rS�

K
� CS� þ c; u001 ¼ � gS�

S� þ a
;

v010 ¼ � aqZ�

ðI� þ aÞ2
� d� c; v001 ¼ � qI�

I� þ a
;

w100 ¼ agZ�

ðS� þ aÞ2
� bhZ�

ðS� þ I� þ bÞ2
;

w010 ¼ ahZ�

ðI� þ aÞ2
� bhZ�

ðS� þ I� þ bÞ2
;

v�100 ¼ CI�; v�010 ¼ CS�:

The characteristic equation of system (4.2) at coexistence

equilibria is represented as

k3 þ Ak2 þ Bkþ C þ e�ksðDk2 þ Ekþ FÞ ¼ 0; ð4:3Þ

where

A ¼ �ðm11 þ m22Þ; B ¼ m11m22 � m23m32 � m13m31;

C ¼ m11m23m32 � m12m23m31 þ m13m31m22;

D ¼ �n22; E ¼ m11n22 � m12n21;

F ¼ m13m31n22 � m13m32n21:

Lemma 1 If s 6¼ 0 , then Eq. (4.3) has a pair of purely

imaginary roots �ix ðx[ 0Þ if x satisfies

� ix3 � Ax2 þ iBxþ C þ ð�Dx2 þ iExþ FÞ
ðcosxs� i sinxsÞ ¼ 0:

ð4:4Þ

Now, separating real and imaginary parts of Eq. (4.4),

we have

� Ax2 þ C ¼ ðDx2 � FÞ cosxs� Ex sinxs;

� x3 þ Bx ¼ �ðDx2 � FÞ sinxs� Ex cosxs:

ð4:5Þ

Eliminating trigonometrical function, this leads to the fol-

lowing sixth degree equation

x6 þ ðA2 � 2B� D2Þx4 þ ðB2 � 2AC þ 2DF � E2Þ
� x2 þ ðC2 � F2Þ ¼ 0:

ð4:6Þ

Choosing x2 ¼ #, this implies

#3 þ a1#
2 þ a2#þ a3 ¼ 0; ð4:7Þ

where

a1 ¼ ðA2 � 2B� D2Þ;
a2 ¼ ðB2 � 2AC þ 2DF � E2Þ;
a3 ¼ ðC2 � F2Þ:

Now, let

Fð#Þ ¼ #3 þ a1#
2 þ a2#þ a3 ¼ 0; ð4:8Þ

therefore

F0ð#Þ ¼ 3#2 þ 2a1#þ a2 ¼ 0; ð4:9Þ

where the roots of F0ð#Þ can be expressed as,

#1;2 ¼�2a1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2

1 � 12a2

p
6

;

¼�a1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 3a2

p
3

:

ð4:10Þ

From the above-mentioned equations, we have the fol-

lowing lemma (Song and Wei 2004):

Lemma 2 Since a3 ¼ C2 � F2 [ 0, therefore

(i) If a2
1 � 3a2\0 then Fð#Þ has no positive roots.

(ii) If a2
1 � 3a2 � 0; #1 [ 0; Fð#1Þ\0 then Fð#Þ has

exactly two positive roots .1 and .2 (where

.1 [ .2). Furthermore, F0ð.1Þ[ 0 and F0ð.2Þ\0.

Putting xq ¼ ffiffiffiffiffi.qp
(q=1,2) and solving Eq. (4.5) for s,

we get the corresponding critical value of time delay as,

snq ¼
1

xq
cos�1

ðC � Ax2
qÞðDx2

q � FÞ þ Ex2
qðx2

q � BÞ
ðDx2

q � FÞ2 þ E2x2
q

þ 2pq
xq

;

ð4:11Þ

where q ¼ 1; 2 and n ¼ 0; 1; 2; . . ..
If s ¼ snq then �ixq is the purely imaginary roots of the

characteristic Eq. (4.5) and other roots having the nonzero

real part.

Let us define sq ¼ minn¼0;1;2;...fsnqg where q ¼ 1; 2:

Theorem 5 We have the following transversality

conditions
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�
dðRkðsÞÞ

ds

�
s¼sn

1
;

[ 0 and

�
dðRkðsÞÞ

ds

�
s¼sn

2
;

\0

ðn ¼ 0; 1; 2; . . .Þ:
ð4:12Þ

Proof Differentiating the characteristic Eq. (4.5) with

respect to s, we obtain�
dk
ds

��1

¼ ð3k3 þ 2Ak2 þ BkÞeks

k2ðDk2 þ Ekþ FÞ
þ ð2Dkþ EÞ
kðDk2 þ Ekþ FÞ

� s
k
:

