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Simple Summary: Here, we present a novel strategy to identify key signatures of clinically-relevant
co-expressed circRNA-mRNA networks in pertinent cancer-pathways that modulate the prognosis
of HCC patients, by integrating clinicopathological features, circRNA and mRNA expression profiles.
Five master circRNAs were identified and experimentally demonstrated to upregulate proliferate
and promote transformation. Through further integration with miRNA-expression profiles, clinically-
relevant competing-endogenous-RNA (ceRNA) networks of circRNA-miRNA-mRNAs were con-
structed. The most up-regulated nodal-circRNA, circGPC3 was experimentally demonstrated to
up-regulate cell-cycle, migration and invasion. circGPC3 was found to act as a sponge of miR-378a-3p
to regulate ASPM expression and modulate cell transformation. These 5 nodal circRNAs has potential
to be good prognostic biomarkers with good prognostic performance. circGPC3 has great potential
to be a promising non-invasive prognostic biomarker for early HCC. We have thus demonstrated the
robustness of bioinformatically-predicted master circRNAs in clinically-relevant, circRNA-mRNA
networks, underscoring the important roles that these identified deregulated key/master circRNAs
play in HCC.

Abstract: Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide.
Here, we present a novel strategy to identify key circRNA signatures of clinically relevant co-
expressed circRNA-mRNA networks in pertinent cancer-pathways that modulate prognosis of HCC
patients, by integrating clinic-pathological features, circRNA and mRNA expression profiles. Through
further integration with miRNA expression profiles, clinically relevant competing-endogenous-RNA
(ceRNA) networks of circRNA-miRNA-mRNAs were constructed. At least five clinically relevant
nodal-circRNAs, co-expressed with numerous genes, were identified from the circRNA-mRNA
networks. These nodal circRNAs upregulated proliferation (except circRaly) and transformation in
cells. The most upregulated nodal-circRNA, circGPC3, associated with higher-grade tumors and
co-expressed with 33 genes, competes with 11 mRNAs for two shared miRNAs. circGPC3 was
experimentally demonstrated to upregulate cell-cycle and migration/invasion in both transformed
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and non-transformed liver cell-lines. circGPC3 was further shown to act as a sponge of miR-378a-3p
to regulate APSM (Abnormal spindle-like microcephaly associated) expression and modulate cell
transformation. This study identifies 5 key nodal master circRNAs in a clinically relevant circRNA-
centric network that are significantly associated with poorer prognosis of HCC patients and promotes
tumorigenesis in cell-lines. The identification and characterization of these key circRNAs in clinically
relevant circRNA-mRNA and ceRNA networks may facilitate the design of novel strategies targeting
these important regulators for better HCC prognosis.

Keywords: hepatocellular carcinoma; circular RNA; clinical characteristics; carcinogenesis; compet-
ing endogenous RNAs

1. Introduction

Hepatocellular carcinoma (HCC) is the commonest liver cancer, representing 70–85%
of all cases [1] and is the fifth commonest cancer type with a dismal prognosis of ~18%
5-year overall survival [2], mainly due to late diagnosis, high rates of postoperative recur-
rence, metastasis and paucity of early diagnosis biomarkers. Chronic hepatitis-B/C viruses
(HBV/HCV) are major risk factors for HCC [3].

Recent high-throughput RNA sequencing reveals that more than 70% of the genome
is transcribed to ncRNAs [4,5]. circRNAs are a class of ncRNAs produced by a back-splice
event from pre-mRNA [6] and can be classified into five groups according to the relation-
ship with coding RNA in the transcript: “exonic”, “intronic”, “intergenic”, “sense” and
“antisense” [7]. While circRNAs can function in different ways at the molecular level,
current evidence suggests that circRNAs, particularly exonic circRNAs, mainly act as
sponges for miRNA harboring miRNA response elements (MREs) to affect the activity of
miRNA-target mRNA interaction [8]. For instance, circMTO1 suppresses HCC progression
by sponging oncogenic miR-9 to enhance p21 expression, attenuating HCC cell prolifera-
tion and invasion [9]. circRNAs can also act as protein sponges [10] modulating protein
function [11], or act as scaffolds for protein [12] recruiting proteins to specific locations [13],
or undergo cap-independent translation [14]. As circRNAs are conserved, stable, abundant
and diverse [15], they have potential to serve as diagnostic/prognostic biomarkers.

Current studies mainly focus on single circRNA inferred from host genes or selected
from deregulation profiles before their tumorigenic roles and/or clinical association were
investigated [9,16]. A few studies identified/catalogued lists of circRNAs that were dereg-
ulated in only a few HCC patients, identifying 26–87 differentially expressed circRNAs in
HCC patients [17,18]. A database of circRNAs was also collated from sequencing data of
5 HCC patients [19]. In addition, circRNA-based competing RNA (ceRNA) networks from
limited publicly available datasets comprising between 3 and 7 HCC patients were also
constructed [20,21].

As several circRNAs may work together to modulate tumorigenesis, metastasis or
even patients’ prognosis, it is thus pertinent to identify and characterize networks of cir-
cRNA comprehensively as these may function synergistically. Here, we employed a novel
network-based strategy to identify clinically relevant, differentially expressed key/master
cirRNA regulators through global integration of deregulated cirRNAs, miRNAs and mR-
NAs with clinical characteristics and pertinent cancer pathways.

2. Materials and Methods
2.1. HCC Patients and Clinical Samples

Tumorous tissue, adjacent non-tumorous liver tissue and blood of HCC patients
from Singapore General Hospital were obtained after informed consent and prior ap-
proval from the SingHealth Institutional Review Board (SingHealth CIRB Ref: 2018/3155)
and kept in liquid nitrogen. All methods were carried out in accordance with relevant
guidelines and regulations, and the tissues were anonymized to the bench researchers.
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The demographics and clinical characteristics of these HCC patients are summarized in
Supplementary Table S1. The circRNA, miRNA and mRNA expression profiles of 49 HCC
patients’ tumorous tissue and adjacent non-tumorous liver tissue were obtained via mi-
croarray or sequencing. The expression profiles for circRNAs, miRNAs and mRNAs in
this study were deposited in Gene Expression Omnibus with series entries GSE155949,
GSE156087 and GSE138178, respectively.

