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Abstract. We studied the distribution of the 0/1-0/6 
subunits of BI integrins in developing and adult human 
kidney using a panel of mAbs in indirect immuno- 
fluorescence microscopy. 

Uninduced mesenchyme displayed a diffuse im- 
munoreactivity for only the 0/1 integrin subunit. At the 
S-shaped body stage of nephron development, several 
of the 0/subunits were characteristically expressed in 
distinct fetal nephron segments, and the pattern was 
retained also in the adult nephron. Thus, the 0/i 
subunit was characteristically expressed in mesangial 
and endothelial cells, the 0/2 in glomerular en- 
dothelium and distal tubules, the 0/3 in podocytes, 
Bowman's capsule, and distal tubules, and the 0/6 
subunit basally in all tubules, and only transiently in 
podocytes during development. Unlike the 0/3 and or6 

subunits, the t~2 subunit displayed an overall cell sur- 
face distribution in distal tubules. It was also distinctly 
expressed in glomerular endothelia during glomerulo- 
genesis. The B4 subunit was expressed only in fetal 
collecting ducts, and hence the 0/6 subunit seems to be 
complexed with the B1 rather than f14 subunit in human 
kidney. Of the two fibronectin receptor 0/subunits, 0/4 
and 0/5, only the latter was expressed, confined to en- 
dothelia of developing and adult blood vessels, sug- 
gesting that these receptor complexes play a minor 
role during nephrogenesis. 

The present results suggest that distinct integrins 
play a role during differentiation of specific nephron 
segments. They also indicate that 0/3fll and otd31 inte- 
grin complexes may function as basement membrane 
receptors in podocytes and tubular epithelial cells. 

T 
HE interactions of cells with the extraceUular matrix 
(ECM) 1 have raised considerable attention in the con- 
text of cell differentiation and tissue morphogenesis 

(Hay, 1983; Ekblom et al., 1986; Ekblom, 1989; Sanes, 
1989). The expression of ECM proteins is under temporal 
and spatial control during development: for instance, distinct 
changes in the expression of fibronectins (Ekblom, 1981), in- 
terstitial collagens (Ekblom et al., 1981a) and basement 
membrane (BM) constituents (Ekblom et al., 1980; Ekblom, 
1981; Ekblom et al., 1990) appear to accompany nephrogen- 
esis. Such changes undoubtedly contribute to the mecha- 
nisms of orchestration of cell behavior during development. 

Various ECM proteins appear to exert their influence by 
interacting with distinct cell surface receptors, called inte- 
grins (reviewed by Hynes, 1987; Ruoslahti and Giancotti, 
1989). Until recently, in mammalian cells the integrin pro- 
tein family has been divided into three subfamilies that each 
share a common fl subunit. Recent findings, however, have 
revealed a more complex picture (Ruoslahti and Giancotti, 
1989). Six different ~ subunits have thus far been shown to 
form complexes with the fll subunit (see Table I). Together, 

1. Abbreviations used in this paper: BM, basement membrane; ECM, ex- 
tracellular matrix; GBM, glomerular basement membrane; PTA, Psopho- 
carpus tetragonolobus agglutinin; I"1-I, Tamm-HorsfaU protein. 

the various integrins enable cells to recognize a multitude of 
extracellular matrix proteins. 

Thus far, knowledge of the functions of integrins has accu- 
mulated mainly on the basis of cell culture studies and little 
is known about their functions in tissues. Studies on both the 
avian CSAT antigen, corresponding to mammalian fll inte- 
grins (Hynes et al., 1989), as well as on mammalian in- 
tegrins, have revealed that they may function in cell migra- 
tion and neurite outgrowth (Bronner-Fraser, 1985, 1986; 
Krotoski et al., 1986; Hall et al., 1987), stabilization of tis- 
sue organization (Duband et al., 1986; Chen et al., 1986), 
transduction of differentiation signals (Menko and Boettiger, 
1987; Adams and Watt, 1989; Hedin et al., 1989), and orga- 
nization of the ECM (Giancotti and Ruoslahti, 1990). 

Nephrogenesis (see Saxtn, 1987; Bacallao and Fine, 
1989) provides a good tissue model to study the functions 
of integrins. The primary vesicle is formed by induction 
from an apparently homogenous cell mass, the metanephric 
mesenchyme. It then differentiates into a mature nephron via 
the comma-shaped, S-shaped body, and capillary loop stages. 
These events present several cytodifferentiation models, and 
several modes of cell-matrix interactions for study. 

