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Background: A major objective of precision medicine is the elucidation of non-invasive

biomarkers of cardiovascular (CV) risk. Recently, we introduced a new dynamical marker

of sino-atrial instability, termed heart rate fragmentation (HRF), which outperformed

traditional and nonlinear heart rate variability metrics in separating ostensibly healthy

subjects from patients with coronary artery disease. Accordingly, we hypothesized that

HRF may be a dynamical biomarker of adverse cardiovascular events (CVEs).

Methods: This study employed data from a cohort of participants in the Multi-Ethnic

Study of Atherosclerosis (MESA), a prospective study of sub-clinical heart disease.

Interbeat interval time series (n = 1963), derived from the electrocardiographic channel

of the polysomnogram study, were analyzed using the newly introduced metrics of

fragmentation, as well as traditional heart rate variability (HRV) indices and the short-term

detrended fluctuation analysis exponent. Cox regression analysis was used to assess the

association between HR dynamic indices and CV outcomes in unadjusted and adjusted

models.

Results: The mean (± SD) follow-up time was 2.97 ± 0.63 years. In adjusted models,

higher fragmentation was significantly associated with incident CVEs (number of events;

hazard ratio [95% confidence interval]: n = 72, 1.43 [1.16–1.76]) and CV death (n = 21;

1.65 [1.15–2.36]). The traditional HRV and the fractal indices were not associated with

CVEs or CV death. The most discriminatory fragmentation indices added significant value

to Framingham and MESA CV risk indices in all analyses.
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Conclusion: Our findings show that HRF has promise as a non-invasive, automatable

biomarker of CV risk. The basic mechanisms underlying fragmentation remain to be

delineated. Its association with incident outcomes raises the possibility of connections

to degenerative changes in the multisystem network controlling SAN function.

Keywords: aging, alternans, heart failure, heart rate fragmentation, heart rate variability, sino-atrial node, symbolic

dynamics, vagal tone

1. INTRODUCTION

This study describes a novel noninvasive biomarker of
cardiovascular (CV) risk based on heart rate dynamics. In
healthy adults at rest and during sleep, the highest frequency
at which the sino-atrial node (SAN) rate fluctuates varies
between ∼0.15 and 0.40 Hz (Figures 1A1–A4). These
oscillations, referred to as respiratory sinus arrhythmia, are
due to vagally-mediated coupling between the SAN and
breathing. However, not all fluctuations in heart rate (HR)
at or above the respiratory frequency are attributable to
vagal tone modulation. Under pathologic conditions, an
increased density of reversals in HR acceleration sign, not
consistent with short-term parasympathetic control, can be
observed (Figures 1B1–B4). This dynamical biomarker of
electrophysiologic instability has recently been identified and
termed heart rate fragmentation (HRF) (Costa et al., 2017a). A
set of metrics (computational probes) for its quantification was
also introduced (Costa et al., 2017a,b).

Perhaps the most explicit example of HRF is the
subtle supraventricular arrhythmia termed sinus node
alternans (Binkley et al., 1995), in which the time between
consecutive sinus beats oscillates between two values, short
(S) and long (L) following an SLSL pattern. However, HRF
includes not only pure (2:1) sinus node alternans but also
quasi-periodic and more irregular variants of normal-to
normal (NN) alternation. As Figures 1A3,B3 illustrates,
clinical recognition of such patterns is difficult from standard
electrocardiograms (ECGs). Traditional heart rate variability
(HRV) indices and other metrics such as those derived from
Poincaré plots (Figures 1A4,B4,C) may be also of limited use
in the identification of HRF patterns. The basic mechanisms of
fragmentation, involving either anomalous sinus beats (Lewis,
1920) or supraventricular ones originating near the SAN, are
unresolved (Costa et al., 2017a,b).

Abbreviations: AVNN, average value of the NN intervals; BMI, body mass index;

BP, blood pressure; CAD, coronary artery disease; CV, cardiovascular; CVD,

cardiovascular disease; CVE, cardiovascular event; DFA, detrended fluctuation

analysis; ECG, electrocardiogram; HDL, high density lipoprotein; HF, total spectral

power of all NN intervals between 0.15 and 0.4 Hz; HR, heart rate; HRF, heart rate

fragmentation; HRV, heart rate variability; LF/HF, ratio of low to high frequency

power; MESA, Multi-Ethnic Study of Atherosclerosis; NN, normal-to-normal

sinus (interval); PIP, percentage of inflection points (changes in heart acceleration

sign); pNN50, percentage of differences between adjacent NN intervals that are

greater than 50 ms; PSG, polysomnography or polysomnogram; rMSSD, square

root of the mean of the squares of differences between adjacent NN intervals; RR,

R-to-R (interval); SAN, sino-atrial node; SD, standard deviation; SDNNIDX, mean

of the standard deviations of NN intervals in all 5-min segments; Wj, segment,

termed “word,” of 4 consecutive differences between adjacent interbeat intervals

presenting j changes in heart rate acceleration sign.

The potential importance of HRF is several-fold. First, it
produces a high degree of short-term variability that may be
mistaken as a marker of healthy vagal control when standard
measures of short-term HRV are used. Second, its presence
supports the delineation of a new class of biomarkers of cardiac
risk. The latter is premised on the conjectured link between
HRF and the breakdown in one or more components of the
control system (and/or in their interactions) regulating SAN
function. Notably, earlier reports of what were first termed “sinus
extrasystoles” as well as sinus alternans (Lewis, 1920; Binkley
et al., 1995) were from patients who were older or had organic
heart disease. Third, the investigation of fragmentation may yield
new insights into SAN functionality in health, aging and disease.

In recent studies (Costa et al., 2017a,b) we analyzed annotated
Holter recordings [University of Rochester Telemetric Holter
ECG Warehouse (THEW)] from healthy subjects and patients
with advanced coronary artery disease (CAD) using the newly
devised HRF metrics. Fragmentation was found to significantly
increase as a function of the participants’ age in both the healthy
population and the one with CAD. In contrast, most short-term
HRV indices did not significantly change with the participants’
age in the CAD group. Furthermore, fragmentation was higher
in patients with CAD than in healthy subjects, during both
estimated awake and sleep periods, while traditional HRVmetrics
did not discriminate the two groups.

The general motivation for the present study was to assess
the potential utility of the novel indices of HRF as predictors
of adverse cardiovascular events (CVEs) and CV mortality,
using the large Multi-Ethnic Study of Atherosclerosis (MESA).
This ongoing prospective cohort study (Bild et al., 2002)
was designed to investigate the prevalence, correlates and
progression of subclinical cardiovascular disease (CVD) in a
multi-ethnic population free of overt clinical CVD at study
entry. We specifically hypothesized that HRF would: (1) be
positively associated with cross-sectional age; (2) be positively
associated with incident CVEs and CV death; and (3) outperform
traditional HR dynamical measures. In addition, we also sought
to determine if fragmentation metrics added value to prediction
tools computed from clinical measures, namely the Framingham
Heart Study (D’Agostino et al., 2008) and MESA CV risk
indices (McClelland et al., 2015).

