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Abstract

Pharmacogenetics studies how genetic variation leads to variability in drug response. Guidelines 

for selecting the right drug and right dose for patients based on their genetics are clinically 

effective, but are widely unused. For some drugs, the normal clinical decision making process may 

lead to the optimal dose of a drug that minimizes side effects and maximizes effectiveness. 

Without measurements of genotype, physicians and patients may adjust dosage in a manner that 

reflects the underlying genetics. The emergence of genetic data linked to longitudinal clinical data 

in large biobanks offers an opportunity to confirm known pharmacogenetic interactions as well as 

discover novel associations by investigating outcomes from normal clinical practice. Here we use 

the UK Biobank to search for pharmacogenetic interactions among 200 drugs and 9 genes among 

200,000 participants. We identify associations between pharmacogene phenotypes and drug 

maintenance dose as well as differential drug response phenotypes. We find support for several 

known drug-gene associations as well as novel pharmacogenetic interactions.
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1. Introduction

Pharmacogenetics promises to revolutionize patient care by offering personalized drug 

selection and dosage based on an individual’s genetics1. Variations in the genes that encode 

proteins involved in drug pharmacokinetics and pharmacodynamics are known to lead to 

interindividual heterogeneity in drug response and can greatly affect clinical outcome. 

Dosage guidelines have been developed by organizations such as the Clinical 

Implementation of Pharmacogenetic Consortium (CPIC; cpicpgx.org) to aid physicians in 
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incorporating pharmacogenetics into their practice, however the adoption of 

pharmacogenetics by practicing physicians has not lived up to the optimism in the field2,3.

Doctor’s may not directly be using pharmacogenetics to inform practice, but genetics 

influences how patients respond to drugs nonetheless. Some drugs, such as warfarin, have a 

narrow therapeutic index and blood concentration of the drug must be frequently measured 

to ensure patient safety4. The ultimate dose at which the patient achieves the appropriate, 

stable blood concentration of the drug is the maintenance dose. For warfarin, this dose is 

strongly influenced by genetic factors such including variations in the metabolizing enzymes 

CYP2C9 and CYP4F2, as well as the drug target VK0RC1.

In other instances genetic variation may lead patients to be at higher risk for side effects. The 

frequently prescribed drug simvastatin has well known pharmacogenetic interactions with 

SLCO1B1 that can lead to simvastatin-induced myopathy5. While this is a rare side effect, 

individuals with poor functioning SLCO1B1 are at higher risk for simvastatin-induced 

myopathy. CPIC guidelines for simvastatin recommend that individuals with poor 

functioning SLCO1B1 take a reduced simvastatin dose or a different drug altogether.

Numerous pharmacogenetic drug-gene relationships have been discovered, but most 

pharmacogenetic studies are small and narrowly focused. The use of electronic health record 

and biobank scale data as a means for pharmacogenetic discovery and validation of known 

relationships has been proposed, but until recently databases linking clinical data with 

genetic data for a large number of patients were unavailable1,6. Biobanks offer an 

opportunity to retrospectively assess known drug-gene relationships in a clinical setting as 

well as offer the opportunity to discover new drug-gene associations. Biobanks and 

electronic health records have been used to perform targeted association studies between 

genomics and response to individual drugs7 as well as characterize frequency of 

pharmacogenetic alleles in populations8,9, but studies of drug response across a large 

number of drugs have not yet been performed.

The UK Biobank has been widely used to perform genome-wide association studies on a 

wide variety of traits, but it also includes primary care data from the United Kingdom’s 

National Health System10. This dataset offers longitudinal, structured clinical data for more 

than 220,000 participants that includes diagnoses, laboratory tests, and prescription data. 

This dataset offers a unique opportunity to identify associations between drug response 

phenotypes and genetics. Here we present a retrospective pharmacogenetic analysis linking 

drug exposure for 200 drugs to clinical outcome using the UK Biobank primary care data. 

We focus on two types of clinical outcomes of interest: maintenance dose and differential 

drug response.