The distribution of the fit integrin subunit in kidneys of 
various species has been considered in a few earlier studies 
(de Strooper et al., 1989; Fujimoto and Singer, 1988; Ker- 
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Table L ~ Integrin-related Complexes and Their Ligands 

Receptor Suggested ligands References 

cq/3~ Collagen IV (+I)  Kramer and Marks, 1989 
~d3t Collagens, larninin Wayner and Caner,  1987; 

Languino et al., 1989 
Cell-cell Larjava et al., 1990 

~3~ Laminin, fibronectin, Wayner and Caner, 1987; 
and collagens I + VI Gehlsen et al., 1989 

Cell-cell Larjava et al., 1990 
c~4~ Fibronectin Wayner et ai., 1989 

Lymphocyte homing Holzmann et al., 1989 
C~p Lymphocyte homing Holzmarm and Weissrnan, 1989 
u5/3~ Fibronectin Pytela et al., 1985 
~¢flt Laminin Sormenberg et al., 1988 
O~6~ 4 9 Hemler et al., 1989; 

Kajiji et al., 1989 
~7/~, Laminin Kramer et al., 1989 

jaschki et al., 1989). We have recently shown by immuno- 
histochemistry that during nephrogenesis/~ integrins be- 
come distinctly polarized both in glomerular endothelial 
cells and podocytes, as well as in proximal tubular epithelial 
cells (Korhonen et al., 1990). Furthermore, the basal organi- 
zation of/~ integrins appeared to take place concomitantly 
to the reorganization of talin, a cytoskeletal protein associ- 
ated with the cytoplasmic aspect of the cell surface mem- 
brane. 

Here we have further characterized the role of/~1 inte- 
grins in the formation and maintenance of tissue organization 
in human kidney by studying the distribution of the ~ - ~ 6  
integrin subunits in developing and adult human kidney. The 
results suggest that distinct integrins play a segment-specific 
role during the maturation of the nephron. They also suggest 
that cells use different integrins as BM receptors. 

Materials and Methods 

Tissues 
Adult human kidney samples (n = 20) were obtained from the clinically 
normal part of kidneys removed for renal cancer at the Jorvi Hospital (Es- 
poo, Finland), The fetal kidneys (n = 4) were obtained from fetuses legally 
aborted at 14-20 wk of gestation, due to severe maternal or fetal complica- 
tions, at the Department of Obstetrics and Gynecology (University Central 
Hospital, Helsinki). The tissues were immediately frozen in melting freon, 
cooled in liquid nitrogen, or directly in liquid nitrogen, and stored at -70"C 
until used. 

Antibodies 
The following mAbs against integrin subunits were used: the mAb 102DF5, 
recognizing the/~1 (Yliinne and Virtanen, 1989); the mAb $3-41, recogniz- 
ing the ~a (Kajiji et al., 1987); the mAb TS2/7, recognizing the - t  (Hemler 
et al., 1984); the rnAb CLB-10Gll, recognizing the ~2 (Giltay et al., 
1989); the mAb J143, recognizing the ¢3 (Fradet et al., 1984; Hemler et 
ai., 1987a); the mAb B-SG10, recognizing the ~4 (Hemler et al., 1987b); 
the mAb BIE5, recognizing the c~5 (Werb et al., 1989); and the n'tAb 
GoH3, recognizing the tx6 integrin subunit (Sounenberg et ai., 1987). 
These mAbs will be referred to in the text as anti-Bl and -~4, as well as 
anti-txl to -ct6, respectively. Anti-Bl, -~xs, and -tx6 mAbs were used as cul- 
ture supernatants of the respective bybridomas, while anti-B4, -txl, -ct2, 
-ct3, and -o.4 were used as diluted ascites fluid. Anti-us and -tx6 are rat, and 
the rest mouse mAbs. 

In double-immunoituorescence labeling experiments FITC-coupled Pso- 
phocarpus tetragonolobus agglutinin (PTA; Sigma Chemical Co., St. Louis, 

MO) was used to visualize endothelia (Laitinen et al., 1990). Rabbit anti- 
collagen IV serum and rabbit anti-lamiuin serum (Liesi et ai., 1983) were 
used to visualize BMs in double immunostaining experiments. Rabbit 
anti-'lhmm-Horsfall protein (anti-TH) serum (Ekblom et al., 1981b), was 
used in double-labeling experiments to identify ascending limbs of Henle's 
loops and distal tubules. 