2. METHODS

2.1. Study Population and Data Collection
The MESA study has been described in detail previously (Bild
et al., 2002). Briefly, over a period of approximately 2-years,
starting in July 2000, 6,814 persons between the ages of 45 and
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FIGURE 1 | Heart rate dynamics from two MESA participants, A with respiratory sinus arrhythmia (black tracings) and B with fragmented sinus rhythm (red tracings).

Normal-to-normal (NN) sinus interval time series for the entire sleep period (A1,B1) and for a 70-second window (A2,B2). Twelve-second ECG recordings (A3,B3).

Poincare plots for the entire sleep period (A4,B4) and the 70-second NN time series shown in A2 and B2 (C). The green circles highlight the “inflection points,” where

the changes in heart rate acceleration sign occur. Histogram of the percentage of inflection points (PIP) calculated with a moving window of 1000 NN intervals (D).

Neither participant had prevalent or incident CVEs. However, they were in two different risk categories: the Framingham CVD risk index was 2.4 (1st percentile of

MESA participants) for A and 15.6 (55th percentile) for B. The time series from participant B was 30% more fragmented (average PIP = 65%) than the one from

participant A (average PIP = 50%). Traditional HRV and DFA α1 indices were comparable: mean NN interval, 906 and 957 ms; rMSSD, 25.3 and 27.6 ms; pNN50,

5.0 and 6.5%; HF power, 348 and 310ms2; DFA α1, 1.05 and 1.18, for participants A and B, respectively.
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84 years of age without evident clinical CVD were recruited
at six field centers in the US. Institutional review boards from
each study site approved the conduct of this study, and written
informed consent was obtained from all participants.

A sleep ancillary study was conducted in conjunction
with MESA’s fifth examination (2010–2013). The study
enrolled 2,060 participants who underwent unattended, in-
home polysomnography (PSG) following a standardized
protocol (Redline et al., 1998). The data obtained using the
15-channel Compumedics Somte System (Compumedics LTd.,
Abbottsville, Australia) were scored at the Brigham andWomen’s
Hospital centralized reading center by trained technicians using
published guidelines (Redline et al., 2007). The apnea-hypopnea
index (AHI) was calculated based on the average number per
hour of sleep of all apneas plus hypopneas associated with ≥ 3%
oxygen desaturation or arousal.

The ECG channels, sampled at 256 Hz, were processed using
Compumedics Somte software for detection and classification of
the QRS complexes (R-points) as normal sinus, supraventricular
premature or ventricular premature complexes. The automated
annotations were reviewed by a trained technician, who made
appropriate corrections. Both the NN and the R-to-R (RR)
interval time series were analyzed in the present study.

Participants with one or more of the following were excluded:
poor signal quality (n=35), pacemaker (n=13), atrial fibrillation
(AF) at the time of the PSG (n = 22), < 2 h of combined sleep
periods scored as rapid eye movement (REM), stage 1, 2, 3, or
4 (n = 16), and< 75% normal sinus beats between sleep onset
and termination (n=11). Participants with CVEs before the PSG
(n = 185) and seven others for whom the last recorded follow-
up was prior to the PSG were excluded from the analyses of the
associations between HR dynamical metrics and incident CVEs.
These participants were included in analyses of CV mortality.

2.2. Clinical Follow-Up and Event
Classification
In addition to clinical exams, participants are followed every
9–12 months to inquire about hospital admissions, CV
outpatient diagnoses and procedures, and deaths. Discharge
diagnosis codes are obtained for all hospitalizations and
medical records are obtained when heart failure, myocardial
infarction, stroke, or death are reported. For those over
age 65 and enrolled in fee-for-service Medicare, claims data
are also used to identify diagnosis and procedure codes.
Trained personnel abstract any hospital records suggesting
possible CVEs, which are then adjudicated by physicians
at the coordinating center. Nonfatal endpoints in MESA
include congestive heart failure, angina, myocardial infarction,
percutaneous coronary intervention, coronary bypass grafting
or other revascularization procedure, resuscitated cardiac
arrest, peripheral arterial disease, stroke (non-hemorrhagic)
and transient ischemia attack (TIA). Cardiovascular deaths, as
adjudicated by committee review, included fatalities directly
related to stroke or coronary heart disease. For other deaths, the
underlying cause are obtained through state or vital statistics
departments. The definition and adjudication of these events

have been described in detail previously (Bild et al., 2002;
Bluemke et al., 2008; Yeboah et al., 2012). The cut-off date for
the surveillance period was December 31, 2014.

2.3. Fragmentation Analysis
Fragmentation analysis was performed for 1963 subjects using
both NN and RR interval time series. Fragmentation analysis
is described in detail in Costa et al. (2017a,b). Briefly, original
interbeat interval time series, {si}, 1 ≤ i ≤ L (L, time series
length) were mapped to a ternary symbolic sequence as follows:
“−1” if 1NNi < −4 ms, “0” if −4 ≤ 1NNi ≤ 4 ms, and “1”
if 1NNi > 4 ms (Costa et al., 2017b). Note that, since the ECG
signals were sampled at 256 Hz, the resolution of the interbeat
interval time series is 1/256 ∼ 4 ms. Therefore, only NN (or
RR) intervals whose difference was > 4 ms or < −4 ms were
considered different from each other.

Transitions from HR acceleration to HR deceleration (“−1”
to “1”) or vice-versa (“1” to “−1”), and from HR acceleration or
HR deceleration to no change in HR (“−1” to “0,” “1” to “0,”)
or vice-versa (“0” to “−1,” “0” to “1”) were termed “inflection
points.” The percentage of inflection points (PIP) (Costa et al.,
2017a) constitutes a measure of HRF reflecting its overall degree
of prevalence.

To assess the prevalence of dynamical patterns with increasing
degrees of fragmentation, the percentages of sequences of 4
consecutive symbols, wi = (si, si+1, ..., si+l−1), 1 ≤ i ≤ L −

l + 1, termed “words,” with 0, 1, 2, and 3 inflection points were
calculated. We refer to these word classes as W0, W1, W2, and
W3, respectively. The full lexicon that comprises 81 different
words is given in Costa et al. (2017b). Words derived from the
NN (RR) interval time series were termed NN (RR) words. The
words in groups W0 and W1 are the least fragmented (most
“fluent”), those in groups W2 and W3 are the most fragmented.

All fragmentation metrics were calculated for the entire sleep
period. In the case of PIP, standard sleep stage periods (awake,
rapid eye movement [REM], stages N1, N2, and N3), in addition
to periods of awake before sleep onset or after sleep termination
were also analyzed. Individuals were included if cumulatively
they had at least 2000 NN intervals during a given sleep stage.
Thus, the number of participants in each of these sub-analyses
was a fraction of the number of participants in the analyses of the
entire sleep period. Specifically, the number of participants (the
number of those with incident CVEs) for the different periods
was: awake, 1379 (61); REM, 1451 (54); N1, 1056 (51); N2, 1695
(70); N3, 791 (23); and awake before sleep onset or after sleep
termination, 1449 (58).