ð4:13Þ

Now, substituting kðsÞ ¼ uðsÞ þ ixðsÞ in Eq. (4.13) such

that uðsnqÞ ¼ 0 and xðsnqÞ ¼ xq, it gives

�
dRkðsÞ

ds

��1

s¼snq

¼
�
ð3k2 þ 2Akþ BÞeks þ ð2Dkþ EÞ

kðDk2 þ Ekþ FÞ

�
s¼snq

¼
�

3x4 þ 2ðA2 � 2B�D2Þx2

ðDx2 � FÞ2 þ E2x2

þ B2 � 2AC þ 2DF � E2

ðDx2 � FÞ2 þ E2x2

�
x¼xq

¼
F0ðx2

qÞ
ðDx2

q � FÞ2 þ E2x2
q

:

If x2
1\x2

2 then F0ðx2
1Þ\0 and F0ðx2

2Þ[ 0. This is the

required transversality condition for occurrence Hopf-bi-

furcation. h

5 Properties of Periodic Solution of Delayed
System (4.1)

In this section, we will elaborate the direction, stability and

period of the periodic solutions of the model system (4.1)

which is bifurcating from the coexistence equilibrium E�.
We use the normal form and center manifold theory

introduced by Hassard et al. (1981) to compute the direc-

tion of Hopf-bifurcation which guarantees that the periodic

solution exists. Further, we assume without any loss of

generality that the critical value of time delay is denoted by

s ¼ s0 at which a pair of purely imaginary roots �ix0

crosses the imaginary axis and the system undergoes Hopf-

bifurcation at the coexistence equilibrium E�ðS�; I�; Z�Þ.
Let y1 ¼ S� S� , y2 ¼ I � I� , y3 ¼ Z � Z� , j ¼ s� s0

where j 2 R and at j ¼ 0 gives the value of Hopf-bifur-

cation. Rescale the time by t �! t
s, the system (4.1) can be

written into the following continuous real-valued functions

as C ¼ ð½�1; 0	;R3Þ

_yðtÞ ¼ LjðytÞ þ Fðj; ytÞ; ð5:1Þ

where yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; y3ðtÞÞT 2 R3 and Lj : C !
R3; F : R� C ! R3 are given, respectively,

Ljð/Þ ¼ ðs0 þ jÞ½M/ð0Þ þ N/ð�1Þ	; ð5:2Þ

such that

M ¼
u100 u010 u001

0 v010 v001

w100 w010 0

0
B@

1
CA; N ¼

0 0 0

v�100 v�010 0

0 0 0

0
B@

1
CA;

and

Fðj;/Þ ¼ ðs0 þ jÞ

�



u200/

2
1ð0Þ þ u110/1ð0Þ/2ð0Þ þ u101/1ð0Þ/3ð0Þ

�


v020/

2
2ð0Þ þ v011/2ð0Þ/3ð0Þ þ v�110/1ð�1Þ/2ð�1Þ

�


w200/

2
1ð0Þ þ w020/

2
2ð0Þ þ w110/1ð0Þ/2ð0Þ

þw011/2ð0Þ/3ð0Þ þ w101/1ð0Þ/3ð0Þ
�

0
BBBB@

1
CCCCA;

ð5:3Þ

where /ðhÞ ¼ ð/1ðhÞ;/2ðhÞ;/3ðhÞÞT 2 Cð½�1; 0	;R3Þ,

u200 ¼ � r

K
þ agZ�

ðS� þ aÞ3
; u110 ¼ � r

K
� C;

u101 ¼ � ag

ðS� þ aÞ2
; v020 ¼ aqZ�

ðI� þ aÞ3
;

v011 ¼ � aq

ðI� þ aÞ2
; v�110 ¼ C;

w200 ¼ � agZ�

ðS� þ aÞ3
þ bhZ�

ðS� þ I� þ bÞ3
;

w020 ¼ � ahZ�

ðI� þ aÞ2
þ bhZ�

ðS� þ I� þ bÞ3
;

w110 ¼ 2bhZ�

ðS� þ I� þ bÞ3
;

w011 ¼ ah

ðI� þ aÞ2
� bh

ðS� þ I� þ bÞ2
;

w101 ¼ ag

ðS� þ aÞ2
� bh

ðS� þ I� þ bÞ2
:

According the Riesz representation theorem, there exists a

function nðx; jÞ of bounded variation for x 2 ½�1; 0	, such

that

Lj/ ¼
Z 0

�1

dnðx; jÞ/ðxÞ; for / 2 C: ð5:4Þ

In fact, we can pick

nðx; jÞ ¼ ðs0 þ jÞ½MdðxÞ � Ndðxþ 1Þ	; ð5:5Þ

where dðxÞ is the Dirac delta function.

