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Flash drought often leads to devastating effects in multiple sectors and presents a
unique challenge for drought early warning due to its sudden onset and rapid intensifi-
cation. Existing drought monitoring and early warning systems are based on various
hydrometeorological variables reaching thresholds of unusually low water content.
Here, we propose a flash drought early warning approach based on spaceborne measure-
ments of solar-induced chlorophyll fluorescence (SIF), a proxy of photosynthesis that
captures plant response to multiple environmental stressors. Instead of negative SIF
anomalies, we focus on the subseasonal trajectory of SIF and consider slower-than-usual
increase or faster-than-usual decrease of SIF as an early warning for flash drought onset.
To quantify the deviation of SIF trajectory from the climatological norm, we adopt
existing formulas for a rapid change index (RCI) and apply the RCI analysis to spatially
downscaled 8-d SIF data from GOME-2 during 2007–2018. Using two well-known
flash drought events identified by the operational US Drought Monitor (in 2012 and
2017), we show that SIF RCI can produce strong predictive signals of flash drought
onset with a lead time of 2 wk to 2 mo and can also predict drought recovery with sev-
eral weeks of lead time. While SIF RCI shows great early warning potential, its magni-
tude diminishes after drought onset and therefore cannot reflect the current drought
intensity. With its long lead time and direct relevance for agriculture, SIF RCI can sup-
port a global early warning system for flash drought and is especially useful over regions
with sparse hydrometeorological data.
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Drought influences all regions of the world, with especially damaging effects on water
resources and agriculture. Based on the scope and impact, droughts are often classified
as meteorological drought, agricultural drought, and hydrological drought; depending
on severity and duration, a meteorological drought may or may not lead to a hydrolog-
ical or agricultural drought. In the conventional notion, drought results from a gradual
accumulation of negative precipitation anomalies leading to prolonged water shortage.
In the past decade, the term “flash drought” was coined to describe droughts with a
rapid onset and intensification caused by heat, precipitation deficit, or their combina-
tion (1–7). Most flash droughts feature a rapid decline of soil moisture and can there-
fore be classified as agricultural drought. A typical flash drought takes 5–30 d to
develop (8). While a flash drought may have a short duration of several weeks to a cou-
ple of months, an event that starts as a flash drought may continue to develop into a
longer-lasting conventional drought. One such example is the 2012 drought in the
United States, which has been the focus of many previous studies. The rapid onset and
intensification of flash drought often catch stakeholders (e.g., farmers and rangers) off-
guard, leaving no time or resources for planning and adaptation (4–9). The “flashness”
presents unique challenges for drought monitoring and early warning.
Multiple approaches have been proposed to detect or identify flash droughts, based

on a wide variety of variables reflecting the state of water resources, agriculture, and
natural ecosystems, including temperature, precipitation, soil moisture, evapotranspira-
tion (ET), potential ET, vapor pressure deficit (VPD), vegetation index, and gross pri-
mary productivity (GPP). For example, Mo and Lettenmaier (1, 2, 10) used different
combinations of high temperature, low precipitation, low soil moisture, and high or
low ET to identify flash drought, depending on whether an event was induced by heat
or by the lack of precipitation. Otkin et al. (3,11) used the evaporative stress index
(ESI, defined as the standardized anomalies of the actual to potential ET ratio) (12) as
a soil moisture indicator and proposed the Rapid Change Index (RCI) of ESI as a metric
of rapid drought intensification, and showed that the ESI RCI could detect flash drought
onset 4 wk earlier than the operational United States Drought Monitor (USDM). In
their study (3), RCI was defined as the accumulated excess of standardized anomaly of
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weekly ESI changes over a certain threshold, and a negative value
of RCI indicated an unusually rapid decrease of soil moisture
over multiple weeks. Hobbins et al. (13) proposed the Evapora-
tive Demand Drought Index (EDDI), derived from a physically
based estimation of the atmospheric evaporative demand. Both
ESI and EDDI can serve as drought early warning relative to
drought detection by other indicators such as the operational
USDM (14, 15).
Agriculture and grassland ecosystems are among the most vul-