2.2. Workflow for Analyses of Clinically Relevant circRNA Networks in HCC

The strategy to identify clinically relevant circRNA-mRNA and circRNA-miRNA-
mRNA competing RNA (ceRNA) networks from circRNA, miRNA and mRNA expression
profiles of 49 HCC patients is presented in Figure 1A.

Figure 1. Three types of deregulated RNAs (circRNAs, miRNAs and mRNAs) and their clinical associations in HCC:
(A) Schematic overview of the workflow implemented for identification of clinically relevant deregulated co-expressed circRNA
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-mRNA as well as circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. (B) Unsupervised hierarchical
clustering analysis by Euclidean distance of deregulated circRNAs, miRNAs and mRNAs between 49 paired tumorous
tissue and adjacent non-tumorous HCC tissue. (C) The proportion of total circRNAs (blue line) and differentially expressed
circRNAs (red line) across human chromosomes. (D) Types of deregulated circRNAs. (E) Overall statistics for clinical
features significantly associated with circRNAs, mRNAs and miRNAs. (F) Venn diagram showing the relationship of
different clinical characteristics associated with deregulated circRNAs, miRNAs and mRNAs. For color in (E,F): Yellow:
Tumor properties (including Tumor size, Tumor grade, Encapsulation and Degree of encapsulation); Blue: Invasion and
metastasis (including Vascular invasion and Tumor invasion); Purple: Cancer stage and Survival.

Clinically relevant deregulated circRNA-mRNA pairs are identified as follows: (1) Sig-
nificantly deregulated circRNA (|FC| > 1.5, FDR < 0.05) are associated with various
clinical characteristics (Table S1) using either a Student’s t-test for binary characteristics
or a log-ranked test for survival analyses to identify clinically associated deregulated
circRNAs (Figure 1A). (2) The correlation between the expression of circRNAs and mRNAs
is then determined using Pearson correlation to identify significant circRNA-mRNA pairs
(|r| > 0.7, FDR < 0.05) (Figure 1A). (3) The clinically associated deregulated circRNAs are
then integrated with significantly correlated circRNA-mRNA pairs to identify clinically
relevant deregulated circRNA-mRNA pairs (Figure 1A).

The following steps were performed to generate a circRNA-miRNA-mRNA ceRNA
network. (1) circRNA-miRNA and miRNA-mRNA pairs were first identified through
integrating data from expression correlation analyses using Spearman correlation as well
as prediction algorithms, namely miRanda [22] and PITA [23] to ensure that the circR-
NAs/mRNAs were not only predicted to be targets of the miRNAs, but their expressions
were also inversely correlated with the corresponding miRNA. (2) The significance of
sharing of miRNAs by the different ceRNAs (i.e., circRNA- circRNA, circRNA-mRNA
and mRNA-mRNA) was then evaluated using various statistical analyses including the
Hypergeometric test [24], Pearson correlation (PC) [24,25], partial Pearson correlation
(PPC) [26], sensitive partial Pearson correlation (SPPC) [26], and conditional mutual infor-
mation (CMI) [27]. (3) The relative confident ceRNA pairs that were found to be significant
by PC (r > 0 & p < 0.05) and PPC methods (p < 0.05) were then integrated with clinically rel-
evant deregulated circRNA-mRNA pairs (described earlier) to generate clinically relevant
deregulated circRNA-miRNA-mRNA triplets. All of the analysis above was performed by
using R and/or Matlab2017a.

The clinically relevant circRNA-mRNA co-expression and circRNA-miRNA-mRNA
ceRNA networks were then generated using the Cytoscape software [28]. Pertinent cancer
pathways that these circRNA-mRNA/circRNA-miRNA-mRNA ceRNA networks dereg-
ulate were then identified through their significantly correlated genes using Consensus-
PathDB [29,30].

All the primers for RNAs, siRNAs for circRNAs and miRNAs, and probes for circR-
NAs are listed in Table S2. Further details can be found in the Supplementary Materials
and Methods.

3. Results
3.1. Profiles of Differentially Expressed circRNAs, miRNAs and mRNAs in HCC Patients

Genome-wide circRNA, miRNA and mRNA expression profiles of tumorous tissue
and non-tumorous tissue in 49 HCC patients were interrogated. 367/10,592 (~3.5%) cir-
cRNAs, 158/743 (~21.3%) miRNAs and 1983/17,261 (~11.5%) mRNAs were found to be
significantly differentially expressed between tumorous tissue and adjacent non-tumorous
tissue (Student’s t-test, FDR < 0.05, FC > 1.5|2). Unsupervised hierarchical clustering
(Figure 1B) of 367 (236 upregulated, 131 downregulated) differentially expressed (DE) cir-
cRNAs, 158 (123 upregulated, 35 downregulated) DE miRNAs and 1983 (746 upregulated,
1237 downregulated) DE mRNAs revealed that tumorous tissue of HCC patients can be
clearly distinguished from the non-tumorous tissue based on these profiles with only a few
exceptions. The deregulated circRNAs were distributed throughout all the chromosomes
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except the Y-chromosome (Figure 1C), with the greatest proportion in chromosome 22. Most
of the differentially expressed circRNAs (327/367 or 89.1%) were found to be transcribed
from protein-coding exons (Figure 1D), consistent with previous observation [31].

3.2. Deregulated circRNAs, miRNAs and mRNAs Are Associated with Various
Clinicopathological Features

To evaluate the clinical significance of these RNAs, clinical phenotypes were sub-
grouped into three categories, namely, Tumor properties (Tumor size, Tumor grade, Encap-
sulation and Degree of encapsulation), Invasion and metastasis (Vascular invasion and Tu-
mor invasion) as well as patients’ prognosis (Cancer stage and Overall survival) (Table S1).
A total of 132/367 (~36.0%), 96/158 (~60.8%) and 1008/1983 (~50.8%) deregulated circR-
NAs, miRNAs, and mRNAs, respectively, were found to be associated (|FC| > 1.5, p < 0.05,
Student’s t-test) with clinical characteristics (Figure 1E). Most of the deregulated RNAs
were associated with tumor properties, particularly tumor grade (14.7% circRNAs, 36.7%
miRNAs and 24.0% mRNAs) (Figure 1D). In total, 29 circRNAs, 9 miRNAs and 196 mRNAs
were associated with at least two clinical phenotypes (Figure 1F).