For / 2 Cð½�1; 0	;R3Þ, define
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AðjÞ/ ¼
d/ðxÞ
dx ; x 2 ½�1; 0Þ;R 0

�1
/ðsÞdnðs; jÞ; x ¼ 0;

(
ð5:6Þ

and

RðjÞ/ ¼
0; x 2 ½�1; 0Þ;
Fðj;/Þ; x ¼ 0:

�
ð5:7Þ

Now, the system (5.1) is equivalent to

_yt ¼ AðjÞyt þ RðjÞyt; ð5:8Þ

where ytðxÞ ¼ yðt þ xÞ for x 2 ½�1; 0	:
For w 2 C1ð½0; 1	; ðR3Þ�Þ, define

A�wðsÞ ¼
� dwðsÞ

ds s 2 ð0; 1	;R 0

�1
wð�tÞdnTðt; 0Þ; s ¼ 0;

(
ð5:9Þ

and a bilinear inner product is given by

hwðsÞ;/ðxÞi ¼wð0Þ/ð0Þ �
Z 0

x¼�1

Z x

f¼0

wðf� xÞ

� dnðxÞ/ðfÞdf;
ð5:10Þ

where n ¼ nðx; 0Þ. Then, A ¼ Að0Þ and A� are adjoint

operators. From the above calculation, we know that

�ix�s� and 
ix�s� are eigenvalues of A(0) and A�,
respectively.

Suppose qðxÞ ¼ ð1; r1; r2ÞTeix0s0x be the eigenvector of

A(0) corresponding to the eigenvalue ix0s0 then

AqðxÞ ¼ ix0s0qðxÞ: ð5:11Þ

For x ¼ 0, Eq. (5.11) reduces to

s0½ix0I � ðM þ Ne�ix0s0Þ	qð0Þ ¼ 0; ð5:12Þ

where I is 3 � 3 identity matrix. This implies,

s0

ix0 � u100 � u010 � u001

�v�100e
�ix0s0 ix0 � v010 � v�010e

�ix0s0 � v001

�w100 � w010 ix0

0
B@

1
CA

� qð0Þ ¼
0

0

0

0
B@

1
CA;

which gives

qð0Þ ¼
1

r1

r2

0
B@

1
CA

¼

1

u001v
�
100e

�ix0s0 þ ðix0 � u100Þv001

ðix0 � v010 � v�010e
�ix0s0Þu001 þ u010v001

ðix0 � u100Þðix0 � v010 � v�010e
�ix0s0Þ � u010v

�
100e

�ix0s0

ðix0 � v010 � v�010e
�ix0s0Þu001 þ u010v001

0
BBBBB@

1
CCCCCA
:

Similarly, let q�ðsÞ ¼ Pð1; r�1; r�2Þ
Teix0s0s be the eigenvec-

tor of A� corresponding to the eigenvalue �ix0s0 then

s0½�ix0I � ðMT þ NTe�ix0s0Þ	ðq�ð0ÞÞT ¼ 0; ð5:13Þ

where I is 3 � 3 identity matrix. This implies that

q�ð0Þ ¼
1

r�1
r�2

0
B@

1
CA

¼

1
u010w100 � ðu100 þ ix0Þ

w010v
�
100e

�ix0s0 � w100ðix0 � v010 � v�010e
�ix0s0Þ

ðix0 þ u100Þðix0 þ v010 þ v�010e
�ix0s0Þ � u010v

�
100e

�ix0s0

w010v
�
100e

�ix0s0 � w100ðix0 þ v010 þ v�010e
�ix0s0Þ

0
BBBBB@

1
CCCCCA
:

Under the normalization condition hq�ðsÞ; qðhÞi ¼ 1, we

have

hq�ðsÞ; qðhÞi ¼ Pð1; r�1; r�2Þð1; r1; r2ÞT

��
Z0

x¼�1

Zx

f¼0

Pð1; r�1; r�2Þe�iðf�xÞx0s0dnðxÞ

� ð1; r1; r2ÞTeifx0s0df

¼ P½1 þ r1r
�
1 þ r2r

�
2

þ r�1ðv�100 þ r1v
�
010Þs0e

�ix0s0 	;

which gives

P ¼ 1

1 þ r1r�1 þ r2r�2 þ r�1ðv�100 þ r1v
�
010Þs0eix0s0

:

Now, following the same manner as given in Hassard et al.