nerable to flash drought. Vegetation responses captured by satel-
lite data such as the Normalized Difference Vegetation Index
(NDVI), the Enhanced Vegetation Index (EVI), and solar-
induced chlorophyll fluorescence (SIF) can therefore provide use-
ful large-scale information on flash drought development and
impact. NDVI and EVI are more indicative of vegetation green-
ness, which responds to water stress over a long period and with
a delay. However, SIF varies with plant physiological and bio-
chemical conditions and responds rapidly when plants become
drought-stressed (16–19), which makes it highly relevant for
flash drought monitoring. SIF was found to decline during
drought episodes even when NDVI remained constant (20) and
showed a clear linear relationship with photosynthesis or GPP at
the subseasonal to annual time scales, especially over crop and
grass ecosystems (21–27). Sun et al. (28) demonstrated that the
satellite-based SIF successfully captured the spatiotemporal pat-
tern of the development and severity of the 2011 drought in
Texas and 2012 drought over the Great Plains, showing a strong
correlation with soil moisture. Similarly, Chen et al. (29) found
that spaceborne SIF successfully characterized the magnitude
and spatiotemporal variation of GPP anomalies induced by the
2009–2010 drought in China, and performed better than the
greenness-based EVI as a large-scale real-time vegetation drought
monitor. Although SIF or anomalies of SIF as used in these
studies may perform well as a drought monitor, they cannot pro-
vide sufficient lead time to serve as a drought early warning. As
global warming causes drought to become more frequent, more
intense, or to intensify more rapidly (30–32), drought early
warning is becoming increasingly important for regional and
global food security. Of particular interest is early warning for
droughts that occur at critical stages of crop development includ-
ing, for example, at the emergence stage or during the early
reproductive stage when crops are the most vulnerable to envi-
ronmental stress (33, 34).
At the early stage of flash drought development, the collec-

tive effects of soil moisture depletion, evaporative demand
increase, and sometimes heat stress all influence the trajectory
of photosynthesis, which may cause slower-than-usual increase
or faster-than-usual decrease of GPP and SIF, depending on
the timing of drought development relative to the growing sea-
son. These trajectory responses precede and ultimately lead to
negative SIF anomalies. We therefore hypothesize that an
unusual rate of subseasonal change in SIF provides an early
warning for flash drought. To test the hypothesis, we quantify
the temporal dynamics of SIF prior to and during the 2012
and 2017 flash droughts in the United States using the RCI
equations of Otkin et al. (3) (see Materials and Methods) and
assess the early warning potential of the SIF RCI through com-
parison with the operational USDM. These two droughts are
chosen as case studies because they have been commonly identi-
fied as flash droughts, and detailed depiction of drought devel-
opment is available from the operational USDM (SI Appendix,
Figs. S1 and S2) and from other studies to facilitate comparison
of our results with existing drought metrics (3, 15). While our
analyses focus primarily on the downscaled 8-d GOME-2 SIF

data (35–37), we also apply the RCI algorithm to the gap-filled
8-d composite GPP and ET data from MODIS/Terra for com-
parison, as both are closely related to plant photosynthesis at
the process level. In addition, we also examine flash drought
development and intensity from a hydrometeorological perspec-
tive based on precipitation, temperature, vapor pressure deficit,
and short-term drought blend data from GridMET (38).

Results

Flash Drought in 2012. In 2012, abnormal dryness migrated
across different regions of the United States, with severe to
extreme drought signals over the Great Plains and Midwest start-
ing in July and August; the drought intensified rapidly between
July 17 and July 31 over the central United States, expanded in
spatial coverage in August, and persisted until the end of the year
(SI Appendix, Fig. S1). Fig. 1 presents the spatiotemporal patterns
of RCI for the 8-d composite SIF during the rapid intensification
events in 2012. Prior to the drought in the Midwest and Great
Plains region, large positive values of SIF RCI were found in
March and early April, reflecting an unseasonal rapid onset of
vegetation growth in early spring. However, by May, the SIF
RCI transitioned to large negative values. The negative RCI sig-
nals reflect an unusually rapid decrease in SIF or, in this case, an
unusually slow increase (or even a decrease) at a time when SIF is
expected to increase (Fig. 2).