2. Methods

2.1. Pharmacogenetic Allele Calling

We investigated drug-gene relationships for nine important pharmacogenes in the UK 

Biobank for 222,114 participants using primary care data from the National Health System, 

provided by the UK Biobank10. The pharmacogenetic alleles used in this study were derived 
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from a previously reported procedure, described here in brief8. We used imputed genotypes 

from the Axiom Biobank Array released by the UK Biobank11. We included nine genes in 

our analysis: CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, SLCO1B1, 
TPMT, and UGT1A1. The proteins encoded by these genes play critical roles in drug 

pharmacokinetics and each is included in a CPIC dosing guideline for a drug. We assigned 

pharmacogenetic phenotypes for each gene using PGxPOP, a tool designed for high 

throughput mapping of pharmacogenetic alleles and phenotypes (https://github.com/

PharmGKB/PGxPOP). The analysis was limited to individuals of European descent. This 

included participants who self reported as European and were confirmed as European using 

principal component analysis.

2.2. Drug Dosage Association with Pharmacogenetics

Drugs used in this study were derived from the PharmGKB curated drug list (https://

www.pharmgkb.org/downloads, drugs.zip)12. For each drug, we extracted prescription 

information from the UK Biobank primary care prescription data by matching the drug name 

and brand names in the prescription data. Dosage information and drug quantity was 

extracted using regular expressions that searched within the drug description. We excluded 

combination therapies from the analysis.

We calculated maintenance dose by determining the average milligrams of drug per day for 

the last five prescriptions of each drug. This was done by calculating the total milligrams of 

drug administered for a single prescription divided by the number of days until the next 

prescription. We then averaged the milligrams of drug per day over the five most recent 

prescriptions. Prescriptions with a quantity outside two standard deviations from the mean 

quantity across all participants for that drug were excluded. Subjects were required to 

receive a minimum of five prescriptions to be included in the analysis. We required drugs to 

have a minimum of 50 subjects with a maintenance dose to be included in the analysis.

We divided the analysis of maintenance dose associations into three groups of drug-gene 

pairs. First, we investigated the relationship between drug-gene pairs that have an existing 

CPIC guideline. This indicates a strong level of evidence of a relationship between a drug 

and a gene. Second, we investigated drug-gene pairs which have some level of evidence in 

PharmGKB, but no existing CPIC guideline. These pairs still have some prior evidence 

indicating an association, but not enough to develop a dosage guideline. Third, we 

investigated all other drug-gene pairs where an interaction is indicated in DrugBank13. 

These pairs have no prior evidence of a pharmacogenetic association. Data was grouped 

within each gene by predicted phenotype. For example, for CYP2C9 participants were put 

into bins by metabolizer class (normal metabolizers (NM), intermediate metabolizers (IM), 

and poor metabolizers (PM). Phenotype groups with less than ten participants for a drug are 

excluded from analysis.

Association between maintenance dose and pharmacogenetic phenotypes was tested for 200 

drugs using two types of non-parametric statistical association tests. We used both a 

Kruskal-Wallis one-way analysis of variance and Jonckheere-Terpstra trend tests to test for 

associations between each drug and gene pair. Both types of tests are necessary to detect 

various relationships between dosage and genetics. First, the Kruskal-Wallis test was used to 
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identify any pharmacogenetic phenotype (e.g. CYP2C9 PMs) that have a significant 

difference in the dosage from other metabolizer classes. Second, Jonckheere-Terpstra tests 

for an ordered relationship in ranked groups. This is a natural fit for pharmacogenetic 

phenotypes since there is an inherent order in function which may lead to a linear 

relationship with dosage (e.g. NM > IM > PM). Resulting p-values are adjusted using a 

Bonferroni correction. We used a covariate-adjusted dose as the response variable for each 

test. To do this we fit a linear regression model to the dosage using several covariates: age (at 

time of last prescription), sex, BMI, genotyping array, and the first for principal components 

of a principal component analysis (PCA) using genotype data (UK Biobank Data-Field 

22009).

We tested the impact of the intronic CYP2C19 variant rs3814637 on warfarin dose. We used 

a two-sided Jonckheere-Terpstra test on the allele dosage against the warfarin maintenance 

dose. Allele dosage was determined as the sum of the alternate alleles for rs3814637.