In total, 74 of the 132 circRNAs were potential oncogenic circRNAs since high tumor
expression was consistently associated with poorer clinical characteristics (e.g., higher
tumor grade), while 35 were potential tumor suppressor circRNAs since high expression of
these circRNAs in tumors was consistently associated with better clinical characteristics
(e.g., lower tumor grade) (Figure 2A).

3.3. Clinically Relevant Deregulated Co-Expressed circRNA-mRNA Networks

As circRNAs modulate mRNA expression, their functions may be inferred via “guilt-
by-association” [32,33] through identifying mRNAs that are significantly co-expressed
with circRNAs. Using Pearson correlation (|r| > 0.7, FDR < 0.05), 460 circRNA-mRNAs
pairs were identified from 17 oncogenic circRNAs and 6 tumor suppressive circRNAs
(Figure 2B, Table S3). The 422 upregulated mRNAs that strongly correlated with the
17 oncogenic circRNAs were mainly enriched in cell cycle pathways (Figure 2C), while
the 20 downregulated mRNAs strongly correlated with the 6 tumor suppressive circRNAs
were mainly enriched in metabolism and metallothionein pathways (Figure 2D).

Cytoscape software [28] was employed to better visualize the relationship of the
460 clinically associated deregulated circRNA-mRNA co-expressed pairs. In total, 17 onco-
genic (Figure 2E) and 6 tumor suppressive circRNAs (Figure 2F) clustered separately to
form independent networks. The 17 oncogenic circRNAs were significantly co-expressed
(|r| > 0.7, FDR < 0.05) with 159 genes forming two networks, namely a singleton (one
circRNA-one mRNA) (Figure 2E(ii)) and a very large and complex network comprising
16 circRNAs and 158 genes (Figure 2E(i)). Notably, only five circRNAs (circGPC3/circR091581,
circW7/circR001387, circW8/circR001388, circW3/circR103583, and circRaly/circR406097)
in the large oncogenic circRNA-gene network are predicted to be sufficient to modulate
the expression of 93% (147/158) of the genes in the network as these are significantly
co-expressed with these 147 mRNAs (Figure 2E(i),G). In total, 89.8% of the co-expressed
genes of these five nodal/master circRNAs were also associated with worse clinical char-
acteristics, including high tumor grade or absent tumor capsule (Figure 2E(i),G). The six
tumor suppressive circRNAs were significantly co-expressed with 20 mRNAs forming six
distinct networks as shown in Figure 2F, four of which comprise only one or two genes.
Of the two larger networks, co-expressed genes [11] of the largest network (Figure 2F(i))
were mainly metallothionein genes while the co-expressed genes [4] of the second largest
network (Figure 2F(ii)) were found to be involved in butanoate, fatty acid and amino acid
metabolism. These observations suggest that oncogenic and tumor suppressive circRNA-
centred networks modulate prognosis of HCC patients through distinct pathways. Notably,
the expression of these five nodal/master circRNAs with red and bold labels were also
significantly correlated with each other (Figure S1A), suggesting a potential built-in redun-
dancy in pathway regulation. Interestingly, three of the oncogenic nodal circRNAs (circW7;
circW8; circW3), together with four other circRNAs (circR103586, circR103582, circR103584,
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and circR103587) in the 16 circRNA-centred oncogenic networks and circR103585 were
all derived from the same gene: WHSC1 (Figure 2E(i) and Figure S2B). In fact, 48.5%
of circRNAs were expressed in more than one isoform (Figure S2A). On the other hand,
expression of most of the six tumor suppressive circRNAs was less strongly correlated with
each other (|r| < 0.6) (Figure S1B) leading to less complex networks observed (Figure 2F).

Figure 2. Prognostic circRNA-centric network modulating cell cycle and metabolism: (A) Prognostic RNA (e.g., circRNA) is
defined as RNA that is differentially expressed in tumorous tissue vs. adjacent non-tumor, and is associated with worse/better
clinical characteristics. Worse prognostic RNA is RNA whose expression is higher in tumors and the higher tumor expression is
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associated with clinical outcomes (e.g., higher grade tumors, absence of tumor capsule, worse overall survival) while
better prognostic RNA is one whose expression is lower in tumors and the low tumor expression is associated with
worse clinical outcomes. Examples of worse (left) and better prognostic cirRNAs (right) associated with tumor grade
(top left), tumor capsule (top right) or overall survival (bottom) are shown. (B) Distribution of prognostic circRNAs
that are significantly correlated with mRNAs (|r| > 0.7), including 17 worse prognostic circRNAs, 6 better prognostic
circRNAs and 5 unclassified circRNAs. (C) Genes that are correlated with the 17 worse prognostic circRNAs reside
mainly in the cell cycle and Rho GTPase signaling pathways. (D) Genes that are correlated with the six better prognostic
circRNAs are mainly metallothionein genes or are involved in metabolism. (E) Clinically relevant deregulated co-expressed
circRNA-mRNA network for the 17 worse prognostic circRNAs. The 5 nodal circRNAs are circled in red. (i) A large and
complex network comprising 16 circRNAs and 158 genes. (ii) A singleton (one circRNA-one mRNA) network. (F) Clinically
relevant, deregulated co-expressed circRNA-mRNA network for the six better prognostic circRNAs. (i) The largest network
comprising one circRNA and 11 genes. (ii) The second largest network comprising one circRNA and 4 genes. (iii) The
third largest network comprising one circRNA and 2 genes. (iv)(v)(vi) The singleton (one circRNA-one mRNA) networks.
Ellipse: circRNAs; Rectangle: mRNAs; Red: Worse prognosis; Green: Better prognosis; Grey: Unclear prognosis; White: Not
associated with any clinical features; outlines of nodes highlight the associated clinical features. Yellow: Tumor properties
(including Tumor size, Tumor grade, Encapsulation and Degree of encapsulation); Blue: Invasion and metastasis (including
Vascular invasion and Tumor invasion); Purple: Cancer stage and Survival. Red edges: Positive correlation. (G) Number of
genes correlated with either the 17 worse prognostic circRNAs or the 5 nodal worse prognostic circRNAs that are associated
with the different clinical characteristics.