Indirect Immunofluorescence Technique 
Frozen sections (cut at 5 t~m) were fixed in acetone, cooled to -20°C for 
5 min. Then, they were incubated with the mAbs for 30 min, and subse- 
quently with TRITC-coupled sheep anti-mouse IgG serum (Cappel, Orga- 
non Teknika Corp., West Chester, PA) or FITC-coupled goat anti-rat IgG 
serum (Cappel) for 30 rain. In double-labeling experiments the sections 
were further incubated with polyclonal rabbit antiserum for 30 rain, fol- 
lowed by FITC-coupled sheep anti-rabbit IgO serum (Cappel Laboratories) 
for another 30 min, or were exposed to the labeled lectins for 30 min. The 
fluorochrome-coupled second antibodies did not give any reaction when ap- 
plied alone on the specimens. In immunostainings the sections were mounted 
in sodium veronal-glycerol buffer (1:1; pH 8.4). In lectin double-labeling ex- 
periments the specimens were embedded in Mowiol (Merck Ag., Darm- 
stadt, FRG). A Leitz Aristoplan microscope, equipped with appropriate 
filters and phase-contrast optics was used to examine the specimens. In dou- 
ble exposures of double immunostainings, the same negative was exposed 
twice, first using FITC and then TRITC filters. 

Results 

~1 Integrin Subunit Was Expressed in Undifferentiated 
Mesenchyme, and Mesangial and Endothelial Cells 
In the fetal kidney, anti-~l (mAb TS2/7) reacted with undif- 
ferentiated mesenchyme. The induced, condensing mesen- 
chyme lacked this reactivity, and primary vesicles were like- 
wise negative. In S-shaped body structures, only the invading 
cells within the glomerular cleft, which are thought to con- 
sist of mesangial and endothelial cells (see Saxtn, 1987), 
reacted (Fig. 1, a and b; double immunostaining with anti- 
laminin serum). Mesenchymally confined immunoreactivity 
was seen in the interstitium (Fig. 1, a and c). In capillary 
loop stage glomeruli, o~t immunoreactivity was confined to 
the mesangial area (Fig. 1, c and d; double immunostaining 
with anti-laminin serum). This pattern continued through- 
out glomerulogenesis, and in the adult nephron, prominent 
o~1 immunoreactivity was seen in mesangial cells, while en- 
dothelial cells reacted more weakly (Fig. 1, e and f; double 
labeling with FITC-PTA). Anti-ot~ also reacted faintly with 
intertubular tissue, including the capillaries, as well as with 
walls and endothelia of arteries (not shown). 

~2 Integrin Subunit Characterized Glomerular 
Endothelial and Distal Tubular Epithelial Cells 

In the fetal kidney, anti-or2 (mAb CLB-10Gll) reacted with 
the branching cortical, but not the medullary collecting 
ducts, and failed to react with undifferentiated cells, con- 
densing mesenchyme, and primary vesicles. In early capil- 
lary loop stage glomeruli, immunoreactivity was detected in 
glomerular endothelial cells (Fig. 2, a and b; double immu- 
nostaining with anti-laminin serum). 

At the S-shaped body stage, but more prominently in early 
capillary loop stage nephrons, anti-ot~ revealed an overall 
cell surface reactivity in the forming distal tubules (Fig. 2 
a). In the subcortical parts of developing kidneys, o~2 im- 
munoreactivity (Fig. 2 c) largely coincided with that of 
anti-TH serum (Fig. 2 d), used to reveal distal tubules. In 
adult tubules, anti-ol2 (Fig. 2 e) revealed an overall cell sur- 
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Figure I. Localization of the cq subunit in 16-wk fetal (a-d) and adult (e and f )  kidneys. (a and b) Anti-or1 (a) reacts with invading cells 
(arrow) within the glomerular crevice of the S-shaped body. Double immunostaining with anti-laminin serum (b) to reveal BMs. (c and 
d) In capillary loop stage glomeruli, anti-O~l (C) r~/~ls immunoreactivity in the mesangial area (arrow). (d) Double immunostaining with 
anti-laminin serum. (e and f )  In adult glomeruli, anti-,l (e) reacts prominently with mesangial areas (arrow), and more weakly with en- 
dotbelia (open arrow). Double labeling using F1TC-PTA (f) to reveal glomerular and intertubular endothelia. Note the diffuse mesenchymal 
immunoreactivity in the fetal sections (a and c, open arrows), and the weak intertubular immunoreactivity in the adult (e). Bars, 50 #m. 

face immunoreactivity in certain tubular segments, prin- 
cipally coinciding with that obtained with anti-TH (Pig. 2f) .  
This, together with morphological criteria, suggests that in 
the adult the o~2 integrin subunit is expressed in distal tu- 
bules and collecting ducts. 