(1981), we obtain

gðz; �zÞ ¼ s0Pð1; r�1; r�2Þ

�



u200/

2
1ð0Þ þ u110/1ð0Þ/2ð0Þ þ u101/1ð0Þ/3ð0Þ

�


v020/

2
2ð0Þ þ v011/2ð0Þ/3ð0Þ þ v�110/1ð�1Þ/2ð�1Þ

�


w200/

2
1ð0Þ þ w020/

2
2ð0Þ þ w110/1ð0Þ/2ð0Þ

þw011/2ð0Þ/3ð0Þ þ w101/1ð0Þ/3ð0Þ
�

0
BBBB@

1
CCCCA;

ð5:14Þ

which can also be written as
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gðz; �zÞ ¼ s0Pð1; r�1; r�2Þ

u200y

2
1tð0Þ þ u110y1tð0Þy2tð0Þ þ u101y1tð0Þy3tð0Þ

�


v020y

2
2tð0Þ þ v011y2tð0Þy3tð0Þ þ v�110y1tð�1Þy2tð�1Þ

�


w200y

2
1tð0Þ þ w020y

2
2tð0Þ þ w110y1tð0Þy2tð0Þ

þw011y2tð0Þy3tð0Þ þ w101y1tð0Þy3tð0Þ
�

0
BBBB@

1
CCCCA:

ð5:15Þ

Simplification of Eq. (5.15) gives

g20 ¼2s0P
�
q1 þ r�1q2 þ r�2q3

�
;

g11 ¼2s0P
�
q4 þ r�1q5 þ r�2q6

�
;

g02 ¼2s0P
�
q7 þ r�1q8 þ r�2q9

�
;

g21 ¼s0P
�
q10 þ r�1q11 þ r�2q12

�
;

ð5:16Þ

where

q1 ¼ u200 þ u110r1 þ u101r2;

q2 ¼ v020r
2
1 þ v011r1r2 þ v�110r1e

�2ix0s0 ;

q3 ¼ w200 þ w020r
2
1 þ w110r1 þ w011r1r2 þ w101r2;

q4 ¼ u200 þ u110Reðr1Þ þ u101Reðr2Þ;
q5 ¼ v020r1r1 þ v011Reðr1r2Þ þ v�110Reðr1Þ;
q6 ¼ w200 þ w020r1r1 þ w110Reðr1Þ

þ w011Reðr1r1Þ þ w101Reðr2Þ;
q7 ¼ u200 þ u110r1 þ u101r2;

q8 ¼ v020r
2
1 þ v011r1r2 þ v�110r1e

2ix0s0 ;

q9 ¼ w200 þ w020r
2
1 þ w110r1 þ w011r1r2 þ w101r2;

q10 ¼ u200ð2W ð1Þ
20 ð0Þ þ 4W

ð1Þ
11 ð0ÞÞ þ u110ðr1W

ð1Þ
20 ð0Þ

þ 2r1W
ð1Þ
11 ð0Þ þW

ð2Þ
20 ð0Þ þ 2W

ð2Þ
11 ð0ÞÞ þ u101

� ðr2W
ð1Þ
20 ð0Þ þ 2r2W

ð1Þ
11 ð0Þ þW

ð3Þ
20 ð0Þ þ 2W

ð3Þ
11 ð0ÞÞ;

q11 ¼ v020ð2r1W
ð2Þ
20 ð0Þ þ 4r1W

ð2Þ
11 ð0ÞÞ þ v011ðr2W

ð2Þ
20 ð0Þ

þ 2r2W
ð2Þ
11 ð0Þ þ r1W

ð3Þ
20 ð0Þ þ 2r1W

ð3Þ
11 ð0ÞÞ

þ v�110ðr1e
ix0s0W

ð1Þ
20 ð�1Þ þ 2r1e

�ix0s0W
ð1Þ
11 ð�1Þ

þ eix0s0W
ð2Þ
20 ð�1Þ þ 2e�ix0s0W

ð2Þ
11 ð�1ÞÞ;

q12 ¼ w200ð2W ð1Þ
20 ð0Þ þ 4W

ð1Þ
11 ð0ÞÞ þ w020ð2r1W

ð2Þ
20 ð0Þ

þ 4r1W
ð2Þ
11 ð0ÞÞ þ w110ðr1W

ð1Þ
20 ð0Þ þ 2r1W

ð1Þ
11 ð0Þ

þW
ð2Þ
20 ð0Þ þ 2W

ð2Þ
11 ð0ÞÞ þ w011ðr2W

ð2Þ
20 ð0Þ

þ 2r2W
ð2Þ
11 ð0Þ þ r1W

ð3Þ
20 ð0Þ þ 2r1W

ð3Þ
11 ð0ÞÞ

þ w101ðr2W
ð1Þ
20 ð0Þ þ 2r2W

ð1Þ
11 ð0Þ þW

ð3Þ
20 ð0Þ

þ 2W
ð3Þ
11 ð0ÞÞ:

We denote W20ðxÞ ¼ ðW ð1Þ
20 ðxÞ;W ð2Þ

20 ðxÞ;W ð3Þ
20 ðxÞÞT and

W11ðxÞ ¼ ðW ð1Þ
11 ðxÞ;W ð2Þ

11 ðxÞ;W ð3Þ
11 ðxÞÞT . By computing, we

obtained

W20ðxÞ ¼ � g20

ix0s0

qðxÞ � g02

3ix0s0

qðxÞ þ E1e
2ix0s0x;