To determine whether circRNA functions in cis through the parental mRNA/transcript
or in trans through modulating other mRNAs, we evaluated whether the expression changes
of the circRNAs were consistent with the host mRNAs. The expression changes of circR-
NAs and host genes between tumorous versus non-tumorous tissue were overall positively
correlated (r = 0.277) (Figure S3A, quadrant (ii) and (iii)), although ~2.5% of these circRNAs
and their parental mRNA/transcripts have differential changes (Supplementary Figure S3A,
quadrant (i) and (iv)), as evident from the examples given in the figure (Figure S3B).

3.4. Oncogenic Roles of the Five Nodal/Master circRNAs Associated with Worse Clinical
Characteristics

The oncogenic roles of the five nodal/master circRNAs (circGPC3, circW7, circW8,
circW3, and circRaly) were experimentally evaluated since these key circRNAs are asso-
ciated with clinical characteristics related to poorer patient prognosis and predicted to
modulate the expression of ~93% (147/158) of the genes associated with the cell cycle
pathway. Expression of all five nodal circRNAs were significantly associated (p < 0.05) with
tumor grade with lowest expression in the non-tumorous tissue and highest expression in
the higher grade tumors (Figure 3A). Expression of three of the five nodal circRNAs (circW7,
circW8, and circW3) were also significantly associated (p < 0.05) with tumor capsulation,
with non-tumorous tissue exhibiting the lowest expression, while the tumors with incom-
plete capsule, indicative of poorer prognosis, exhibited the highest expression (Figure 3A).
Higher expression of circRaly was also significantly associated with poorer overall survival
(Figure 3A). The higher expression of these nodal circRNAs in the tumors was validated
using RT-qPCR of samples in independent cohort of HCC patients (Figure 3B).

To further characterize the roles of these nodal circRNAs in HCC, we evaluated their
expression in a non-transformed liver cell-line, LO2, and a transformed cell-line, Huh7. All
five circRNAs were expressed at higher levels in Huh7 compared to LO2 (Figure 3C). The
junction of all five nodal circRNAs was identified through sequencing of the amplified prod-
ucts using the divergent primers (Figure S4A). All five nodal circRNAs are resistant to Rnase
R digestion (Figure S4B), suggesting that the expression observed is circular RNA and not
its linear host gene. All five nodal circRNAs were found to be primarily localized to cyto-
plasm as evident from sub-cellular fractionation (Figure S4C). RNA immunoprecipitation
(RIP) with Ago2-antibodies on Huh7 cells, which expresses high levels of all five nodal
circRNAs, revealed that all five circRNAs can interact with Ago2 (Figure S4D), suggesting
that these may be silenced by miRNAs since Ago2 protein are essential components of the
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RNA-induced silencing complex (RISC) and play key roles in RNA silencing. This may
also be evidence of their sponging ability since Ago2 is also involved in miRNA sponging.

Figure 3. Five nodal circRNAs modulate tumorigenesis by promoting cell proliferation and anchorage independent growth:
(A) Association of the five nodal circRNAs with clinical characteristics (tumor grade, tumor capsule and overall survival).
(B) Relative expression of the 5 nodal circRNAs in independent cohort of HCC patients. Each colored dot represents the relative
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expression of either the tumorous (red) or non-tumorous (blue) liver tissue of each HCC patient. (C) Expression level of
the 5 nodal circRNAs in LO2 and Huh7 cell lines. (D) Expression of the 5 nodal circRNAs in cell-lines transfected with
the respective circRNAs (circGPC3, circW3, circW8, and circRaly) or si-RNA against circW8. (E) Top panel: Number of
colonies in soft agar in cells transfected with the 4 nodal circRNAs or siRNA against circW8. Bottom panel: Representative
figures taken from soft agar plates. (F) Doubling time of cells transfected with the 4 nodal circRNAs or siRNA against
circW8. Data are from three independent experiments. Mean ± SEM (n.s.: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001 by two-tailed Student’s t-test).

3.5. The Five Nodal circRNAs Modulate Tumorigenesis by Promoting Proliferation and Anchorage
Independent Growth

Introduction of circGPC3, circW3, circW7 and circRaly constructs into LO2 (the non-
transformed cell-line) led to increased soft-agar colony formation, while attenuating the
expression of circW8 in Huh7 led to significantly less colony formation (Figure 3D,E),
confirming the oncogenic role of these five nodal circRNAs. Overexpressed circW3, circW7
and circRaly were also found to promote soft-agar colony formation in Huh7 (Figure S4E).

Overexpressed nodal circGPC3, circW3 and circW7 in LO2 were found to significantly
increase the cell proliferation, leading to shortened doubling time (Figure 3D,F), while
knockdown of circW8 in Huh7 significantly inhibited cell proliferation, increasing their
doubling time (Figure 3D,F). A similar trend was observed for circRaly, although it did not
reach statistical significance (Figure 3D,F and Figure S4F).

RNA sequencing was performed for the five key nodal circRNAs that were over-
expressed or inhibited in non-transformed LO2 and/or transformed Huh7. In total, 98
upregulated and 96 down regulated genes were co-regulated by all five key nodal circRNAs
(Table S4). These were predicted to mainly co-upregulate signal transduction/immune
system pathways (Figure S5A), and co-downregulate organelle biogenesis/maintenance
and metabolism pathways (Figure S5B). Furthermore, the key nodal circRNAs were also
found to upregulate genes involved in the deadenylation of mRNA (Figure S5A), which is
implicated in miRNA function [34], affirming their roles as sponges for miRNAs.

3.6. Clinically Relevant Differentially Expressed circRNA-miRNA-mRNA ceRNA Networks

circRNAs can modulate gene expression through various modalities, and one of
the major ways they do so is by acting as competing endogenous RNAs (ceRNAs) or
miRNA sponges/inhibitors to modulate the expression of mRNAs by competing for
shared miRNAs. ceRNA networks were thus computationally inferred from circRNA,
miRNA and mRNA expression profiles. Correlation (Spearman) analyses coupled with pre-
diction (miRanda and PITA) algorithms (Figure 1A) were employed to identify 773 shared
circRNA-miRNA pairs and 22,233 shared miRNA-mRNA pairs (Figure 4A, red circle). The
significance of sharing the same miRNA response element (MRE) by circRNA/mRNA for
each ceRNA pair was evaluated using the hypergeometric test [24]. A total of 784, 838,878
and 27,107 significant circRNA-circRNA, mRNA-mRNA and circRNA-mRNA pairs, re-
spectively, were identified. In total, 0, 1679 and 41 highly confident circRNA-circRNA,
mRNA-mRNA and circRNA-mRNA ceRNAs respectively were identified through integrat-
ing PC [24,25], PPC [26], SPPC [26] and CMI [27] statistical analyses (Figure 4B, red circle).