2.4. Traditional HRV Analysis
The following traditional time domain HRV indices (HRV, 1996)
were calculated for 1963 subjects using NN interval time series:
(1) the average of all NN intervals (AVNN), (2) mean of the
standard deviations (SDs) of NN intervals in all 5-min segments
(SDNNIDX), (3) the square root of the mean of the squares
of differences between adjacent NN intervals (rMSSD), and (4)
the percentage of differences between adjacent NN intervals
that are greater than 50 ms (pNN50). The following traditional
frequency domain HRV indices were calculated: (1) the total
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spectral power of all NN intervals between 0.15 and 0.4 Hz (HF)
and (2) the ratio of low to high frequency power (LF/HF). Each
of these metrics was calculated using a 5-min sliding window
(without overlap), with more than 150 beats and more than 75%
NN intervals, between sleep onset and sleep termination. Power
spectrum estimates were obtained using the Lomb periodogram
method, which does not require missing data points (due to
removal of ectopic, misdetections, and artifact) in a time series
to be interpolated (Moody, 1992, 1993). A total of 170,527
windows were analyzed. For each subject, the values from the
different windows were averaged. The source code used for
these computations is published on The Research Resource for
Complex Signals, (PhysioNet) website (Goldberger et al., 2000;
Mietus and Goldberger, 2008).

2.5. Detrended Fluctuation Analysis:
Short-Term Scaling Index
Detrended fluctuation analysis (Peng et al., 1995) was developed
to quantify the correlation properties of a time series. The
methods is based on the assessment of the slope of the regression
line of the logarithm of F(n) vs. the logarithm of n, where F(n) is
the root-mean-square fluctuation of the integrated and detrended
data, computed using windows of length n. For the analysis
of heart rate time series, two indices, α1 and α2, quantifying
short and long-term behavior, respectively, have been proposed.
We focused on α1, defined as the slope of F(n) vs. n, for
4 ≤ n ≤ 11 (Pikkujamsa et al., 1999). Time series for which
α ∼ 0.5 are uncorrelated (random). Those with α > 0.5 and
those with α < 0.5 are long-range correlated and anti-correlated,
respectively.

Discontinuities in the NN interval time series due to
premature beats, misdetections and artifact were dealt with in the
following way. If the gap was < 3 s (typically due to the removal
of an ectopic beat), an interpolated beat was inserted. If the gap
was wider (typically due to ECG artifact that prevents accurate
detection of the peak of the QRS complexes), then the segments
that preceded and followed the gap, were “stitched” together.
The α1 exponent was calculated for non-overlapping segments
of 1,000 intervals and the results were averaged. The source
code used in these computations is published on the PhysioNet
website (Goldberger et al., 2000; Mietus et al., 2001).

2.6. Statistical Analysis
Continuous variables are summarized as median, first and third
quartiles, unless otherwise indicated. Categorical variables are
presented as numbers and percentages.

The associations between independent variables and both
incident CVEs and CV mortality were assessed using Cox
proportional hazard analysis. Efron’s method (Efron, 1977) was
used to handle ties. Failure time in the individuals with incident
CVEs was the time between the PSG study and the time of
event diagnosis. For participants without CVEs, the failure time
was the time between the PSG study and the latest follow-up,
death, or loss to follow-up. Statistical significance was set at a p-
value <0.05. The independent variables were: the fragmentation
indices, PIP, W0, W1, W2, and W3, derived from both NN
and RR interval time series; the HR dynamical indices: AVNN,

SDNNIDX, rMSSD, pNN50, HF, and HF/LF; and the short-term
fractal index DFA α1.

Both unadjusted (Model 1) and adjusted models were
considered. Adjustments included: (i) traditional CV risk
factors: age, sex, systolic blood pressure, total cholesterol, high
density lipoprotein (HDL) cholesterol, current smoking status,
hypertension medication, diabetes and lipid lowering medication
(Model 2); (ii) the Framingham Heart Study 10-year risk index
(D’Agostino et al., 2008) (Model 3), and (iii) the MESA CV risk
index without coronary calcification (Model 4).

Standardized hazard ratios (per one-SD increase in the
independent variable) were calculated with associated 95%
confidence intervals (CI). The assumption of proportional
hazards was tested using a global test based on Schoenfeld
residuals (Grambsch and Therneau, 1994). No violations were
noted. The predictive power of the survival models was assessed
using Harrell’s C statistic. The likelihood ratio test was used to
compare the fit of two nested models (null model vs. null model
+ HR dynamical metric). The three null models were models
2, 3, and 4 described above. The null hypothesis for each of the
likelihood ratio tests was that the two nested models fitted the
data equally well. Rejection of the null hypothesis implied that
the larger model fitted the data better, indicating that a given HR
dynamical metric added value to the null model.

Linear regression models with a quadratic term were used to
describe the possible nonlinear (U-shaped) relationship between:
i) HRF and short-termHRV indices (example of amodel with PIP
and rMSSD, PIP = β1 ∗ ln(rMSSD)+ β2 ∗ [ln(rMSSD)]2 + α,
where α is a constant); and ii) short-term HRV indices and the
participants’ age.

In all analyses, the variables W0, rMSSD, pNN50, SDNN,
or HF were logarithmically transformed since the models with
these log-transformed variables fitted the data better than those
with untransformed ones. In all other cases, the analyses were
performed using untransformed variables.

3. RESULTS

Over a median follow-up period of 1,080 [916–1,259] (median
[Q1–Q3]) days after the PSG study, 72 out of the 1,771
participants without prevalent CVEs suffered their first adverse
event: myocardial infarction (n= 16), resuscitated cardiac arrest
(n = 1), angina (n = 14), percutaneous coronary intervention
(n = 21), coronary bypass graft (n = 3), other revascularization
(n = 6), congestive heart failure (n = 10), peripheral vascular
disease (n = 8), transient ischemic attack (n = 5), CV death
(n = 14) or stroke (non-hemorrhagic brain infarction, n = 17).
From a total of 1,963 participants (1,771 without and 192 with
prevalent CVEs), 21 died of CVD.

Characteristics of MESA participants without and with a
CVE during follow-up are summarized in Table 1. Individuals
who developed CVEs were older and more likely to be male
and have diabetes. They tended to have higher seated HR and
higher systolic blood pressure. In addition, this risk group tended
to have lower sleep efficiency and a higher apnea-hypopnea
index. The differences between those who died and did not were
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TABLE 1 | Characteristics of MESA participants without and with a CVE during follow-up.