ð5:17Þ

and

W11ðxÞ ¼
g11

ix0s0

qð0Þeix0s0x � g11

ix0s0

qð0Þe�ix0s0x þ E2;

ð5:18Þ

where E1 ¼ ðEð1Þ
1 ;E

ð2Þ
1 ;E

ð3Þ
1 Þ and E2 ¼ ðEð1Þ

2 ;E
ð2Þ
2 ;E

ð3Þ
2 Þ 2

R3 are the constant vectors, which can be determined by

using Hassard et al. (1981). Therefore,

2ix0 � u100 � u010 � u200

�e�2ix0s0v�100 2ix0 � v010 � e�2ix0s0v�010 � v001

�w100 � w010 2ix0

0
B@

1
CA

� E1 ¼ 2

q1

q2

q3

0
BBBBBB@

1
CCCCCCA
:

Solving this system for E1, we have

E
ð1Þ
1 ¼ 2

G1

q1 � u010 � u001

q2 2ix0 � v010 � e�2ix0s0v�010 � v001

q3 � w010 2ix0

�����������

�����������
;

E
ð2Þ
1 ¼ 2

G1

2ix0 � u100 q1 � u001

�e�2ix0s0v�100 q2 � v001

�w100 q3 2ix0

�����������

�����������
;

E
ð3Þ
1 ¼ 2

G1

2ix0 � u100 � u010 q1

�e�2ix0s0v�100 2ix0 � v010 � e�2ix0s0v�010 q2

�w100 � w010 q3

�����������

�����������
;

where

G1 ¼

2ix0 � u100 � u010 � u200

�e�2ix0s0v�100 2ix0 � v010 � e�2ix0s0v�010 � v001

�w100 � w010 2ix0

�����������

�����������
:

Similarly,
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�u100 � u010 � u200

�v�100 � v010 � v�010 � v001

�w100 � w010 0

0
BBBBBB@

1
CCCCCCA
E2 ¼ 2

q4

q5

q6

0
BBBBBB@

1
CCCCCCA
:

Solving this system for E2, we have

E
ð1Þ
2 ¼ 2

G2

q4 � u010 � u001

q5 � v010 � v�010 � v001

q6 � w010 0

�����������

�����������
;

E
ð2Þ
2 ¼ 2

G2

�u100 q4 � u001

�v�100 q5 � v001

�w100 q6 0

�����������

�����������
;

E
ð3Þ
2 ¼ 2

G2

�u100 � u010 q4

�v�100 � v010 � v�010 q5

�w100 � w010 q6

�����������

�����������
;

where

G2 ¼

�u100 � u010 � u200

�v�100 � v010 � v�010 � v001

�w100 � w010 0

�����������

�����������
:

Consequently, the values of W20ðhÞ and W11ðhÞ are deter-

mined from Eqs. (5.17) and (5.18). The value of g21 is

represented by delay and parameters by Eq. (5.16). Hence,

different values are computed as:

c1ð0Þ ¼
i

2x0s0

�
g20g11 � 2jg11j2 �

jg02j2

3

�
þ g21

2
;

l2 ¼� Rfc1ð0Þg
Rfk0ðs0Þg

;

b2 ¼2Rfc1ð0Þg;

T2 ¼� Ifc1ð0Þg þ l2Ifk0ðs0Þg
x0s0

:

ð5:19Þ

The above values have been used to determine the bifur-

cating periodic solution in center manifold at the critical

value s0.

Theorem 6 From Eq. (5.19), the following results have

been obtained:

(i) Direction of the Hopf-bifurcation is supercritical

(subcritical) if l2 [ 0 ðl2\0Þ.
(ii) Stability of the bifurcating periodic solution is

stable (unstable) if b2\0 ðb2 [ 0Þ.
(iii) Period of the bifurcating periodic solution

increases (decreases) if T2 [ 0 ðT2\0Þ.
Where l2, b2 and T2 have their usual meanings.

6 Numerical Simulation

In this section, the complex dynamical behavior of the

system (2.1) and (4.1) with the help of time series, phase

portrait and bifurcation diagram is investigated to sub-

stantiate our theoretical findings. The main motive of this

section is to detect the possible impact of all the sensitive

parameters numerically. For this purpose, we have con-

sidered the following fixed set of parameter values based

on the biological principle:

r ¼ 22; K ¼ 270; C ¼ 0:06; g ¼ 15:5; a ¼ 15;

c ¼ 0:05; d ¼ 3:4; q ¼ 22; d ¼ 8:3; g ¼ 7:5;

h ¼ 9:4; h ¼ 6; b ¼ 15:

ð6:1Þ

We have observed that the model system (2.1) shows

various kinds of dynamics for the different parametric

values of carrying capacity K. One can see the increasing

value of K from 220 to 300, the system shows stable focus

to chaotic attractor through the periodic oscillation of

order-1 and order-2. When K ¼ 220, the positive equilib-

rium point E�ð133:02; 46:21; 12:60Þ converges to an

asymptotically stable state, verified by Routh-Hurwitz

criterion (A1 ¼ 8:7099[ 0;A3 ¼ 92:7706[ 0;A1A2 � A3

¼ 126:9256[ 0) and shown by Fig. 1a. As we increase the

value of carrying capacity K, one can see that stable equi-

librium E� becomes unstable. Time evolution and phase

space representation of limit cycle attractor are given in

Fig. 1b for K ¼ 270. Similarly, a period-doubling attractor

is shown in Fig. 1c for K ¼ 277. An excess value of K

promotes the occurrence of chaos in the plankton system.