The 41 circRNA-mRNA ceRNA pairs generated 406 potential circRNA-miRNA-mRNA
triplets (Table S5). In total, 12 of the genes in these triplets which were upregulated in the
tumors of HCC patients were mainly enriched in the cell-cycle, signaling pathways and car-
bohydrate metabolism, while 26 genes in these triplets were downregulated and enriched
in genes associated with platelet activation, signaling, aggregation and degranulation
(Figure 4C).
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Figure 4. Clinically relevant differentially expressed circRNA-miRNA-mRNA ceRNA networks: (A) Venn diagrams
showing the number of shared circRNA-miRNA (top) or miRNA-mRNA (bottom) that were determined through Spearman
correlation analysis to be significant and/or predicted by miRanda and PITA algorithms to bind to each other. (B) Venn
diagrams showing the number of circRNA-circRNA ceRNA (top left), mRNA-mRNA ceRNA (top right) and circRNA-mRNA
ceRNA (bottom) that were found to show statistically confident interaction with either one or more than one of the four
statistical analyses (Positive Correlation (PC), Partial Pearson Correlation (PPC), Sensitivity Partial Pearson Correlation (SPPC),
Conditional Mutual Information (CMI)). Highly confident interaction is predicted by all statistical analyses/algorithms and is
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circled in red in each of the Venn diagrams. (C) Pathways of genes in the 41 highly confident circRNA-mRNA interactions.
(D) Clinically relevant moderately confident (statistically significant based on PC and PPC statistical analyses only) circRNA-
miRNA-mRNA ceRNA network associated with worse prognosis. Ellipse: circRNAs; Diamond: miRNA; Rectangle:
mRNAs; Red: Worse prognosis; Green: Better prognosis; Grey: Unclear prognosis; White: Not associated with any clinical
characteristics; outlines of nodes highlight the associated clinical features. Yellow: Tumor properties (including Tumor
size, Tumor grade, Encapsulation and Degree of encapsulation); Purple: Cancer stage and Survival. Red edges: Positive
correlation. Grey edges: Strength of correlation for circRNA-miRNA and miRNA-mRNA. (E) Clinically relevant moderately
confident circRNA-miRNA-mRNA ceRNA network associated with better prognosis. Pathway of genes in the larger
network (Dii) associated with circGPC3 is shown in (F).

None of the 5 nodal circRNAs in the key oncogenic clinically relevant circRNA-mRNA
network (Figure 2E), or any of the other circRNAs in the same network, were amongst the 41
highly confident circRNA-mRNA ceRNA pairs. We thus further evaluated if any of the five
nodal circRNAs are predicted to compete with their co-expressed mRNA for miRNA bind-
ing at a lower stringency, by identifying moderately confident ceRNAs. The moderately
confident ceRNAs were identified through the integration of only the PC and PPC statistical
analyses, and 114,419 moderately confident circRNA-miRNA-mRNA triplets were derived.
The 114,419 moderately confident circRNA-miRNA-mRNA triplets were intersected with
the 460 clinically relevant circRNA-mRNA pairs (|r| > 0.7) (Figure 2B and Table S3) to
yield 34 circRNA-miRNA-mRNA triplets in the clinically relevant circRNA-miRNA-mRNA
ceRNA network (Figure 4D,E and Table S6). Notably, one of the nodal circRNAs in the onco-
genic clinically relevant circRNA-mRNA network, circGPC3 (circR091581) (Figure 4Dii,
red circle), was found to compete with 11 mRNA/genes (ASPM, CENPW, KIF14, NEK2,
POLQ, TOP2A, DBF4, ERCC6L, E2F7, GPC3, and MMS22L) involved in cell-cycle for two
miRNAs (miR-378c and miR-378a-3p) (Figure 4F).

3.7. Role of circGPC3 in Modulating Tumorigenesis through Sponging miR-378a-3p to
Upregulate ASPM

Of the five nodal circRNAs, circGPC3 was predicted in silico to reside in a clinically-
relevant circRNA-miRNA-gene ceRNA network and compete with several mRNAs for
binding to two miRNAs (Figure 4Dii). Its host gene, GPC3 (Glypican 3), was implicated in
tumorigenesis through the Wnt signaling pathway [35]. Hence, we further characterized
cirGPC3 to understand how circGPC3 modulates cancer phenotypes leading to higher
tumor grade and poorer cancer prognosis.

circGPC3 is derived from exon 3 of GPC3 (chrX:132887508-132888203). Expression
of circGPC3 and its host gene, GPC3, were upregulated in the tumor tissue compared to
the adjacent non-tumorous liver tissue in both the 47 discovery phase HCC samples and
15 independent cohort HCC samples (Figure S6A,B and Figure 3B).

Overexpression of circGPC3 in LO2 cells and inhibition of circGPC3 in Huh7 cells
upregulated the expression of 467 genes in the Toll-like receptors (TLRs) and transcription
pathways (Table S7, Figure S7A), while downregulating the expression of 409 genes in the
transcription and DNA repair pathways (Table S7, Figure S7B).

Interestingly, modulating the expression of circGPC3 altered the protein (Figure S6D)
but not the transcript (Figure S6C) expression of its host gene GPC3. Inhibiting circGPC3
expression not only inhibited GPC3 protein expression, but it also inhibited β-catenin
expression (Figure S6D), which is consistent with previous observation of β-catenin acting
downstream of GPC3 [36]. circGPC3 is predicted in silico to have potential to be translated
(Figure S6E) as a peptide, raising the possibility that circGPC3 may modulate phenotypes
as a protein.

circGPC3 can be amplified using divergent primers from cDNA but not genomic
DNA, suggesting that it is in the RNA form (Figure 5A). Fluorescence in-situ hybridization
(FISH) revealed that circGPC3 mainly resides in the cytoplasm (Figure 5B). Live cell
imaging showed that inhibition of circGPC3 expression in Huh7 significantly inhibited
cell proliferation increasing their doubling time, while overexpression of circGPC3 in LO2
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significantly increased the cell proliferation (Figures 3F and 5C,D). These observations are
consistent with the predicted oncogenic role of circGPC3. Cell-cycle analyses revealed
that introduction of circGPC3 in LO2 led to more cells entering S/G2 phases and fewer
in G0/G1 phases (although not significant), while the reverse is observed in Huh7 cells
whose circGPC3 expression is inhibited with siRNAs (Figure 5E). Notably, attenuating the
expression of circGPC3 in Huh7 cells led to significantly less soft-agar colony formation
(Figure 5F).