Variable No incident CVEs Incident CVEs p-value

(N = 1699) (N = 72)

Age (years) 66.0 [60.0–74.0] 72.5 [62.5–78.0] < 0.001

Male, n(%) 755 (44) 46 (64) 0.001

Race 0.577

Caucasian, n(%) 618 (36) 23 (32)

Chinese, n(%) 218 (13) 7 (10)

African American, n(%) 467 (27) 21 (29)

Hispanic, n(%) 396 (23) 21 (29)

BMI (kg/m2) 27.8 [24.4–31.7] 27.1 [25.0–30.7] 0.646

Waist circumference (cm) 97.8 [88.8–107.4] 99.0 [93.5–106.1] 0.280

Seated Heart rate (bpm) 63.5 [57.0–70.0] 64.5 [59.3–74.3] 0.081

Systolic blood pressure (mmHg) 119 [109–134] 123 [109–140] 0.073

Diastolic blood pressure (mmHg) 68.0 [62.0–74.5] 68.8 [61.8–75.5] 0.111

Total cholesterol / HDL 3.38 [2.78–4.17] 3.35 [2.56–4.36] 0.355

Triglycerides (mg/dL) 96 [70–131] 97 [69–130] 0.473

Current smoker, n(%) 104 (6) 7 (10) 0.230

Antihypertensive medication, n(%) 829 (49) 42 (58) 0.113

Diabetes, n(%) 290 (17) 20 (28) 0.022

Lipid lowering medication, n(%) 568 (33) 28 (39) 0.337

Oral hypoglycemic agents, n(%) 219 (13) 17 (24) 0.009

Total sleep time (min) 370 [316–418] 352 [293–408] 0.066

Sleep efficiency (%) 78.8 [69.6–85.9] 72.8 [64.8–82.1] 0.003

Apnea-hypopnea index 17.4 [8.83–31.9] 26.2 [13.4–40.6] 0.012

Central apnea index 0 [0–0.27] 0 [0–0.38] 0.969

Values presented are the population median, first and third quartiles for continuous variables and the number of participants and its percentage for categorical variables. The Student

t-test and the χ2 test were used for assessing between-group (incident CVEs vs. no incident CVEs) differences in continuous and categorical variables, respectively. Abbreviations: BMI,

body mass index; CVE, cardiovascular event; HDL, high density lipoprotein cholesterol; SD, standard deviation. Boldface is used to highlight p-values < 0.05, i.e., statistically significant

differences between groups with and without CVEs.

qualitatively similar to the differences between those with and
without incident CVEs.

3.1. Relationship of HRF, Traditional HRV
and Nonlinear Indices With the
Participants’ Age
All fragmentation indices, derived from either NN or RR interval
time series, were significantly associated with the participants’
age. The Pearson correlation coefficients (ρ) for PIP,W0,W1,W2,
andW3 were 0.35,−0.17,−0.31, 0.10, and 0.35, respectively. PIP
(Figure 2) and the percentages of fragmented words W2 and W3

increased with the participants’ age at the estimated rates of 0.28,
0.09, and 0.35% per year of age, respectively. The percentages
of fluent words W0 and W1 decreased with the participants’ age
at the rates of −0.06 and −0.39% per year, respectively. Slightly
higher rates of change were observed for the indices derived from
RR interval time series (not shown).

The short-term traditional HRV indices, rMSSD, pNN50 and
HF, did not vary linearly with the participants’ age. Instead,
the association between age and short-term variability depended
on the participants’ age itself. Figure 2 illustrates, using the
representative example of rMSSD, how the amount of short-
term variability varied across different age groups. Variability

was higher in both the lowest (<55 years) and highest (≥85
years) age groups compared to intermediate ones (U-shape
relationship).

The short-term fractal index, α1 showed a small but significant
decrease with cross-sectional age. The Spearman correlation
coefficient was−0.18 (p = 0.000).

3.2. Unadjusted Analyses of Risk of
Incident CVEs
All fragmentation indices, calculated from both the NN and the
RR time series, were significantly associated with incident events
(Table 2: Model 1). The association was positive for fragmented
words, W2 and W3, as well as PIP, and negative for fluent (less
fragmented) words, W0 and W1. The most discriminatory of the
fragmentation indices was the word W1 derived from the RR
interval time series. A one-SD increase in W1 was associated
with a 44% (95% CI: 28–66%) decrease in the rate of CVEs. This
variable performed comparably to the Framingham Heart Study
and MESA CV risk indices (Figure 3, top panels).

None of the traditional time (AVNN, SDNNIDX, rMSSD,
pNN50) and frequency domain (HF, LF/HF) HRV variables was
significantly associated with incident events. DFA α1 was also not
associated with incident events.
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FIGURE 2 | Tukey boxplots of ln(rMSSD) and PIP for participants in successive age groups. PIP, percentage of inflection points; rMSSD, root mean square of the

successive differences.

TABLE 2 | Association of fragmentation, traditional HRV and short-term fractal indices with incident CVEs in unadjusted and adjusted models for standard risk factors.

Model 1 (Unadjusted) Model 2 (Traditional factors)

Variable Median (Q1–Q3) HRs (95% CI) C-index HRs (95% CI) C-index LR-test

Fragmentation using NN PIP (%) 58.0 (53.4–62.9) 1.60 (1.31–1.96) 0.648 1.43 (1.15–1.78) 0.712 0.002

W0 (%) 4.50 (2.72–7.02) 0.76 (0.61–0.94) 0.574 0.75 (0.60–0.94) 0.705 0.014

W1 (%) 31.7 (24.1–39.3) 0.59 (0.46–0.75) 0.655 0.67 (0.51–0.87) 0.712 0.002

W2 (%) 44.1 (39.6–50.4) 1.26 (1.01–1.58) 0.574 1.30 (1.02–1.65) 0.697 0.037

W3 (%) 15.6 (11.2–22.1) 1.39 (1.20–1.62) 0.626 1.25 (1.05–1.49) 0.697 0.027

Fragmentation using RR PIP (%) 58.1 (53.6–63.1) 1.61 (1.32–1.96) 0.651 1.43 (1.15–1.78) 0.712 0.002

W0 (%) 4.46 (2.67–6.92) 0.73 (0.59–0.90) 0.574 0.72 (0.58–0.90) 0.708 0.005

W1 (%) 31.3 (23.9–39.1) 0.56 (0.44–0.72) 0.664 0.64 (0.49–0.83) 0.720 0.001

W2 (%) 44.3 (39.8–50.5) 1.35 (1.08–1.68) 0.580 1.40 (1.10–1.78) 0.706 0.007

W3 (%) 15.9 (11.5–22.4) 1.37 (1.17–1.60) 0.612 1.21 (1.01–1.46) 0.693 0.062

Traditional HRV and short-term fractal AVNN (ms) 942 (861–1033) 0.86 (0.68–1.09) 0.529 0.84 (0.65–1.07) 0.688 0.155

SDNNIDX (ms) 46.9 (35.4–61.7) 0.90 (0.71–1.14) 0.529 0.89 (0.71–1.12) 0.685 0.312

rMSSD (ms) 28.6 (20.6–42.2) 0.96 (0.75–1.21) 0.539 0.91 (0.73–1.14) 0.683 0.419

pNN50 (%) 6.03 (1.71–16.5) 0.83 (0.67–1.04) 0.545 0.85 (0.68–1.05) 0.687 0.137

HF (×103ms2) 3.75 (19.7–7.43) 0.98 (0.77–1.23) 0.527 0.94 (0.75–1.17) 0.684 0.565

LF/HF (unitless) 2.03 (1.25–3.53) 0.85 (0.68–1.07) 0.541 0.91 (0.71–1.15) 0.693 0.413

DFA α1 (unitless) 1.18 (1.00–1.35) 0.95 (0.75–1.19) 0.511 0.98 (0.77–1.25) 0.689 0.889

Model 1: unadjusted. Model 2: adjusted for the traditional risk factors: age, sex, systolic blood pressure, total cholesterol, HDL cholesterol, current smoking status, hypertension

medication (including beta blockers, calcium-channel blockers, angiotensin antagonists, and angiotensin antagonists plus diuretics), diabetes and lipid lowering medication. Values

presented are standardized hazard ratios (HRs), 95% confidence intervals (95% CI), Harrell’s C statistic (C-index) and the p-value for the likelihood ratio test (LR-test) of the null

hypothesis that the addition of a dynamical measure (fragmentation, traditional HRV or DFA α1 metric) to a model with the traditional risk factors did not improve the fit of the data.