Figure 1d shows the time evolution and phase space rep-

resentation of chaotic attractor when K ¼ 300. Under the

bifurcation analysis, we have plotted the bifurcation dia-

gram between carrying capacity K and population density

S, I and Z. In Fig. 2, successive maxima of S, I and Z are

observed in the range [0.0, 300], [0.0, 160] and [5, 30],

respectively, as carrying capacity K is taken in the range

200�K � 320 and the other parameters are the same as

given in Eq. (6.1). It is observed that interior equilibrium
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E� of the virally infected model system (2.1) is locally

asymptotically stable when K� 245 and unstable via

occurrence of Hopf-bifurcation when parameter K passes

the threshold value K ¼ Kcr ¼ 245. These results indicate

that the small value of carrying capacity is beneficial for a

virally infected model system because it makes the system

stable. In addition, susceptible phytoplankton grows

rapidly, whereas zooplankton grows slowly for large K.

In the next scenario, we present the bifurcation diagram

for one of the other crucial parameter r. In Fig. 3a–c,

successive maxima of S, I and Z are observed in the ranges

[40, 220], [20, 90] and [0.0, 25], respectively, as the

intrinsic growth rate r is taken in the range 3� r� 24 and

the other parameters are the same as given in Eq. (6.1). A

period-doubling cascade is found for the parameter r and

the positive equilibrium point E� is stable when r\7:69

and unstable when r[ 7:69, whereas the smaller value of r

may lead the extinction in zooplankton. It is also observed

that a decreasing value of r switches the stability from

S� I � Z plane to S� I plane whereas an increasing value

of r leads the periodic solution of order-2.

To understand all the possible aspects of toxin sub-

stances release by toxin-producing phytoplankton, we have

drawn the time series and phase space diagram for different

values of h. When h ¼ 5:6, the system has chaotic behavior

as shown in Fig. 4a. Periodic behavior is observed at h ¼
6:02 (c.f., Fig. 4b). When h is in the interval [6.22, 6.74], a

stable focus is noticed in Fig. 4c. For further increment in

the toxin rate, a stable focus in the S� I plane is observed

as shown in Fig. 4d, and zooplankton goes to extinction. So

it is clear that strengthening the toxin liberation shows a

stabilizing effect in plankton dynamics. Justification of

Fig. 4, we have plotted the bifurcation diagram between

toxin liberation rate h and successive maxima of S, I and Z

in the range [50, 250], [0.0, 140] and [0.0, 25], respectively

(c.f., Fig. 5). The amplitude of oscillation decreases as the

value of h increases.

In Figs. 6 and 7, we have plotted the bifurcation diagram

for infection rate C versus successive maxima of S, I, Z and

recovery rate of infected phytoplankton c versus successive

maxima of S, I, Z, respectively. A simple Hopf-bifurcation

scenario is found for both the parameters but in different

ranges. It is noticeable that a small infection rate

strengthens the phytoplankton density but weakens the

zooplankton density whereas a large recovery rate

strengthens the phytoplankton density but weakens the

Fig. 1 Time evolution and phase space of model system (2.1) for susceptible phytoplankton, infected phytoplankton and zooplankton at a
K ¼ 220, b K ¼ 270, c K ¼ 277, d K ¼ 300
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zooplankton density. So a similar kind of behavior is

observed for the parameters C and c but in the opposite

way.

Now, we study the effect of time delay on model system

(2.1), i.e., model system (4.1) corresponding to different

values of r while considering the other parameters are the

same as given in Eq. (6.1). In Fig. 8a, we have presented

the time evaluation of model system (4.1) with r ¼ 3 which

shows stable focus at s ¼ 0. In Fig. 8b, we have presented

the bifurcation diagram of the model system (4.1) for s
versus population density S, I, Z at r ¼ 3 in which the