Figure 5. Experimental characterization of circGPC3: (A) Expression of circGPC3 determined through PCR using divergent
and convergent primers in cDNA and genomic DNA. CDR1 was used as positive control with GAPDH as negative control.
(B) Representative FISH (Fluorescent in situ hybridization) images demonstrating circGPC3 expression as detected using a
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junction probe that was labelled with biotin. (C) Expression of circGPC3 in Huh7 cells transfected with siRNA against
circGPC3 (si-circGPC3) or in LO2 cells transfected with circGPC3. (D) Cell proliferation of Huh7 cells transfected with
si-circGPC3. (E) Cell-cycle phase distribution of Huh7 and LO2 after knockdown (KD) and overexpression (OE) of circGPC3
respectively. (F) Soft-agar colony formation of Huh7 cells transfected with si-circGPC3. (G) Cell invasion assay of Huh7 and
LO2 cells after KD and OE of circGPC3. (H) Cell migration for Huh7 and LO2 cells after KD and OE of circGPC3. Data are
from three independent experiments. Mean ± SEM (n.s.: not significant; * p < 0.05; ** p < 0.01; **** p < 0.0001 by two-tailed
Student’s t-test).

Inhibition of circGPC3 expression in Huh7 led to reduced invasive ability (Figure 5G)
and slower cell migration (Figure 5H), while over-expression of circGPC3 in non-transformed
LO2 cells led to enhanced invasive capability (Figure 5G) and more rapid cell movement
(Figure 5H). These observations in Huh7/LO2 cells were also validated in HepG2 and
SNU449 cells (Figure S8A–F), except that the attenuation of circGPC3 expression in HepG2
cells led to faster wound healing (Figure S8F). This may be due to inhibition of circGPC3
expression upregulating genes in the VEGFA pathway in HepG2 but downregulating
different genes in the same VEGFA pathway in Huh7 cells (Table S8). Nonetheless, as
circGPC3 also plays a role in cell proliferation, the observation may also be due to the effect
of cell proliferation. Further experiments with mitomycin C to eliminate the effect of cell
proliferation on wound healing will clarify this.

As circGPC3 was predicted in silico to reside in a clinically relevant circRNA-miRNA-
gene ceRNA network and compete with 11 mRNAs for binding to miR-378a-3p (Figure 4Dii),
we thus evaluated if the expression of these genes is affected by circGPC3. Using quantitative
real-time RT-PCR (qRT-PCR), the trend of a few mRNAs is consistent with the observation
in patients (Figure 6A) where their expressions are upregulated in LO2 cells transfected
with circGPC3, and downregulated in Huh7 cells transfected with siRNA against circGPC3.
As the ASPM gene showed the highest upregulation in LO2 and deepest downregulation
in Huh7 cells, we further characterized the relationship between ASPM and circGPC3
experimentally. We hypothesized that circGPC3 competes with ASPM for binding to
miR-378a-3p, leading to the modulation of cellular cancer phenotypes (Figure 6A).

We initially examined if miRNA-378a-3p is a target of both circGPC3 and ASPM by
genetically engineering luciferase reporter constructs carrying the following: wild-type
circGPC3 (circGPC3 WT); mutant circGPC3 (circGPC3 Mut) with the single predicted
miRNA-378a-3p binding site altered (Figure 6B, top panel); wild-type ASPM (ASPM WT);
and mutant ASPM (ASPM Mut) with all three predicted miRNA-378a-3p binding sites in
the protein coding sequence (CDS) altered in the same construct (Figure 6B, top panel).

These constructs were then co-transfected with either control miRNA or miRNA-378a-
3p into HEK293K cells and luciferase activity was determined. As evident in Figure 6B
(bottom panel), miRNA-378a-3p inhibited luciferase activity of cells carrying the WT forms
of circGPC3 and ASPM but not the mutant forms of both circGPC3 and ASPM where the
binding to miR-378a-3p was abrogated. Hence, miRNA-378a-3p targets both circGPC3 and
ASPM to inhibit their expression.

As Ago2 is an essential component of the RNA-induced silencing complex (RISC) and
plays key roles in RNA silencing, we then determined if both circGPC3 and miR-378a-3p
can bind to Ago2 as part of this complex. RNA immunoprecipitation (RIP) was performed
on Huh7 cells, which expresses high levels of circGPC3. Endogenous circGPC3 and miR-
378a-3p were immunoprecipitated from Huh7 cells with Ago2-antibodies (Sigma Aldrich,
Saint Louis, MO, USA) and their expression was analysed using qRT-PCR. Figure 6C shows
that both circGPC3 and miR-378a-3p were precipitated with the Ago2-antibodies, suggest-
ing that they are in the RISC complex. We then proceeded to determine whether circGPC3
directly binds miR-378a-3p. As shown in Figure 6D, higher enrichment of circGPC3 and
miR-378a-3p transcripts was observed, when Huh7 and circGPC3-expressing LO2 cell-
lysates were probed with 3′-terminal-biotinylated-circGPC3 compared to control probes
(Huh7 cells) or vector control (circGPC3-expressing LO2 cells), suggesting that circGPC3
interacted directly with miR-378a-3p. We then evaluated whether circGPC3 modulates
the hallmarks of cancer in LO2 cells, through sponging miR-378a-3p, leading to the up-
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regulation of ASPM expression. As shown in Figure 6E (top panel), the transformation
potential of circGPC3-expression LO2 was significantly attenuated in the presence miR-
378a-3p (histogram bars 1 versus 3) but not the control miRNA (histogram bars 1 versus
4). Similar trends were observed with cell proliferation (Figure S9A) and cell migration
(Figure S9B) experiments in LO2 cells. Cells expressing circGPC3 were found to express
higher levels of ASPM at the transcript levels (Figure 6E, middle panel, histogram bars
1 versus 2) as well as the protein levels (Figure 6F, right panel) in LO2 cells. On the other
hand, inhibiting circGPC3 in Huh7 cells with siRNA against circGPC3 inhibited ASPM
protein expression (Figure 6F, left panel). These data are consistent with previous reports
that ASPM is associated with vascular invasion, early recurrence, and poor prognosis
in HCC [37] and suggests that circGPC3 may modulate cancer phenotypes through the
miR-378a-3p-ASPM pathway.