The numbers of participants/events in the analyses of the models 1 and 2 were 1771/72 and 1702/71, respectively. Abbreviations: Q1, first quartile; Q3, third quartile; HRV, heart rate

variability; CVE, cardiovascular event; HDL, high density lipoprotein; PIP, percentage of inflection points; W0, W1, W2, W3, percentage of words with 0, 1, 2, and 3 inflection points,

respectively; AVNN, average value of the NN intervals; SDNNIDX, mean of the standard deviations of NN intervals in all 5-min segments; rMSSD, root mean square of the successive

differences; pNN50, percentage of differences between successive NN intervals above 50 ms; HF, high frequency spectral power; LF/HF, ratio of low to high frequency power; DFA α1,

detrended fluctuation analysis short-term fractal exponent. Boldface is used to highlight p-values < 0.05.

3.3. Analyses of Risk of Incident CVEs
Adjusted for Traditional Risk Factors
The models with each of the fragmentation and traditional
HRV variables were adjusted for standard CV risk factors: age,
sex, systolic blood pressure, total cholesterol, HDL cholesterol,
current smoking status, hypertension medication, diabetes and

lipid lowering medication. In these analyses (Table 2: Model

2), all fragmentation indices remained significantly associated
with incident CVEs. For example, a one-SD increase in PIP

was associated with a 43% (15–78%) increase in the rate of

incident CVEs. In addition, all fragmentation indices, with the
exception of W3 calculated from the RR interval time series,
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FIGURE 3 | Kaplan-Meier survival curves of analyses of incident CVEs (top panels) and CV mortality (bottom panels), showing the percentage of symbolic words with

one inflection point (W1) derived from RR interval time series (left panels), the Framingham (middle panels) and MESA (right panels) CV risk indices. Q1–Q4 indicate

first to fourth quartiles. Note that participants in the highest quartile of the Framingham and MESA risk indices had the worst prognosis and those in the highest

quartile of word class W1 (more fluent, less fragmented) had the best prognosis.

added significant value to the model with only the risk factors.
In contrast, none of the traditional time (AVNN, SDNNIDX,
rMSSD, pNN50) and frequency domain (HF, LF/HF) HRV
variables was significantly associated with incident events. DFA
α1 was also not associated with incident events.

Age and sex were the only covariates significantly associated
with incident CVEs in the adjusted models that included a
fragmentation index. Specifically, for a model with PIP, the
standardized hazard ratios for each of the covariates were: i) age
(SD= 9.1 years), 1.33 (95% CI: 1.03–1.73), p= 0.029; ii) sex, 1.95
(1.15–3.30), p = 0.013; iii) total cholesterol (SD = 36.6mg/dl),
0.91 (0.69–0.21), p = 0.533; iv) HDL (SD = 16.3 mg/dl), 0.87
(0.65–1.14), p = 0.311; v) diabetes, 1.39 (0.78–2.46), p = 0.260;
vi) smoking status, 1.66 (0.74–3.71), p = 0.215; vii) hypertension
medication, 1.02 (0.61–1.71), p = 0.938; viii) systolic blood
pressure (SD = 20.3 mmHg), 1.12 (0.89–1.42), = 0.342; and ix)
lipid lowering medication, 0.97 (0.75–1.25), p = 0.786.

The results did not qualitatively change after further adjusting
the analyses for each of the following variables, singly or
in combination: race, body mass index, waist circumference,
diastolic blood pressure, seated heart rate, use of hypoglycemic
agents, total sleep time, sleep efficiency, the apnea-hypopnea
index, measures of coronary artery calcification (McClelland
et al., 2015) (total Agatston calcium score) and carotid plaque
(Gepner et al., 2015, 2017).

For all sleep stages, including awake during sleep, and awake
before sleep onset and/or sleep termination, the degree of HRF,
measured by PIP, was positively associated with risk of incident

CVEs in fully adjusted models. The levels of significance varied
slightly per stage. Specifically, the standardized hazard ratios
and 95% CI were: REM [1.34 (1.01–1.77)], stage N1 [1.51
(1.13–2.00)], stage N2 [1.36 (1.08–1.70)], and stage N3 [1.55
(0.99–2.43)], awake [1.68 (1.27–2.22)] and awake before sleep
onset and/or sleep termination [1.71 (1.34–2.19)].

3.4. Analyses of Risk of Incident CVEs
Adjusted for the Framingham and MESA
CV Risk Indices
In general, the fragmentation indices remained significantly
associated with the risk of CVEs in models adjusted for
the Framingham and the MESA CV risk indices (Table 3).
Specifically, increased fragmentation, that is, higher PIP, lower
percentages of fluent words W0 and W1, and higher percentages
of fragmented words W2 and W3, were significantly associated
with increased risk of events. Neither the traditional HRV
measures nor DFA α1 showed significant associations with
incident CVEs.

The risk indices in each of these models were also significantly
associated with incident CVEs. Specifically, a one-SD increase in
the Framingham and in the MESA risk indices, was associated
with 80% (95% CI: 43–125%), and 55% (33–81%) increase in
the rate of adverse CVEs, respectively. Harrell’s C statistic was
0.666 and 0.678 for the Framingham and MESA risk indices,
respectively. Overall the best model, with a Harrell’s C statistic
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TABLE 3 | Association of fragmentation, traditional HRV and short-term fractal indices with incident CVEs in models adjusted for the Framingham (model 3) and MESA

(model 4) risk indices.

Model 3 (Framingham) Model 4 (MESA)

Variable HRs (95% CI) C-index Lr-test HRs (95% CI) C-index LR-test

Fragmentation using NN PIP 1.43 (1.16–1.76) 0.698 0.001 1.44 (1.17–1.78) 0.689 0.001

W0 0.78 (0.63–0.96) 0.684 0.022 0.77 (0.62–0.95) 0.670 0.017

W1 0.66 (0.52–0.86) 0.699 0.001 0.64 (0.50–0.83) 0.695 0.001

W2 1.24 (0.99–1.56) 0.677 0.070 1.29 (1.02–1.63) 0.678 0.035

W3 1.27 (1.08–1.50) 0.688 0.011 1.27 (1.07–1.49) 0.680 0.013

Fragmentation using RR PIP 1.44 (1.17–1.77) 0.698 0.001 1.45 (1.18–1.78) 0.689 0.001

W0 0.74 (0.60–0.92) 0.688 0.007 0.74 (0.60–0.91) 0.670 0.006

W1 0.64 (0.49–0.82) 0.707 <0.001 0.61 (0.47–0.80) 0.703 <0.001

W2 1.33 (1.06–1.67) 0.687 0.015 1.40 (1.11–1.76) 0.681 0.006

W3 1.24 (1.05–1.48) 0.681 0.026 1.24 (1.04–1.47) 0.670 0.031

Traditional HRV and short-term fractal AVNN 0.84 (0.67–1.07) 0.671 0.156 0.86 (0.67–1.09) 0.674 0.195