population of S and I bifurcates when the value of time

delay increases. The obtained result shows that after

crossing the critical value of s, i.e., s ¼ s0 ¼ 0:1321, the

population of phytoplankton becomes unstable. These

results state that small delay affected the population of S

and I by changing their stability but not able to avoid the

extinction in Z. If we choose r ¼ 7:69, the model system

(4.1) shows stability behavior for all the species at s ¼ 0

(c.f., Fig 8c). The corresponding bifurcation diagram for

varying s and fixed r ¼ 7:69 is presented in Fig. 8d. It is

observed that all the species lose their stability at s ¼ 0:103

after crossing the critical value of time delay by showing

limit cycle behavior in phytoplankton and extinction

behavior in zooplankton. This result indicates that time

delay is not able to avoid extinction in zooplankton

whereas another parameter supports extinction. Similarly,

if we choose r ¼ 22, then the model system (4.1) shows

limit cycle behavior at s ¼ 0 (c.f., Fig 8e). In Fig. 8f, we

have presented the bifurcation diagram of the model sys-

tem (4.1) for s versus population density S, I, Z at r ¼ 22.

Double Hopf-bifurcation scenario is noticed while we

increase the value of s in the range 0� s� 1:5. It is

observed from Fig. 8f that the model system (4.1) shows

limit cycle behavior initially and after crossing the first

critical value of s, i.e., s ¼ s1
0 ¼ 0:3570, stability occurs

and again after crossing the second critical value of s, i.e.,

s ¼ s2
0 ¼ 0:8599, the whole system becomes unstable. If

we choose K ¼ 300, obviously at that state system is

chaotic (c.f., Fig. 1d). We have generated the bifurcation

diagram for the model system (4.1) with varying time delay

parameter s with the fixed value of K ¼ 300 and observed

the small interval of s changes the chaotic state to

stable state and vice versa via limit cycle (c.f., Fig. 9).

7 Discussions and Conclusions

In the last decades, many researchers have focused on the

study of plankton dynamics with assumptions in which the

role of infective population has been widely recognized.

Viruses are one of the most important factors in the aquatic

ecosystem that may cause complexity when it interacts

with other planktonic species. Another prominent param-

eter is the mortality of zooplankton due to the toxicity of

phytoplankton that has an essential feature in the plankton

population. A good number of studies have been charac-

terized that toxin substances released by phytoplankton are

one of the major causes in the reduction of grazing power

of zooplankton and it also affects the growth of each spe-

cies of the food chain. The considered model system in our

study is motivated by Gakkhar and Negi (2006); Agnihotri

and Kaur (2019). Gakkhar and Negi (2006) considered an

infectious plankton dynamics in Lotka–Volterra form with

toxin liberation process, where the authors conjectured the

Holling type I functional form for plankton interaction and

Holling type II functional form for studying the conse-

quences of toxin on zooplankton dynamics. Agnihotri and

Kaur (2019) extended the work done by Gakkhar and Negi

(2006) by taking one crucial parameter, the recovery rate of

infected phytoplankton. Further, Holling type I functional

form is contemplated for reducing the grazing pressure of

zooplankton due to toxicity and assumed time delay in

toxin liberation term. We have extended the work done by

Fig. 2 Bifurcation diagram of model system (2.1) for K versus a Max(S), b Max(I), c Max(Z)
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Agnihotri and Kaur (2019) by using the Holling type II

functional form. In this work, we have taken Holling type

II functional form for the species interaction as well as

toxin liberation term and incorporated all the critical

parameters that make the system more realistic. Biologi-

cally, Holling type II functional form gives the best

description of plankton interaction rather than Holling type

I. Additionally, the assumption of two important parame-

ters, i.e., infection rate and recovery rate both in the same

model fascinates the plankton system. We have proposed a

delay-induced toxin-producing phytoplankton and zoo-

plankton model system with the viral infection where the

phytoplankton population is divided into two categories

which depend on whether they carry the infection or not.

Fig. 3 a–c Bifurcation diagram of model system (2.1) for r versus a Max(S), b Max(I), c Max(Z)

Fig. 4 Time evolution and phase space of model system (2.1) for susceptible phytoplankton, infected phytoplankton and zooplankton at a
h ¼ 5:7, b h ¼ 6:02, c h ¼ 6:4, d h ¼ 6:8
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The one who carries the infection forms an infective group

and known as infected phytoplankton, and the remaining

are known as susceptible phytoplankton. This model con-

sists of Holling type II predation rate of zooplankton over

the susceptible phytoplankton as well as infected phyto-

plankton and also the same type of functional form is

considered for the extra reduction in zooplankton due to

toxicity. In addition, a feedback time delay is assumed in

the infected phytoplankton dynamics due to the incubation

period which makes the biological relevance of our model

system. Meng et al. (2018) also considered the same kind

of time delay in their study with harvesting in the prey

Fig. 5 Bifurcation diagram of model system (2.1) for h versus a Max(S), b Max(I), c Max(Z)

Fig. 6 Bifurcation diagram of model system (2.1) for C versus a Max(S), b Max(I), c Max(Z)

Fig. 7 Bifurcation diagram of model system (2.1) for c versus a Max(S), b Max(I), c Max(Z)
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population. So the present study is also inspired by the

research of Meng et al. (2018) that the affection of incu-

bation time delay makes the system more appropriate to the

real biological environment. Analytically, we have inves-

tigated the boundedness criteria, existence of all feasible

equilibria and local as well as global stability conditions of

the delay-free system. It is observed that there exists a

smallest critical value of s in delayed system beyond that

stability switches and periodic oscillations appear. So the

local stability of the system with time delay is calculated.