2.3. Differential Drug Response Phenotype Association

In a separate analysis, we tested the relationship between pharmacogenes and drug response 

for all drugs using diagnosis codes in primary care data. We sought to identify 

pharmacogenomic phenotypes that would lead to a differential drug response phenotype, for 

example, instances where poor metabolizers have an increased risk of developing some side 

effect compared to normal metabolizers. For each drug included in the dosage analysis we 

identified all diagnoses in the primary care data in the year following the first exposure to 

the drug. Diagnosis codes in the primary care data are provided as Read Codes (version 2 

and version 3), we mapped the Read Codes to ICD-10 codes including only the first three 

digits (the chapter and first two numerals). ICD-10 codes from chapters V, W, X, Y, and Z 

were excluded from analysis. Codes were required to have at least 100 events per drug to be 

included in the analysis. Diagnosis codes may represent the primary disease indication for 

the drug, side effects, comorbidities, or other unrelated events.

We used logistic regression to test the association between gene phenotypes and ICD-10 

code incidence for each drug. This was set up using a binary indicator as the response 

variable and a one-hot encoding of gene phenotype. We included age (at time of first 

prescription), sex, genotyping array, and the first four principal components from a genotype 

PCA as covariates.

We evaluated three tiers of drug-gene relationship, as in the maintenance dose analysis. 

Drug-gene pairs with CPIC guidelines, drug-gene pairs with any level of evidence in 

PharmGKB but no CPIC guideline, and an exploratory analysis. For the exploratory analysis 

of side effect relationships we limited our search to drugs known to interact with CYP2C9, 

CYP2C19, and CYP2D6, as indicated by DrugBank. These genes were selected because 

they are promiscuous metabolizing enzymes with well defined pharmacogenetics.

3. Results

The pharmacogenetic analyses presented here included a total of 201,498 participants, after 

removing 20,615 participants not of European descent. More than 57 million prescriptions 

McInnes and Altman Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are contained within the primary care data, an average of 262 prescriptions per participant. 

Our initial drug list included 3,358 drugs. Of this, 200 were found in the UK Biobank 

prescription data with sufficient counts to be included in subsequent analysis.

3.1. Drug Dosage Association with Pharmacogenetics

We sought to evaluate methods for testing the relationship between maintenance dose and 

pharmacogenes at a biobank scale. We performed this analysis using three groups of drug-

gene pairs. Of the drugs with CPIC guidance for any of the nine genes queried, there were 

24 that had the minimum of 50 participants for whom a maintenance dose could be 

calculated. We find that nine of the drug-gene pairs have a significant difference in the 

dosage across gene phenotypes (Kruskal-Wallis or Jonckeere-Terpstra p < 0.05, Table 1). We 

do not adjust for multiple tests because these are known relationships not discoveries. 

Warfarin and CYP2C9 phenotypes had the most significant relationship (p ≅ 0, Jonckeere-

Terpstra). The remaining twenty drug-gene pairs did not have a significant relationship 

between maintenance dose and gene phenotype.

We then investigated association between maintenance dose and gene phenotype for drug-

gene pairs with any level of evidence in PharmGKB but no CPIC guideline. We found two 

drug-gene pairs with a p-value less than 0.05 for either the Kruskal-Wallis test or Joncheere-

Terpstra trend test (Table 1). The most significant was the Kruskal-Wallis test for warfarin 

and CYP2C19 phenotype. Investigating the dose relationship with phenotype reveals that 

CYP2C19 normal metabolizers have a decreased maintenance dose compared to the other 

CYP2C19 metabolizer classes (Figure 1, second row, first column). We followed up on this 

finding by interrogating the association between rs3814637 and warfarin maintenance dose.

The intronic variant rs3814637 within CYP2C19 has been previously reported to be 

associated with warfarin response14–16. This variant is contained within several CYP2C19 
star alleles: CYP2C19*1.004, CYP2C19*1.005, and CYP2C19*15.001, all of which are 

normal functioning alleles. We observed that normal metabolizers had an average daily dose 

of 4.8 mg (compared to 5.3 mg for the other metabolizer classes). We then tested the 

association between rs3814637 and warfarin maintenance dose. We find a significant 

relationship between rs3814637 dosage and warfarin maintenance dose (p <= 1.0 x 10−46, 

two-sided Jonckheere-Terpstra, Fig. 2).