SDNNIDX 0.91 (0.72–1.13) 0.668 0.378 0.89 (0.71–1.11) 0.677 0.311

rMSSD 0.94 (0.75–1.18) 0.667 0.584 0.92 (0.73–1.14) 0.675 0.429

pNN50 0.86 (0.69–1.06) 0.669 0.167 0.84 (0.68–1.04) 0.672 0.121

HF 0.96 (0.77–1.20) 0.668 0.750 0.94 (0.75–1.17) 0.674 0.588

LF/HF 0.87 (0.71–1.11) 0.671 0.296 0.90 (0.72–1.13) 0.681 0.380

DFA α1 0.96 (0.77–1.20) 0.664 0.714 0.99 (0.79–1.23) 0.678 0.899

Model 3: adjusted for the Framingham CV risk index (D’Agostino et al., 2008). Model 4: adjusted for the MESA CV risk index. Values presented are standardized hazard ratios (HRs),

95% confidence intervals (95% CI), Harrell’s C statistics (C-index) and the p-value for the likelihood ratio test (LR-test) of the null hypothesis that the addition of an HR dynamical metric

(fragmentation, traditional HRV or DFA α1 ) to a model with the Framingham or MESA risk indices did not improve the fit of the data. The numbers of participants/events in the analyses of

models 3 and 4 were 1767/72 and 1672/71, respectively. Abbreviations: HRV, heart rate variability; CVE, cardiovascular event; CV, cardiovascular; PIP, percentage of inflection points;

W0, W1, W2, W3, percentage of words with 0, 1, 2, and 3 inflection points; AVNN, average value of the normal-to-normal sinus (NN) intervals; SDNNIDX, mean of the standard deviations

of NN intervals in all 5-min segments; rMSSD, root mean square of the successive differences; pNN50, percentage of differences between successive NN intervals above 50 ms; HF,

high frequency spectral power; LF/HF, ratio of low to high frequency power; DFA α1, detrended fluctuation analysis short-term fractal exponent. Boldface is used to highlight p-values

< 0.05.

of 0.703, was the one that combined the word group W1 derived
from RR intervals, with the MESA risk index.

Models incorporating the Framingham risk index and any
of the fragmentation measures, except W2 derived from the
NN interval time series, performed significantly better than the
Framingham index itself. Similarly, all models that included any
of the fragmentation measures in addition to the MESA risk
index performed significantly better than the MESA index itself.

The traditional HRV variables and α1 were not significantly
associated with risk of incident CVEs either in unadjusted or
adjusted models. Adding one of these indices to a model with a
fragmentation index did not improve its performance.

3.5. Analyses of Risk of CV Death:
Unadjusted and Adjusted for the
Framingham and MESA Risk Indices
Higher PIP and lower percentage of W1 words were significantly
associated with increased risk of CV death in unadjusted analyses
as well as in analyses adjusted for the Framingham and the
MESA CV risk indices (Table 4, Figure 3). Specifically, a one-
SD (∼ 7%) increase in PIP derived from the analysis of NN
interval time series was associated with an increase in the
rate of CV death of 89% (95% CI: 34–168%) in unadjusted
models and of 65% (15–136%) and 67% (19–136%) in models
adjusted for the Framingham and the MESA risk indices,

respectively. A one-SD (∼ 11%) increase in the percentage
of W1 (“fluent” or least fragmented) words, also derived from
the analysis of NN interval time series, was associated with
a decrease in the rate of CV death of 59% (37–75%) in
unadjusted models and of 52% (21–71%) and 55% (25–72%) in
models adjusted for Framingham and the MESA risk indices,
respectively. Similar results were obtained from the analyses
of the RR interval time series. Further adjusting the models
by prevalent CVD did not change the significance of the
associations between the fragmentation metrics and risk of CV
death.

Lower percentages of fluent words W0 were associated
with increased risk of CV death in all models. However,
these associations were weaker than those with word W1.
The percentages of word W2 and W3, the most fragmented,
were positively associated with the risk of CV death in all
models. However, the significance of the associations depended
on the particular model (Table 4). A one-SD increase in the
Framingham (∼9%) and in the MESA risk (∼6%) indices
was associated with 137% (95% CI: 48–278%) and 62% (35–
96%) increase in the rate of CV death, respectively. Harrell’s C
statistic for the former and latter models was 0.749 and 0.797,
respectively. Both variables, PIP andW1, calculated fromNN and
RR interval time series, added significant information to models
with either of these risk indices. The results for word groups
W0, W2, and W3 depended on the particular model. Overall,
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TABLE 4 | Association of fragmentation, traditional HRV and short-term fractal indices with CV death in models adjusted for the Framingham and MESA CV risk indices.

Model 1 (Unadjusted) Model 2 (Framingham) Model 3 (MESA)

Variable HRs (95% CI) C-index HRs (95% CI) C-index LR-test HRs (95% CI) C-index LR-test

Fragmentation using

NN

PIP 1.89 (1.34–2.68) 0.726 1.65 (1.15–2.36) 0.805 0.011 1.67 (1.19–2.36) 0.829 0.007

W0 0.73 (0.49–1.07) 0.583 0.77 (0.52–1.13) 0.771 0.185 0.72 (0.49–1.06) 0.814 0.105

W1 0.41 (0.25–0.67) 0.747 0.48 (0.29–0.79) 0.819 0.003 0.45 (0.28–0.75) 0.829 0.001

W2 1.47 (0.98–2.19) 0.623 1.44 (0.95–2.19) 0.783 0.089 1.52 (0.99–2.33) 0.816 0.062

W3 1.51 (1.18–1.93) 0.704 1.36 (1.04–1.76) 0.782 0.055 1.37 (1.06–1.76) 0.808 0.044

Fragmentation using

RR

PIP 1.87 (1.33–2.63) 0.735 1.63 (1.14–2.34) 0.805 0.013 1.65 (1.17–2.32) 0.832 0.009

W0 0.71 (0.49–1.03) 0.593 0.75 (0.51–1.09) 0.775 0.145 0.71 (0.49–1.03) 0.816 0.085

W1 0.38 (0.23–0.63) 0.762 0.44 (0.26–0.74) 0.827 0.001 0.43 (0.26–0.71) 0.838 0.001

W2 1.65 (1.12–2.43) 0.643 1.66 (1.10–2.50) 0.796 0.019 1.74 (1.15–2.65) 0.813 0.012

W3 1.46 (1.13–1.90) 0.696 1.31 (0.99–1.74) 0.775 0.104 1.32 (1.00–1.74) 0.804 0.086

Traditional HRV and

short-term fractal

AVNN 0.72 (0.46–1.15) 0.565 0.71 (0.45–1.11) 0.768 0.120 0.66 (0.42–1.05) 0.788 0.075

SDNNIDX 0.75 (0.48–1.16) 0.558 0.77 (0.51–1.16) 0.767 0.211 0.75 (0.49–1.15) 0.788 0.184

rMSSD 0.90 (0.58–1.41) 0.536 0.88 (0.58–1.33) 0.756 0.536 0.88 (0.58–1.34) 0.793 0.551

pNN50 0.77 (0.51–1.14) 0.564 0.79 (0.54–1.17) 0.762 0.250 0.77 (0.52–1.14) 0.775 0.202