Figure 6. CircGPC3-centred ceRNA regulation through circGPC3/miR-378a-3p/ASPM axis: (A) Right: Validation of genes
predicted to correlate with circGPC3 in clinically relevant circRNA-miRNA-mRNA ceRNA network (see Figure 5D). Left:
Hypothesis of the role of circGPC3 in modulating various oncogenic phenotypes (e.g., cell proliferation, cell cycle and cell
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transformation) through the circGPC3/miR-378a-3p/ASPM axis. (B) Top: Sequence of Mutation (in red) generated for
circGPC3 Mut and ASPM Mut (at the miRNA binding site within the protein coding sequence). Bottom: Luciferase
assays with reporter constructs containing the wild-type or mutant circGPC3/ASPM downstream of a luciferase gene were
performed after co-transfection with miR-378a-3p in HEK293T cells. (C) RNA Immunoprecipitation (RIP) experiments
were performed using an antibody against Ago2 on extracts from Huh7 cells. Expression of circGPC3 and miR-378a-3p
was detected. (D) Huh7 and circGPC3-expressing LO2 cell-lysates were probed with 3′-terminal-biotinylated-circGPC3
compared to control probes (Huh7 cells) or vector control (circGPC3-expressing LO2 cells). (E) circGPC3 promoted the
cell transformation via the miR-378a-3p-ASPM pathway. (F) Protein level of ASPM after circGPC3 KD or OE. Data are
from three independent experiments. Mean ± SEM (n.s.: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; by two-tailed
Student’s t-test).

3.8. Significance of Clinically Relevant circRNA–Centric Regulatory Network in HCC

In summary, we propose a model for a clinically relevant circRNA-centric regulatory
network in HCC (Figure 7A) by integrating clinical characteristics with circRNA, miRNA
and mRNA expression computationally and validating experimentally.

Figure 7. The clinical significance of a circRNA-centric regulatory network in HCC. (A) Model of
clinically relevant circRNAs and networks associated with pertinent clinical characteristics and their
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role in modulating tumorigenesis. (B) ROC (Receiver operating characteristic) curve illustrating the
diagnostic ability of the five nodal circRNAs to distinguish adjacent non-tumorous tissue from low
tumor grade (1,2) (blue line), low tumor grade (1,2) from high tumor grade (3,4) (orange line) and
adjacent non-tumorous tissue from high tumor grade (3,4) (red line). (C) Logistic regression and ROC
curve analysis to evaluate the diagnostic ability of combined nodal circRNAs to distinguish adjacent
non-tumorous tissue from low tumor grade (1,2) (blue line, left panel) and low tumor grade (1,2)
from high tumor grade (3,4) (orange line, right panel). Top panel shows combination of all five nodal
circRNAs while bottom panel shows combination of four of the five nodal circRNAs (except circW8).
(D) Expression of circGPC3s in the plasma of healthy volunteers (green) or HCC patients (Blue: Low
tumor grade (1,2); Red: High tumor grade (3,4)) (n = 4). Mean ± SEM (n.s.: not significant; * p < 0.05;
** p < 0.01; *** p < 0.001; by two-tailed Student’s t-test).

From the receiver operating characteristic (ROC) analysis, all five key nodes showed
excellent performance for distinguishing tumor grade (3,4) groups from adjacent non-
tumorous tissue (p < 0.001, AUC > 0.9) (Figure 7B). circW8 and circRaly showed good
performance for distinguishing tumor grade (3,4) from tumor grade (1,2) groups (p < 0.001,
AUC > 0.8), while circW3 and circW7 showed fair performance (p < 0.01, AUC > 0.7)
(Figure 7B). Although circGPC3 showed poor performance for distinguishing tumor grade
(3,4) groups from tumor grade (1,2) groups (p < 0.05, AUC = 0.69), it was able to reason-
ably distinguish tumor grade (1,2) groups from adjacent non-tumorous tissue (p < 0.001,
AUC > 0.8), similarly to circW3 and circW7 (Figure 7B). Logistic regression analysis showed
that combination of circGPC3, circW3, circW7 and circRaly can excellently distinguish
tumor grade (1,2) groups from adjacent non-tumorous tissue (p < 0.001, AUC = 0.92) with
a high sensitivity of 0.82 and a high specificity of 0.95 (Figure 7C, bottom left), which
suggested the potential roles of the key nodes in the early detection of HCC. Addition-
ally, the combination of circGPC3, circW7, circW8 and circRaly had good performance
for distinguishing tumor grade (3,4) groups from tumor grade (1,2) groups (p < 0.001,
AUC = 0.88) (Figure 7C, bottom right). Hence, these nodal circRNAs have potential to
be good prognostic biomarkers. Notably, the key nodal circGPC3 circRNAs were found
to be a promising non-invasive biomarker for detecting HCC or even early HCC, as its
expression is highest in the plasma of patients with higher grade tumors (3,4), compared to
those with lower grade tumors (1,2), and lowest in healthy individuals (Figure 7D).

4. Discussion

Current limitations in HCC diagnosis/therapy necessitates the identification of novel
molecules through better elucidation of the molecular network mechanisms of HCC. Here,
based on circRNA, mRNA and miRNA expression profiles of HCC patients, clinically
relevant circRNA-centric networks were computationally predicted. As illustrated in
Figure 7A, the prognostic significance of these predicted circRNA-centric networks was
evident from key cancer pathways molecules in these networks are predicted to reside in;
the experimental demonstration of tumorigenic/metastatic phenotypes of the master/key
nodal circRNAs; as well as the relevant cancer-related mechanism, through which the
nodal circGPC3 cirRNA acts as a sponge of miR-378a-3p to alter the expression of ASPM
(a cancer molecule [37]), leading to the modulation of tumorigenesis.