Properties of periodic solutions are also examined.

Numerical simulations have been performed to explore the

impact of model parameters on the system dynamics.

Based on the simulation results, one can address that the

following parameters have a significant impact on our

study:

(i) Growth rate of phytoplankton (r).

(ii) Carrying capacity of phytoplankton (K).

(iii) Toxin liberation rate ðhÞ.
(iv) Infection rate of phytoplankton (C).

(v) Recovery rate of infected phytoplankton ðcÞ.
(vi) Time delay ðsÞ.

Fig. 8 Time evolution of model system (4.1) for susceptible phytoplankton, infected phytoplankton and zooplankton with s ¼ 0 at a r ¼ 3, c
r ¼ 7:69, e r ¼ 22, bifurcation diagram of model system (4.1) for s versus population density S(t), I(t), Z(t) at b r ¼ 3, d r ¼ 7:69, f r ¼ 22
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From Fig. 1, we have found that carrying capacity plays a

significant role in plankton dynamics by showing different

types of attractors including stable focus, periodic solution of

order-1, order-2 and chaotic attractor. Further, it is remark-

able that a high value of carrying capacity increases the

oscillation size of phytoplankton and finally produces chaos

which is presented in Fig. 2. From Fig. 3, a decreasing value

of r leads the extinction in zooplankton where the increasing

value of r leads the period-doubling cascade. We have

observed that the small value of growth rate r makes the

interior equilibrium E� stable to unstable. A period halving

bifurcation scenario is noticed for the parameter h, i.e., toxin

liberation rate of phytoplankton (c.f., Fig. 5). These findings

indicate that the parameter h has a positive impact on the

plankton system but when h crosses some threshold value,

extinction in zooplankton is observed. From Fig. 6, one can

see that a minute change in infection rate C not only stabi-

lizes the dynamics but also beneficial for susceptible phy-

toplankton to increase their density whereas harmful for

zooplankton to extinct their density. The small decrement of

the infection rate stabilizes the dynamics by showing the

weak negative effect in the dynamics of zooplankton. Sim-

ilarly, we have explored the dynamics with respect to the

recovery rate c of infected phytoplankton in which a small

increment in recovery rate leads the extinction in zoo-

plankton and all the species coexist in periodic mode at the

low value of recovery rate (c.f., Fig. 7).

Further, we have studied the impact of time delay for

different values of the growth rate r of phytoplankton on

the system (4.1). As we know, time delay has an enormous

capacity to change the stable equilibria to unstable and vice

versa. In our study, we have noticed the stabilization as

well as the destabilization effect of time delay when we

introduce time delay on infected phytoplankton dynamics.

It has been observed that the time delay may destabilize the

zooplankton-free equilibrium and cause the convergence of

coexistence equilibrium to zooplankton-free equilibrium of

plankton system. In Fig. 8b, d, extinction is observed in

zooplankton dynamics for r ¼ 3 and r ¼ 7:69 with

increasing value of time delay also which shows the neg-

ligence impact of time delay in zooplankton extinction

behavior whereas phytoplankton density is bifurcated after

crossing the threshold value of time delay. In addition, a

double Hopf-bifurcation scenario is observed for varying

time delay at r ¼ 22 and this observation is depended on

the parametric value of r only (c.f., Fig. 8f). In the absence

of time delay, chaos has been observed for K ¼ 300 (c.f.,

Fig. 1d) introducing the small value of time delay on this

dynamics, one can see the stable focus after the periodic

oscillation and finally the system becomes chaotic again for

further increment in s (c.f., Fig. 9). The system shows the

positive impact of time delay that stabilizes the oscillatory

and irregular dynamics of the proposed system. If the time

delay is varied by some critical value, the interior equi-

librium of the system switches from stable to unstable and

vice versa. It is remarkable that the occurrence of double

Hopf-bifurcation depends on the value of r because as we

take the value of r as 3 or smaller than 22, no double Hopf-

bifurcation scenario is observed. A similar kind of effect is

also observed for the parameter K with time delay. Finally,

we conclude that the plankton system with the viral

infection has rich dynamics and a number of parameters

that are unpredictable and complex in nature. Parameters

like carrying capacity and toxin liberation rate of phyto-

plankton generate chaos, whereas some parameters like

infection and recovery rate stabilize the system.
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