While the trajectory of SIF indicated a deterioration of growth
conditions over a large portion of the Great Plains and Midwest
starting from early May, the operational USDM did not spot
trouble in the region until late June or early July. The SIF RCI
signal is the strongest prior to drought onset, and does not (and
is not expected to) maintain that strength once drought is in full
swing due to the slowing down (or even complete cessation in
some areas) of photosynthetic activities leaving little room for
SIF to further decrease rapidly. Indeed, as the drought further
developed during July–August (SI Appendix, Fig. S1), the SIF
RCI over most of the drought-stricken regions had small nega-
tive values (Fig. 1). However, no persistent spatially coherent
positive values of SIF RCI were found through the end of that
growing season, indicating that no recovery was yet in sight, con-
sistent with the fact that the drought lasted for over a year.

Interestingly, the strong RCI signal from SIF prior to the
2012 drought was not accompanied by a similar signal from
the MODIS GPP or ET data (SI Appendix, Figs. S3 and S4).
The ET RCI signal was weak overall and spatially scattered.
There were negative RCI values for GPP over much of the
drought-stricken regions, but they were generally small in magni-
tude; the strongest signals of negative RCI for GPP were found
in late June and July, with a short lead time over the operational
USDM. The rather striking magnitude and timing differences
between SIF RCI (strongest in May, Fig. 1) and GPP RCI
(strongest in July, SI Appendix, Fig. S3) may result from differ-
ences in sensor sensitivity and ability to capture the fast response
of plant photosynthetic activities to environmental stress.

Across most of the United States, the monthly aggregated
GPP standardized anomalies were remarkably similar to those
of SIF (Fig. 3), which highlights the effectiveness of SIF as an
index for vegetation productivity and photosynthetic activities.
Both SIF and GPP were unusually high in March and April
over much of the eastern United States, but the positive anoma-
lies decreased through the spring and fell below normal by June
in most of the Great Plains and Midwest (Fig. 3). The strong
positive anomalies of SIF and GPP in March and April (and of
ET over the eastern United States) were associated with an
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abnormally warm condition that kicked off the spring growth
way ahead of the normal growing season. This undoubtedly
would accelerate soil moisture depletion which, in the absence
of strong positive precipitation anomalies, may lead to rapid
deterioration of growth conditions for vegetation in late spring/
early summer, reducing GPP and SIF. In fact, precipitation was
slightly above normal early in the spring but fell below normal
by May. The early onset of growth was not the only factor (and
may not even be the primary factor) causing the rapid depletion
of soil moisture. The warm condition during spring and sum-
mer of 2012 was also accompanied by a persistent higher-than-
normal VPD. A recent study (39) found that rapidly developing
spring droughts in the central United States typically started
with a strong subsidence in the atmosphere, causing an abnor-
mally large VPD prior to the development of other anomalies.
The positive VPD anomalies in 2012 likely contributed to the
positive ET anomalies in spring (due to high evaporative
demand) and the increasingly negative GPP anomalies in
spring-summer (by inducing stomata closure in addition to soil

water stress). The first emergence of large negative SIF RCI val-
ues at the beginning of May was a result of vegetation integrat-
ing the effects of multiple stressors, providing an early warning
signal for a potentially rapid drought onset to come. In the sev-
eral months following, the operational USDM signaled a mod-
erate drought by late June and severe drought by early August
(SI Appendix, Fig. S1), and the drought severity in some areas
underwent a three-category increase over the course of several
weeks (3).

Flash Drought in 2017. The 2017 drought was confined to the
Northern Great Plains (SI Appendix, Fig. S2). The abnormal
dryness started over Montana and North Dakota at the end of
May, reached the “severe” level in mid-June, and rapidly intensi-
fied between July 11th and 25th while also expanding in spatial
coverage (toward the northwest and south). The drought reached
its peak intensity by August and persisted through September (SI
Appendix, Fig. S2). The severe drought lasted until October,
after which the drought became more moderate but persisted

Fig. 1. The 8-d SIF RCI values during April–August 2012. Negative values indicate slower-than-usual increase or faster-than-usual decrease of SIF, while
positive values indicate faster-than-usual increase or slower-than-usual decrease of SIF.

PNAS 2022 Vol. 119 No. 32 e2202767119 https://doi.org/10.1073/pnas.2202767119 3 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202767119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202767119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202767119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202767119/-/DCSupplemental


until the end of the year. The SIF RCI had large negative values
from the third week of May through June (Fig. 4), suggesting a
rapid deterioration of the vegetation growth condition. Note
that a negative RCI value reflects either a faster-than-usual
decrease or a slower-than-usual increase; in this particular case,
the SIF trajectory showed a much-slower-than-usual increase
during May and June, a time frame in which SIF is expected to

rapidly increase in normal years (Fig. 2). The SIF RCI signal dis-
appeared once the drought was in full swing in July, and showed
large positive values in August. Clearly, the negative values of
SIF RCI preceded the drought onset and the positive values pre-
ceded the drought recovery, by 2–4 wk in this case.