Seventeen circRNAs residing in two circRNA-mRNA networks were associated with
clinical characteristics that relate to worse prognosis in HCC patients (higher tumor grade
and less tumor encapsulation). Six circRNAs, residing in six separate circRNA-mRNA
networks, were associated with clinical characteristics of better prognosis (smaller tumor
size, absent tumor capsule and better overall survival). Encapsulated HCC tumors are less
aggressive, with lesser invasion events [38]. Tumor grade was reported to be associated
with deregulation of proliferation, cell cycle, metastasis and invasion-associated genes in
HCC [39–42].

Five key/master nodal circRNAs (circGPC3, circW3, circW7, circW8 and circRaly),
accounting for ~93% (147/158) of the co-expressed genes within the large 16-member
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clinically relevant worse prognosis circRNA-mRNA network, were identified. Notably, all
five master circRNAs are significantly correlated with one another (Figure S1A), suggesting
a potential built-in redundancy of circRNAs in pertinent pathway regulation. Interestingly,
three of these (circW3, circW7 and circW8) are derived from the same parental gene:
WHSC1 (Figure S2B). In fact, another circRNA (circ-NSD2), also derived from WHSC1, was
reported to promote migration, invasion and metastasis of colorectal cancer (CRC) cells
in a mouse model of CRC liver metastasis [43], highlighting that this family of circRNAs
derived from WHSC1 may be worth further investigation.

To facilitate the design of therapeutic strategies for HCC based on circRNAs in key
cancer-related circRNA-mRNA networks, it is pertinent to elucidate the molecular mech-
anisms by which circRNAs in these cirRNA-mRNA networks modulate tumorigenesis.
While circRNAs can modulate gene expression through diverse ways, one of the major
ways is by acting as ceRNAs/miRNA sponges to influence gene expression through compe-
tition for shared miRNAs [44]. Here again, through computational analyses, we identified
a confident clinically relevant circRNA-miRNA-mRNA network that hosts circGPC3, one
of the five key nodal circRNAs.

circGPC3 is the most highly upregulated circRNA in the tumors of HCC patients, and
its high expression is significantly associated with a high tumor grade. High circGPC3
expression promoted cell proliferation, cell cycle, cell transformation, migration and in-
vasion in both transformed and non-transformed liver cell lines (Figures 3E and 5C–H).
circGPC3 was computationally predicted to modulate expression of 11 genes by competing
with two miRNAs, eight of which were experimentally validated (Figure 6A). Notably, we
were able to experimentally demonstrate the circGPC3/miR-378a-3p/ASPM axis through
luciferase assays, Ago2, RIP and circRNA pull-downs, as well as cancer phenotype as-
says (Figure 6). Our data are consistent with previous reports that both miR-378a-3p [45]
and ASPM [37,46,47] can modulate cellular proliferation, migration and invasion. In fact,
ASPM was previously reported to be over-expressed in HCC, and was highlighted as a
biomarker associated with poorer prognosis in HCC [37,48] and breast cancer [49]. This
study thus highlights circGPC3 as the link between miR-378a-3p and ASPM in their role in
tumorigenesis and modulating HCC prognosis.

The ability of circRNAs (e.g., circGPC3) to sponge miRNAs (e.g., miR-378a-3p), to
modulate tumorigenesis, suggests their potential as prognostic biomarkers and therapeutic
targets [50]. In fact, the nodal circRNAs, circGPC3, circW3 and circW7 displayed good
performance for distinguishing low tumor grades from adjacent non-tumorous tissue
(p < 0.001, AUC > 0.8) (Figure 7B), suggesting the potential roles of these key nodal cir-
cRNAs in the early detection of HCC. circRNAs represent attractive minimally invasive
biomarkers as they are present in various bodily fluids (including blood and saliva [51])
and are insensitive to ribonuclease, hence they are more stable than other linear RNA
molecules due to the special circular closed structure [52]. Notably, plasma levels of cir-
cGPC3 were lowest in healthy individuals and highest in HCC patients with higher grade
tumors (Figure 7D), suggesting their potential as promising minimally invasive prognostic
biomarkers for HCC, although validation in a larger cohort of samples is necessary.

circRNAs also represent attractive targets for therapy, as targeting the unique back-
splice junction of oncogenic circRNAs led to higher specificity with less off-target ef-
fects [44]. Interestingly, circGPC3 upregulated the protein but not the mRNA expression
of its host gene GPC3 (Figure S6C,D). circGPC3 was predicted by circBank [53] to have
potential to be translated into protein (Figure S6E), suggesting the circGPC3 may be bi-
functional. On the one hand, circGPC3 can act at the RNA level to modulate the expression
of its co-expressed genes (e.g., ASPM), perhaps as a miRNA sponge (Figure 6). On the
other hand, we hypothesize circGPC3 may be translated into protein and influence the
protein expression (Figure S6D) of its host GPC3 gene, perhaps through affecting protein
stability. In fact, high GPC3 protein expression was reported to be associated with poor
prognosis of HCC patients [54]. circGPC3 was also found to alter the protein expression of
β-catenin (Figure S6D), which is consistent with reports that GPC3 can activate the targeted
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therapeutic Wnt signaling [55]. GPC3 is an established oncofetal glycoprotein that is highly
overexpressed in HCC. It is hailed not only as a diagnostic [56] and prognostic [57,58]
biomarker, but also as a novel, attractive therapeutic target that is currently in clinical
trials [56,59]. It is thus tempting to propose circGPC3, which acts upstream GPC3, as
another attractive prognostic biomarker which can also be developed as another novel
therapeutic target. Further studies are necessary to validate if circGPC3 can act as a protein
to modulate its host GPC3 protein expression as well as the Wnt pathway.

5. Conclusions

In summary, these data suggest the robustness of bioinformatically-predicted clinically
relevant circRNA-mRNA networks and key/master nodal circRNAs, and underscore the
important roles that these identified deregulated key/master circRNAs play in HCC. It
also highlights the robustness of our computational strategy to identify clinically relevant
circRNA-miRNA-mRNA ceRNA networks, which can be experimentally validated, e.g.,
circGPC3/miR-378a-3p/ASPM regulated axis. Indeed, circGPC3 has great potential to be a
promising non-invasive prognostic biomarker for early HCC.
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