We then analyzed the relationship between maintenance dose and gene phenotype for drug-

gene pairs that had no previous indication of a pharmacogenetic relationship but are known 

to interact. We tested 581 drug-gene pairs and found two significant relationships between 

dose and gene phenotype: cyclosporine and CYP2C19, and nicotine and CYP2B6 (p < 8.6 x 

10−6, Jonckheere-Terpstra, bonferroni adjusted, table 3: Novel associations).

3.2. Differential Drug Response Phenotype Association

We investigated the degree to which adverse drug reactions related to pharmacogenetics 

could be discovered by performing a statistical analysis of pharmacogene phenotypes and 

coded medical events within a one year window following the first administration of a drug. 

We again evaluated three drug-gene groups starting with drug-gene pairs with CPIC 

guidelines (Table 2, CPIC Guidance Group). The most significant side effect is a decreased 
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incidence of herpes zoster diagnoses among CYP2C19 intermediate metabolizers (p <= 8.76 

x 10−5).

Next we looked to see if there are any differential drug response phenotypes enriched among 

drug-gene pairs with any level of evidence but no CPIC guideline. The top five results are 

shown in Table 2 under “No Guidance”. We find several phenotypes enriched among 

CYP2D6 intermediate metabolizers taking citalopram, including respiratory issues and heart 

failure. We also find an increased risk of sinus infections among CYP2C9 poor metabolizers 

on simvastatin, and an increased risk of puerperal infections among CYP2D6 intermediate 

metabolizers on propranolol.

We interrogated all other drugs known to be metabolized by CYP2C9, CYP2C19, or 

CYP2D6 for differential drug response phenotypes. This resulted in 4,806 independent 

association tests across 81 drugs. After multiple hypothesis corrections one side effect was 

significantly associated with a drug-gene pair: increased incidence of osteoarthritis in 

CYP2C9 poor metabolizers after taking diazepam. We show the top five results from the 

exploratory analysis in Table 2.

4. Discussion

Biobanks offer a powerful solution for enabling the study of relationships between drugs and 

genes. Large datasets linking genetic and longitudinal clinical data are becoming more 

broadly available and allow interrogation of the relationship between drug response and 

pharmacogenetic phenotypes. Here we derived drug phenotypes in the form of maintenance 

dose and differential drug response phenotypes for more than 200,000 participants across 

200 drugs in the UK Biobank and tested their association with well established 

pharmacogenetic phenotypes for nine genes.

Pharmacogenetic testing is not yet common practice, but for some drugs the standard clinical 

procedures used to determine maintenance dose are influenced by genetics. We find 

evidence to support existing pharmacogenetic associations with maintenance dose. Among 

24 drugs with CPIC guidance in our study we find evidence for a genetic influence on 

maintenance dose for nine drugs. For the remaining pairs with guidance, it is possible we are 

not likely to observe an association with maintenance dose because efficacy is difficult to 

measure or side effects are rare. Among drugs with any prior evidence of a pharmacogenetic 

relationship but no CPIC dosage guideline we find that maintenance dose supports the 

association for two drug-gene pairs. Most notably, carriers of the CYP2C19 intronic variant 

rs3814637 have a significantly decreased warfarin maintenance dose. The causal mechanism 

through which this effect occurs is unclear, and this variant itself may not be causal, rather in 

linkage disequilibrium with a causal variant. In GTEx, rs3814637 is associated with 

increased expression of CYP2C9 (the gene typically associated with warfarin response) in 

several tissues, although importantly not in liver. There is a gap in the amount of warfarin 

dosing variability that can be explained by genetics among individuals of African descent17. 

rs3814637 has nearly twice the allele frequency in the African population as it does in the 

European population (11.6% vs 6.7%)18. Although this study focuses on Europeans, this 
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variant may explain some of the missing heritability of warfarin response among Africans, 

but further study is needed to confirm this relationship.

We discovered potential novel pharmacogenetic associations with maintenance dose for two 

drugs: cyclosporine with CYP2C19, and nicotine with CYP2B6. Both drugs are known to be 

metabolized by their respective associated enzymes, however there is no prior literature 

evidence suggesting a pharmacogenetic relationship. For both drugs, we find a decreasing 

association between dose and metabolizer class of their associated enzymes, where 

individuals with higher rates of metabolism tend to be on lower doses.