The RCI signals of GPP and ET were slightly negative (and
scattered) prior to and during the 2017 flash drought over the

Fig. 2. The 8-d time series of spatially averaged SIF during (A) 2012 and (B) 2017, in comparison with climatology, for a 5° × 5° sample region in Midwest
(35–40°N, 95–100°W) and Northern Great Plains (45–50°N, 100–105°W), respectively.

Fig. 3. Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and evapotranspiration prior to and during the 2012 drought.
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drought-stricken region (SI Appendix, Figs. S5 and S6) but
both showed a strong positive signal in August (similar to the
SIF RCI) prior to the drought recovery. Similar to the 2012
event, the SIF temporal dynamics as reflected by RCI showed a
much greater sensitivity to environmental condition changes
during the early development stage of the 2017 flash drought
than other variables analyzed.
During the spring and early summer of 2017, GPP and ET

were above normal over most of the United States due to the
warm and wet conditions in the spring (Fig. 5), while the corre-
sponding SIF was slightly below normal over most of the United
States This discrepancy in the sign of anomalies is a result of the
different durations used to define the climatological mean
(2007–2018 for SIF, 2001–2019 for GPP and ET), which has
little influence on the representation of temporal dynamics and
therefore the estimation of RCI under extreme conditions.
Indeed, over the northern Great Plains region stricken by the
2017 flash drought, SIF, GPP, and ET were consistent in trajec-
tory and all transitioned from above normal in April to below

normal by June (Fig. 5). The SIF signal experienced the fastest
transition among the three, which underlain the strong negative
RCI values of SIF in May and June (Fig. 4).

From the meteorological perspective, lower-than-normal pre-
cipitation, warmer-than-normal temperature, and higher-than-
normal VPD were observed over Montana and North Dakota in
the spring and summer. All three contributed to the 2017 flash
drought event; none of the individual hydrometeorological varia-
bles alone, including temperature, precipitation, VPD, and ET,
could provide reliable prediction of the flash drought. The SIF
RCI, with the first emergence of large negative values in the mid-
dle of May, warned of the 2017 flash drought several weeks ear-
lier than the drought onset indicated by the operational USDM.

Despite compelling evidence for the predictive role of the
SIF RCI during the 2012 and 2017 events, limited inventory
of flash droughts during the study period precluded a more
rigorous assessment on the performance of SIF RCI as a flash
drought predictor. As an alternative approach, we challenged
the SFI RCI skill against broader benchmarks ranging from wet

Fig. 4. The 8-d SIF RCI values during April–August 2017. Negative values indicate slower-than-usual increase or faster-than-usual decrease of SIF, while
positive values indicate faster-than-usual increase or slower-than-usual decrease of SIF.
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(favorable) to dry (unfavorable) conditions. Given the over-
whelming concern about flash drought impact in the agricul-
ture sector, we examined the predictive relationship of SIF-RCI
in May–June with the general water availability and vegetation
growth condition in the peak growing season, July–August, in
two 5° × 5° sample areas in the Midwest and Northern Great
Plains (see Materials and Methods). The strongest SIF-RCI sig-
nal from May–June was significantly correlated with both the
peak ecosystem productivity (reflected by the maximum SIF
value) during July–August and the most “relevant” signal of
short-term drought blend during July–August (Fig. 6 and SI
Appendix, Table S1). Judging by the sign of the spatially aver-
aged anomalies, out of the 12 y analyzed, predictions of dry or
wet conditions based on SIF RCI would produce no misclassifi-
cation in the Northern Great Plains sample area and one false
alarm in the Midwest sample area (which occurred in a year
when both the predictor and the predictand were close to their
long-term means) (Fig. 6B). Flash droughts are intrinsically
extreme and may disproportionately influence the correlation.
However, for both sample areas analyzed, excluding the 2012
or 2017 event from the data did not qualitatively change the
relationships (Fig. 6 and SI Appendix, Table S1). These results
provide strong evidence for the robustness of SIF RCI as a pre-
dictor for not only flash drought but also general eco-hydro-
meteorological conditions.