HF 0.89 (0.57–1.39) 0.522 0.88 (0.59–1.33) 0.755 0.543 0.89 (0.59–1.36) 0.795 0.591

LF/HF 0.71 (0.47–1.08) 0.552 0.77 (0.51–1.16) 0.754 0.219 0.73 (0.49–1.10) 0.778 0.136

DFA α1 0.79 (0.52–1.20) 0.545 0.84 (0.56–1.16) 0.754 0.386 0.81 (0.54–1.20) 0.802 0.294

Model 1: unadjusted. Model 2: adjusted for the Framingham CV risk index (D’Agostino et al., 2008). Model 3: adjusted for the MESA CV risk index. The number of participants/events in

models 1, 2, and 3 was 1963/21, 1958/21, and 1856/21, respectively. Values presented are standardized hazard ratios (HRs ), 95% confidence intervals (95% CI), Harrell’s C statistics

(C-index) and the p-value for the likelihood ratio test (LR-test) of the null hypothesis that the addition of a dynamical measure (fragmentation, traditional HRV or DFA α1 metric) to a

model with one of the risk indices did not improve the fit of the data. Abbreviations: HRV, heart rate variability; CV, cardiovascular; PIP, percentage of inflection points; W0, W1, W2, W3,

percentage of words with 0, 1, 2, and 3 inflection points; AVNN, average value of the normal-to-normal sinus (NN) intervals; SDNNIDX, mean of the standard deviations of NN intervals

in all 5-min segments; rMSSD, root mean square of the successive differences; pNN50, percentage of differences between successive NN intervals above 50 ms; HF, high frequency

spectral power; LF/HF, ratio of low to high frequency power; DFA α1, detrended fluctuation analysis short-term fractal exponent. Boldface is used to highlight p-values < 0.05.

the best model, with a Harrell’s C statistic of 0.838, was the one
that combined the word W1, derived from RR intervals, with the
MESA risk index.

The traditional HRV variables and α1 were not significantly
associated with risk of CV death either in unadjusted or
adjusted models. Adding one of these indices to a model with a
fragmentation index did not improve its performance.

3.6. Relationship of HRF With Short-Term
Traditional HRV Indices
Nonlinear (U-shape) relationships were found between
fragmentation indices and traditional HRV measures of short-
term variability. Figure 4 shows one representative example,
the relationship between PIP and ln(rMSSD). For the first three
quartiles of rMSSD values, (i.e., for rMSSD values below the 75th
percentile of rMSSD, specifically, ln(rMSSD) < 3.7 ms), the
degree of fragmentation and the amount of short-term variability
were inversely correlated. In the upper quartile of rMSSD
values, however, the degree of fragmentation and the amount of
short-term variability were positively associated. Qualitatively
similar results were found for pNN50 and HF power.

4. DISCUSSION

The present investigation was designed to test the association of
quantitative measures of HRF, a newly defined property of short-
term sino-atrial rhythm dynamics, with adverse CV outcomes in
MESA, a large ongoing multicenter study of individuals recruited
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FIGURE 4 | Scatter plot of PIP vs. the natural logarithm of rMSSD. The fitting

line is described by the equation:

PIP = −26.2*ln(rMSSD)+ 3.54*[ln(rMSSD)]2 + 105.3. The 95% CI for the 1st,

2nd and 3rd terms are: (−30.0 − −22.5), (3.03–4.05) and (98.5–112.1),

respectively. PIP, percentage of inflection points; rMSSD, root mean square of

the successive differences.

from the general community. The key findings of this study were
that: (1) increased HRF was significantly associated with risk of
incident CVEs and CV mortality; (2) measures of fragmentation
added value to Framingham and MESA risk prediction indices;
and (3) traditional metrics of short-term HRV as well as a

Frontiers in Physiology | www.frontiersin.org 10 September 2018 | Volume 9 | Article 1117

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Costa et al. Heart Rate Fragmentation and Cardiac Risk

nonlinear index (DFA α1) were not associated with incident
CVEs or CV death.

The development of the concept of fragmentation and its
quantitative metrics was motivated in part by an apparent
paradox in the results of traditional time and frequency domain
analyses of a number of studies (de Bruyne et al., 1999; Stein
et al., 2005; Huikuri and Stein, 2012; Drawz et al., 2013; Costa
et al., 2017a; Raman et al., 2017). While the mechanisms of the
relatively slow (i.e., below the respiratory frequency) variations
in HR are attributable to complex interactions between the
parasympathetic and the sympathetic branches of the autonomic
nervous system, faster variations, in the range of 0.15 −

0.40 Hz, are mainly attributed to vagal tone modulation (HRV,
1996). Therefore, short-term (high frequency) measures of HR
dynamics, such as rMSSD, pNN50, and HF power, are typically
interpreted as surrogate measures of cardiac vagal tone. In
contexts where cardiac vagal tone modulation is known to be
diminished, for example, with advanced aging and established
CVD, these “vagal” measures are expected to be lower. In fact, a
monotonic decrease in high frequency variability with increasing
age has been reported in multiple cross-sectional studies of
ostensibly healthy adults (Pikkujamsa et al., 1999; Bonnemeier
et al., 2003; Costa et al., 2017a). Furthermore, the association
between extremely low variability and adverse outcomes is well-
documented (HRV, 1996; Huikuri and Stein, 2012; O’Neal et al.,
2016).

However, in certain cases (de Bruyne et al., 1999; Stein et al.,
2008; Almeida-Santos et al., 2016; Raman et al., 2017; Wdowczyk
et al., 2018) a paradoxical increase in short-term HR fluctuations
was observed in contexts where reduced vagal tone would have
been expected based on age and/or advanced heart disease. In
the present study, we observed a U-shaped relationship between
traditional short-term HRV measures and cross-sectional age
(Figure 2). From approximately ages 45–65 years the amount
of short-term variability decreased. Subsequently, variability
increased despite the well-known decrease in cardiac vagal tone
modulation with advancing age. These results provide further
evidence that in cohorts of middle-aged to elderly individuals, such
as MESA, traditional HRV indices may fail to reflect accurately
changes in cardiac vagal tone.

We introduced fragmentation analysis to quantify short-term
HR dynamics in such types of cohorts. The term “fragmented
heart rate” refers to rhythms in which HR acceleration sign
changes at a frequency higher than that attributable to healthy
vagal tone modulation of the SAN. These anomalous rhythms
include but are not limited to classic sinus alternans and its
variants. Due to their anti-correlated structure, i.e., the fact that
an increase in HR is likely followed by a decrease and vice-
versa, fragmented sinus rhythms are not random/erratic. In fact,
they exhibit a much higher degree of predictability/regularity
(Figure 1, bottom panels) than random rhythms. The term
“fragmented” was also chosen to help convey the putative
pathophysiologic concept of regulatory network disintegration
and/or breakdown of neuroautonomic coupling between heart
rate and respiration.