Our analysis of differential drug response phenotypes reveals associations with side effects 

among drug-gene pairs. This analysis is limited due to the large number of tests requiring a 

strict multiple hypothesis testing threshold, but produces interesting hypotheses. At first 

glance many of the differential phenotype associations seem unlikely, but literature evidence 

exists for many of the findings. For example, the most significant association among drugs 

with CPIC guidelines was a decreased incidence of herpes zoster among CYP2C19 

intermediate metabolizers compared to CYP2C19 normal metabolizers treated with 

citalopram. However, two previous studies have demonstrated that SSRIs can lead to 

increased resistance to herpes19,20. CYP2C19 intermediate metabolizers have an increased 

blood concentration of citalopram and may have an increased resistance to a herpes 

infection. We also find CYP2C19 rapid metabolizers on clopidogrel have a decreased risk of 

viral skin lesions compared to CYP2C19 normal metabolizers. There is evidence that 

clopidogrel may inhibit viral clearance21. It may be possible that CYP2C19 rapid 

metabolizers have a lower concentration of clopidogrel and therefore the degree to which 

they are able to fight off viral infections is higher than that of CYP2C19 normal 

metabolizers. The most significant association is between CYP2C9 poor metabolizers on 

diazepam having an increased incidence of osteoarthritis. There is no literature that suggests 

osteoarthritis may be a side effect of diazepam, although there are studies that suggest 

diazepam could be used to treat pain as a result of rheumatoid arthritis. Without further 

evidence we cannot say whether this relationship results from pharmacogenetics and not a 

correlation with the drug indication or a statistical artifact.

This work has several limitations. First, we use pharmacogenetic alleles called from data 

imputed from genotyping arrays. We previously reported limitations in accuracy of the 

ability to accurately call alleles in several pharmacogenes from imputed data, notably in 

CYP2D68. The lack of structural variants in the dataset in addition to the inability to call 

rare variants may lead to inaccurate prediction of CYP2D6 phenotypes. Second, we broadly 

apply our maintenance dose algorithm to drugs in the UK Biobank. While this is effective 

for some drugs, better clinical end points may provide an improved representation of patient 

response. For example, a dose response curve may provide more fine grained insight into 

individual response and yield better insight into the genetics of drug response. It is 

challenging to broadly define response across drugs from numerous classes with varying 

indications and therapeutic indices. Even a single drug can be used for different indications 

and may require different doses to treat each indication. Additionally, this approach will 

miss patients who take a drug once and experience side effects that lead them to immediately 

switch drugs. No catch-all definition will suffice, but maintenance dose does reveal insight 
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into patient response. Third, the data we used to define drug usage is in the form of 

prescription orders. We do not know whether the prescriptions were filled or if the patient 

took the drug as prescribed. Finally, we do not provide any clinical validation of the 

predictions presented here; further followup is needed.

Biobanks are an immense resource that allow for pharmacogenetic association testing at an 

unprecedented scale. Longitudinal clinical data is critical to be able to define drug response 

phenotypes in order to accurately assess patient response to treatment and ultimately test 

genetic associations. As access to biobanks continue to expand and more data is available, 

the ability to perform pharmacogenetic studies at large scale will increase. We believe that 

these resources offer a promising avenue for discovery and will further advance the field of 

pharmacogenetics.
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Figure 1. 
Box plots of maintenance dose for most significant drug-gene pairs. The top two most 

significant pairs are shown for each group (columns). Enzyme metabolizer classes are 

represented along the x-axis and the distribution of maintenance dose along the y-axis.
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Fig. 2. 
CYP2C19 intronic variant rs3814637 has a strong influence on warfarin maintenance dose. 

The x-axis indicates the alternate allele dosage. The y-axis is the maintenance dose.
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Table 1.

Drug-gene dose relationship results. Drug-gene pairs are presented in three groups: drugs with CPIC 

guidelines, without guidelines but PharmGKB evidence, and novel associations. Level of Evidence represents 

the maximum level of evidence for the drug-gene relationship in PharmGKB.