Discussion

This study analyzed satellite-derived data on vegetation functional
status prior to and during two major flash droughts in the United
States and assessed the potential of sensitive vegetation response
as an early warning of flash drought onset. The underlying
hypothesis is that slower-than-usual increases or faster-than-usual
decreases of plant photosynthetic activities captured by the SIF
trajectory at a very early stage of drought development can pro-
vide an early warning for flash drought onset. As a quantitative
metric, we applied the RCI formulas of Otkin et al. (3) to space-
borne measurements of SIF, GPP, and ET to assess the degree
of unusual rates of change, and used the 2012 and 2017 US
drought as examples. We found that a large negative RCI value
of SIF during the growing season could warn of a flash drought
onset at least several weeks before the drought could be detected
by the operational USDM. The RCI values of GPP and ET did
not provide a reliable or consistent predictor for drought onset.
However, a strong positive RCI signal from all three variables
(SIF, GPP, and ET) was found to precede drought recovery by
several weeks. While our analysis was not exhaustive and was
limited by the number of well-documented flash droughts dur-
ing the time of SIF data availability, our results showed great
potential for SIF RCI to be used as a predictor for both flash
drought onset and recovery, with several weeks of lead time over

Fig. 5. Standardized anomalies of monthly SIF, GPP, temperature, precipitation, and evapotranspiration prior to and during the 2017 drought.
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the operational USDM. This has significant implications, as the
hard-to-predict sudden onset has been a major challenge for cop-
ing with the widespread consequences of flash droughts.
In testing the effectiveness of the SIF RCI as a drought early

warning index, this study focused on two well-documented
events and chose the widely used operational USDM as a refer-
ence for comparison. Recently, EDDI (13) has gained wide rec-
ognition as a physically based predictive index with a long lead
over the operational USDM. It is worth comparing our SIF
RCI results with published EDDI results (14, 15). For the
2012 event, the timing of drought signal emergence was similar
between SIF RCI and EDDI, both in late April to early May;
the SIF RCI signal rapidly intensified in May, reaching the
maximum by late May and early June, while the EDDI signal
reached the maximum 1 mo later in early July. Another impor-
tant difference is that after drought onset, EDDI retained its
large magnitude reflecting drought intensity, while the magni-
tude of SIF RCI diminished once the drought was in full swing
and could not function as a drought intensity monitor.
The unusual SIF trajectory prior to the flash drought onset is

likely a result of vegetation photosynthetic response to multiple
stressors at the early stage of drought intensification. The predic-
tive skill of SIF RCI in and of itself does not suggest vegetation to
be a causal source of drought predictability. However, in regions
of strong land–atmosphere coupling such as the US Great Plains
and Midwest (40, 41), vegetation response to drought stress at the
subseasonal time scale may feed back to further suppress precipita-
tion and enhance drought severity. For example, numerical
modeling experiments showed that dry soil moisture anomalies in
late spring/early summer could cause a decrease of summer

precipitation and a major fraction of this effect was attributed to
vegetation feedback through a drought-induced decrease of leaf
area index (42, 43). This subseasonal vegetation-climate feedback
can certainly contribute to the performance of SIF RCI as a
drought predictor. More concrete identification of the processes
and mechanisms underlying this predictive relationship requires
further research beyond the scope of the present study.

The finding that the GPP or ET trajectories are not as effec-
tive or sensitive as the SIF trajectory in reflecting drought devel-
opment warrants further discussion. In the real world, both GPP
and ET over vegetated land are closely related to stomatal con-
ductance and plant photosynthesis (therefore SIF). However,
from the technical perspective, GPP and ET cannot be directly
measured through remote sensing. Instead, they were derived
from MODIS using equations that involved remote sensing of
photosynthetically active radiation and/or vegetation greenness
index as well as meteorological data from reanalysis (44, 45), all
of which could be sources of uncertainty. At the process level,
although drought-induced stress may cause stomatal closure
(which tends to reduce ET and increase canopy temperature),
the large vapor pressure deficit (whether dynamically induced
due to subsidence or thermally induced by high temperature)
increases the atmospheric evaporative demand (which tends to
accelerate ET). Due to these competing effects, ET may increase
or decrease at the early stage of drought development (46) and
therefore cannot serve as a reliable drought predictor.