An intuitive measure of fragmentation is the percentage
of changes in HR acceleration sign, that is, PIP, in NN

(or RR) time series. Most recently, a symbolic dynamical
approach was introduced (Costa et al., 2017b) that quantifies
the frequency of occurrence of different patterns of fluctuations,
from least fragmented (most fluent) to most fragmented. These
fragmentation indices were originally tested in studies of publicly
available databases from the Rochester THEW archives. Of note,
if the amplitude of the fluctuations is low (e.g., . 80 ms),
fragmentation is unlikely to be detected in clinical readings
of short (typically 10 s) and long (Holter) ECG recordings.
However, as shown in Figure 1, visual detection of HRF is
facilitated by inspection of HR time series.

The origins of HRF remain speculative. Possible
pathophysiologic mechanisms include increased automaticity
in or proximal to the SAN, exit block in the SAN area,
modulated sinus/atrial parasystole, abrupt pacemaker shifts
in the SAN (Boyett et al., 2000; Kodama et al., 2004),
beat-to-beat changes due to perturbations in atrial stretch
receptors (Costa et al., 2017a,b) or alterations in membrane
and cellular pacemaker clocks (Lakatta et al., 2010). These
electrophysiologic perturbations, in turn, may be related to
underlying atrial (Sosnowski and Petelenz, 1995; Roberts-
Thomson et al., 2007; Goette et al., 2017) or ventricular
disease. Systemic and local factors that may also contribute
to pathophysiologic dysregulation of SAN dynamics include
inflammation, degeneration, fibrosis and calcification (Costa
et al., 2017a). Future experimental and mathematical modeling
studies will hopefully shed light on the putative links between
these and other mechanisms and fragmentation. Possible
genomic associations with HRF remain to be explored.

Based on the analyses of the THEW databases (Costa et al.,
2017a,b), we hypothesized that increased HRF might be a
biomarker of increased risk of incident CVEs and CV death.
To explore these hypotheses, we analyzed HR dynamics from
a subset of the participants in the MESA. This national study
is one of the largest prospective investigations designed to
track meticulously the course of CVD in an ethnically diverse
population free of overt clinical CVD at study entry. Two types
of ECG recordings with detailed follow-up data were available
at the time of this analysis: traditional 10-s ECGs and the ECG
channel of the PSG studies. We chose to examine the latter
given the non-stationary nature of HR dynamics, [which implies
that statistical time series analysis tools are most reliable when
applied to “long” recordings (HRV, 1996)], and the fact that
previous studies (Costa et al., 2017a,b) have shown that the
discriminatory power of HRF was generally comparable during
awake and sleep periods. In MESA, we confirmed and extended
this initial observation. Specifically, we found that the positive
association between HRF and incident CVEs (in fully adjusted
analyses) could be detected for each of the sleep stages and for
awake periods before sleep onset and/or after sleep termination.

A concomitant finding was the absence of associations
between the most commonly used traditional short-term HRV
measures and incident CVEs and CV death, in unadjusted and
adjusted models. These results are not as surprising as they might
appear at first glance. First, the U-shaped relationship between
traditional short-term HRV measures and the participants’ age
(Figure 2) was indicative that such measures would be of limited
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utility in this cohort. Second, as previouslymentioned, traditional
measures of HRV, in contrast to fragmentation measures,
also failed to discriminate patients with CAD from ostensibly
healthy subjects in databases provided by the University of
Rochester (Costa et al., 2017a,b). Third, HRF, by increasing
variability not ascribable to physiologic vagal tone modulation
may confound the results of traditional HRV. The nonlinear
(U-shaped) relationship between HRF and short-term variability
(Figure 4) supports this conjecture. In fact, the subgroups of
participants with the lowest and highest amounts of variability,
which, in the conventional HRV framework, would be presumed
to have the highest and lowest risk of adverse events, respectively,
both showed increased HRF. These findings are consistent with
the reports of Stein et al. (Stein, 2002; Stein et al., 2008) and
others (de Bruyne et al., 1999; Huikuri and Stein, 2012; Drawz
et al., 2013).

Of note, fragmentation and traditional HRV indices differ
in the following major way. By construction, fragmentation
indices do not mathematically depend on mean HR and/or
the amplitude of its fluctuations. These salient attributes derive
from the fact that accelerations/decelerations are defined as
increments/decrements in HR of any magnitude. In contrast,
by definition, short-term HRV indices quantify information that
is encoded in the amplitude of the fluctuations. As previously
mentioned rMSSD, pNN50, and HF power were not associated
with risk of incident CVEs and CV mortality. The other widely
used HRV metrics, AVNN, SDNNIDX, and LF/HF were also
not associated with risk of incident CVEs and CV mortality.
Furthermore, none of the traditional indices improved the
performance of models that included a fragmentation index.

In this study the short-termDFA index, α1, decreased with the
participants’ age. In addition, α1 was lower in those with adverse
events (incident CVEs and CV death) than in those without.
However, the associations were not statistically significant in any
of the models.

Of potential basic and translational importance is the fact
that we used both the NN and RR time series in fragmentation
analyses. The NN series were employed using expert edited time
series from THEW and MESA to insure that the fragmentation
was likely related to beats originating in or near to SAN, therefore
not distinguishable from sinus beats, at least from the single lead
provided. The RR time series were used to demonstrate that
fragmentation analysis, not relying on detailed beat annotation,
had comparable (or even superior) discriminatory power to
that employing NN time series, substantially facilitating the
development of automatable analyses.

Finally, it is worth emphasizing that the Framingham
and the MESA indices are composite measures incorporating
information related to demographics (age, sex, race), lifestyle
(smoking status), vital signs (blood pressure) and blood
analytes (lipids, glucose). In contrast, each HRF index is a
dynamical measure reflecting the frequency of the changes in
HR acceleration sign. How can such a single metric based on
a continuous ECG keep “pace” with these other multivariable
risk stratification tools? The answer may relate in part to
the fact that HRF indices are dynamical measures, not static
probes. In contrast, blood pressure, cholesterol, glucose and other

common biomarkers are single time point readouts (“snapshot”).
Thus, they provide limited information on the dynamics of the
underlying control mechanisms.

More generally, HRF metrics belong to the new class of
dynamical probes (Cysarz et al., 2000; Goldberger, 2006; Costa
et al., 2014; Porta et al., 2015; Makowiec et al., 2015; Hoyer et al.,
2017; Zhang et al., 2017) that can report, in real-time, on salient
aspects of integrative, multiscale, regulatory systems and of their
breakdown with aging and disease. The use of these probes
may enhance the clinical utility of traditional risk assessment
tools (Tables 3, 4) and of other emerging technologies, such
as genomic profiling. In furtherance of the goals of precision
medicine, the dynamical property of HRF may also constitute a
novel “target” for therapeutic interventions.

5. CONCLUSION

HRF, a newly defined manifestation of anomalous short-
term sino-atrial variability, is associated with increased risk of
cardiac adverse events and cardiac mortality in MESA. The
measures, readily computable from long, continuous ECGs,
added value to the canonical Framingham and MESA CV risk
indices. Furthermore, fragmentation measures outperformed
conventional HRV measures and the short-term DFA α1 index.
Future studies are needed to confirm the utility of HRF measures
in risk stratification, and in prediction of cardiomyopathies and
atrial fibrillation.
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