Group Drug Gene Level of Evidence # Samples Test p-value

CPIC guidance warfarin CYP2C9 1A 6,409 JT 0.00E+00

phenytoin CYP2C9 1A 459 KW 1.04E-05

azathioprine TPMT 1A 799 KW 9.13E-03

imipramine CYP2C19 2A 348 JT 1.10E-23

lansoprazole CYP2C19 2A 2,793 JT 2.52E-02

pantoprazole CYP2C19 3 114 JT 2.56E-02

simvastatin SLCO1B1 1A 34,611 KW 3.52E-02

warfarin CYP4F2 1A 4,559 KW 3.69E-02

paroxetine CYP2D6 1A 2,804 KW 4.22E-02

No guidance warfarin CYP2C19 3 6,410 KW 2.22E-14

nicotine CYP2B6 3 391 JT 6.38E-04

Novel associations cyclosporine CYP2C19 NA 166 JT 1.87E-05*

rabeprazole CYP2C9 NA 223 JT 4.55E-05*

p-values with a * are significant at p <= 8.6 x 10−6, bonfenoni adjusted.

Test indicates which type of test achieved the p-value shown (JT=Jonckheere-Terpstra, KW=Kraskal Wallis). Only results with a standard enor less 
than 0.2 are included.
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Table 2.

Drug-gene side effect relationship results. Associations are presented in three groups: drug-gene pairs with 

CPIC guidelines, pairs with no guidelines but evidence in PharmGKB, and novel associations. Phenotype is 

the gene phenotype (IM: Intennediate Metabolizer, PM: Poor Metabolizer, RM: Rapid Metabolizer, UM: 

Ultrarapid Metabolizer, IF: Increased Function, PF: Poor Function). Odds ratio is the odds ratio relative to 

nonnal metabolizer or nonnal function alleles.

Group Drug Gene
Level of 
Evidence Phenotype ICD-10 Code definition

Odds 
ratio p-value

CPIC Guidance citalopram CYP2C19 1A IM B02 Herpes zoster 0.53 8.76E-05

simvastatin SLCO1B1 1A IF M65 Synovitis and 
tenosynovitis

1.82 1.42E-04

amitriptyline CYP2C19 1A RM R53 Malaise and fatigue 1.55 1.74E-04

amitriptyline CYP2C19 1A UM J30 Vasomotor and allergic 
rhinitis

1.94 2.75E-04

codeine CYP2D6 1A PM A52 Late syphilis 1.78 3.30E-04

ibuprofen CYP2C9 1A PM E13 Other specified diabetes 
mellitus

2.00 4.90E-04

clopidogrel CYP2C19 1A RM B08 Viral infections 
characterized by skin 
and mucous membrane 
lesions

0.59 5.17E-04

tamoxifen CYP2D6 1A IM C50 Malignant neoplasm of 
breast

0.62 6.98E-04

simvastatin SLCO1B1 1A PF M79 Unspecified soft tissue 
disorders

1.49 7.46E-04

simvastatin SLCO1B1 1A DF M65 Synovitis and 
tenosynovitis

1.79 7.75E-04

No Guidance citalopram CYP2D6 3 IM J45 Asthma 1.44 9.13E-05

citalopram CYP2D6 3 IM 150 Heart failure 1.56 1.12E-04

simvastatin CYP2C9 3 PM J01 Acute sinusitis 1.74 1.56E-04

citalopram CYP2D6 3 IM J64 Unspecified 
pneumoconiosis

1.56 5.74E-04

propranolol CYP2D6 4 IM O86 Other puerperal 
infections

1.85 6.38E-04

Novel 
associations

diazepam CYP2C9 NA PM M19 Osteoarthritis 2.33 4.52E-06*

zopiclone CYP2C9 NA IM H91 Unspecified hearing loss 2.20 1.73E-05

loratadine CYP2D6 NA IM M16 Osteoarthritis of hip 1.98 1.20E-04

tramadol CYP2B6 NA PM H61 Disorders of external ear 1.95 1.86E-04

quinine SLCO1B1 NA IF N39 Disorders of urinary 
system

1.95 1.87E-04

*
indicates significance with Bonfenoni adjusted p-value threshold of 1.0 x 10−5.

Only results with a standard error less than 0.2 are included.
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