SIF RCI as an early warning for flash drought has some
intrinsic advantages and limitations. Relying on the response of
plant photosynthetic activities, SIF RCI is applicable over vege-
tated land only, and may be more effective in grasslands and

Fig. 6. Scatter plot between the maximum signal of SIF-RCI during May–June and two benchmarks during July–August of 2007-2018: the short-term drought
blend (A and B) and maximum SIF (C and D), spatially averaged over a 5° × 5° sample region in the Northern Great Plains (45–50°N, 100–105°W) and in the
Midwest (35–40°N, 95–100°W) respectively; error bars indicate the spatial variability within the sample area. The maximum RCI signal refers to the RCI value
(positive or negative) whose magnitude is the largest among all values during May–June of each year. Also shown are the linear regression lines with (solid)
and without (dashed) the extreme drought (marked with a red circle). The blue circle (in B) marks the false alarm case for RCI-based drought early warning.
All correlations are statistically significant.
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croplands than in forests, due to disparity in SIF’s ability to track
plant photosynthesis in different ecosystems (17, 25, 47). While
this is a limitation, it also makes the index highly relevant for
agriculture (including rangelands, pasture, and cropland), the sec-
tor most influenced by flash droughts. Herbicides and pests may
cause a localized short-lived signal of negative RCI, but such a
signal should be easy to distinguish from a flash drought signal
(which is typically over a large scale for multiple weeks). The
global availability of spaceborne SIF data is a major advantage,
especially for regions where the lack of sufficiently accurate mete-
orological data limits the accuracy of other drought warning
tools. The downscaled corrected GOME-2 SIF dataset used,
available for the 2007–2018 period, compared remarkably well
with SIF data from the Sentinel-5 Precursor Tropospheric Moni-
toring Instrument (TROPOMI) during their overlapping period,
2018 (36). It can therefore be used as the historical archive for
the TROPOMI SIF data to facilitate the derivation of SIF RCI
in real time. With its long lead time and direct relevance to agri-
culture, SIF RCI can support the development of a globally
accessible early warning system for flash droughts.

Materials and Methods

In this study, we assessed the temporal dynamics of vegetation functioning prior
to and during the 2012 and 2017 US droughts based on data derived from satel-
lite remote sensing. These include the 8-d GOME-2 SIF data downscaled from 0.5°
to 0.05° to better capture the spatial heterogeneity of ecosystem activities (35–37),
and the gap-filled 8-d composite data from MODIS/Terra on ET (MOD16A2GF) and
GPP (MOD17A2HGF) at 500-m spatial resolution (available at https://lpdaacsvc.cr.
usgs.gov). The ET and GPP data are available for 2000–2019, and the GOME-2 SIF
data are available for 2007–2018. In addition to ET, we also analyzed other hydro-
meteorological variables relevant to drought development, including precipitation,
temperature, VPD, and short-term drought blend from the GridMET dataset (37),
which has a daily time step and 4-km spatial resolution.

Our study used the USDM as the drought metric to characterize the 2012 and
2017 flash droughts. The USDM map shows the weekly updated location and
intensity of drought using a five-category system: abnormally dry (D0), moderate
drought (D1), severe drought (D2), extreme drought (D3), and exceptional drought
(D4). Based on weighted averaging of a large number of indicators (including
Palmer Drought Severity Index, soil moisture index, streamflow index, and stan-
dardized precipitation index), USDM can account for all types of and all aspects of
droughts. Results from our SIF trajectory analyses were compared against USDM
to identify the lead time for the SIF-derived drought early warning index.

To quantify how much the temporal change rate of SIF deviated from its clima-
tological mean, we took the RCI formulation of Otkin et al. (3), and applied the
RCI approach to the 8-d GOMES-2 SIF data. For comparison with the SIF RCI, we
also conducted the RCI analysis for two other satellite-derived variables related to
vegetation functioning, the 8-d GPP and ET from MODIS, to assess how different
sensors may vary in capturing the temporal dynamics of photosynthesis. For con-
venience, the following description refers to the 8-d period as a “week.”

The RCI estimation involves two steps. First, the standardized anomalies of
the temporal change rate of SIF are calculated as:

ΔVðw1,w2, yÞ ¼
½Vðw2, yÞ � Vðw1, yÞ� � 1

N∑
N
y¼1½Vðw2, yÞ � Vðw1, yÞ�

σðw1,w2Þ ,

where V(w, y) is the SIF composite for week w and year y. On the right-hand side
of the equation, the second term in the numerator defines the climatological
mean of the rate of change between weeks w1 and w2 over N years, and the
denominator is its SD for the corresponding time, respectively. A negative ΔV
represents a slower-than-usual increase or faster-than-usual decrease of SIF,
while a positive ΔV indicates a faster-than-usual increase or slower-than-usual
decrease of SIF.

An anomalous weather pattern can persist for multiple weeks and cause
drought development or recovery. Therefore, the response of vegetation func-
tioning and moisture stress can be seen through unusual rate of change over an

extended period. The second step of the RCI calculation involves the time accu-
mulation ofΔV (3):

RCI ¼ RCIprev �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
absðΔVÞ � 0:75

p
if ΔV < �0:75,

and

RCI ¼ RCIprev þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
absðΔVÞ � 0:75

p
if ΔV > 0:75:

Here, RCIprev is the RCI value from the previous week. RCI as formulated above
represents the temporal accumulation of excess ΔV above the set threshold of
0.75 (3, 48). The RCI value remains unchanged if ΔV is of the same sign as in
the previous week but its magnitude does not exceed the set threshold of 0.75,
and is reset to zero ifΔV changes sign from the previous week.

During the growing season, a large negative value of RCI indicates an upcom-
ing drought onset, and a large positive value of RCI indicates an upcoming
recovery from drought. RCI is designed to capture temporal dynamics, but does
not directly reflect the magnitude or intensity of the drought after its onset. For
example, RCI would be close to zero after the onset and before the beginning of
the recovery of a long persistent drought. As a monitoring measure for drought
intensity (as opposed to early warning), the standardized anomalies of several
relevant variables were also analyzed, including SIF, GPP, ET, temperature, pre-
cipitation, and VPD. To facilitate comparison, all data at different spatiotemporal
resolutions were first aggregated to a common 0.5° and monthly resolution.
Standardized anomalies were then estimated as the anomalies (deviation of the
monthly data from the climatological mean of that month) divided by the corre-
sponding SD to remove the impact of seasonality.

To examine the robustness of SIF RCI as an early warning index, we
expanded our analysis to include the full range of hydro-meteorological condi-
tions. Instead of using the operational USDM data, which focus on dry extremes,
we used the short-term blend of drought indicators from gridMET, which ranges
from dry to wet. Here we chose the strongest SIF RCI signal (positive or negative)
during May–June of each year, and related that to two types of benchmark dur-
ing the peak growing season, July–August. One was the maximum SIF value as
a metric for ecosystem productivity, and one was the short-term drought blend
from GridMET as a metric for water availability. The short-term blend in some
years showed strong temporal dynamics due to multiple short-duration events.
To identify the most “relevant” event in each year, we chose the lowest (highest)
short-term blend during July-August if the strongest SIF RCI signal during
May–June is negative (positive). We assessed the relationships between the pre-
dictor (strongest SIF RCI signal) and the predictands (two benchmarks) over two
5° × 5° sample areas that were hit hard by the 2012 and 2017 flash droughts,
respectively, one in Midwest (35–40°N, 95–100°W) and one in Northern Great
Plains (45–50°N, 100–105°W).

Since an individual drought event may influence a large area, data from dif-
ferent grid cells within each sample area are not independent. Lumping data
from all grid cells in the correlation analysis (e.g., in SI Appendix, Fig. S7) would
overestimate the degree of freedom (therefore the statistical significance of the
correlation). To address this uncertainty, we used the spatial averages of the data
across each sample area to derive the least squares linear regression lines and
the Pearson correlation coefficients (Fig. 6). The spatial variability within each
sample area (as reflected by the error bars around each data point in Fig. 6) is
heavily influenced by the size of the sample area and is therefore not intrinsic to
the relationships analyzed here.

Data Availability. All data used in the study, including the GOME-2 SIF,
MODIS, and gridMET data, were obtained from open sources and/or published
literature, with URL and citations included in the article. The codes used to pro-
cess and analyze these data are available in the GitHub repository at https://
github.com/KoushanM/Flash-drought-early-warning (49).
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