In adult glomeruli, anti-or2 (Fig. 2 g) reacted very weakly, 
codistributing with FITC-PTA binding (Fig. 2 h), which was 
used to reveal endothelia. However, immunoelectron mi- 
croscopy is needed in order to ascertain whether the ct2 
subunit is confined to endothelial cells, which was more 

prominently seen in fetal samples. Furthermore, endothelia 
of arteries, but not of intertubular capillaries, reacted with 
anti-.~ in adult kidney (not shown). 

as Integrin Subunit Was Expressed in Podocytes, 
Bowman's Capsule, and the Distal Tubule 

Anti-or3 (mAb J143) revealed no reactivity in undiiferenti- 
ated or condensed mesenchyme, nor in fetal collecting ducts 
or primary vesicles. At the early S-shaped body stage, how- 
ever, the presumptive glomerular podocytes, as well as the 
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Figure 2. Localization of the a2 subunit in 16-wk fetal (a--d) and adult (e-h) kidneys. (a and b) In an early capillary loop stage nephron, 
anti-c~2 (a) reacts with glomerular endothelia (double arrow) and the cells of the distal tubule anlage (arrow), whereas the cells of the de- 
veloping proximal tubule (P) and future Bowman's capsule (open arrow) are negative. (b) Double immunostaining with anti-laminin serum, 
revealing BMs. (c-f) Anti-c~2 reacts with distal tubules in the medullary region of a 16-wk fetal kidney (c) and of adult kidney cortex (e). 
The larger tubules that react in e (arrow) are collecting ducts. Double immunostainings with anti-TH (d and f )  to reveal distal tubules. 
(g and h) In adult glomeruli, anti-c~2 (g, arrows) appears to colocalize with FITC-PTA (h) reactivity, used to reveal endothelia. Bars: (a-e) 
50 ~m; (g) 25/zm. 

cells of  the future Bowman's capsule, displayed cell mem- 
brane-confined anti-o~3 immunoreactivity (Fig. 3 a). In more 
mature S-shaped bodies, the reactivity was stronger and 
somewhat polarized along the glomerular basement mem- 

brane (GBM; Fig. 3, b and c; double immunostaining with 
anti-laminin serum). Polarization was even more marked in 
capillary loop stage glomeruli (Fig. 3 d; Fig. 3 e shows the 
corresponding phase-contrast view). In the adult kidney, 
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Figure 3. Localization of the c~3 subunit in 16-wk fetal (a-e) and adult (f), and of the ~5 subunit in 16-wk fetal (g) kidneys. (a) Nonpo- 
larized anti-or3 immunoreactivity is seen in presumptive podocytes (arrow) and Bowman's capsule cells (open arrow) in the early S-shaped 
body. (b and c) In an S-shaped body, anti-a3 (b) reveals a beginning polarization of the a3 subunit along the GBM in podocytes (arrow) 
as well as along the capsular BM in future Bowman's capsule cells (open arrow). Proximal and distal tubule anlagen are negative. Double 
immunostaining with anti-laminin serum (c) to reveal BMs. (d and e) In a capillary loop stage glomerulus, anti-,3 reacts with podocytes 
(d and e, arrows) and cells of Bowman's capsule (d and e, open arrows). The corresponding phase-contrast view (e) reveals that the reactivity 
is confined to those parts of the podocyte cell membranes that abut the GBM (arrows). (f)  In adult kidneys anti-e3 reacts basally with 
distal tubules (arrow), in addition to reacting brightly along GBMs. (g) Anti-cx5 reacts with endothelia of larger blood vessels (arrow- 
head), and weakly with those of glomerular capillaries (arrow) in 16-wk fetal kidney. Bars, 50 #m. 

anti-or3 (Fig. 3 f )  reacted basally with distal tubular epithe- 
lial cells, and distinctly with glomeruli, including Bowman's 
capsule. Corresponding tubular reactivity was not detected 
in 16-wk fetal distal tubules. Anti-or3 reacted also with the 
walls of adult arteries (not shown). To study closer the nature 

of the anti-a3 immunoreactivity in adult glomeruli, several 
double-labeling experiments were done. Anti-u3 revealed 
single prominent lines of immunoreactivity, that surrounded 
the GBM loops revealed with anti-collagen IV serum (Fig. 
4), or anti-laminin serum (not shown), or endothelial capil- 
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Figure 4. Double immunostaining of an adult glomerulus 
with anti-c~3 (red immunofluorescenc¢) and anti-colla- 
ben IV serum (green immunoflunrescenee). The lines of 
anti-a3 immunoreactivity (arrowhead) surround the 
GBM loops revealed by anti-collaben IV serum (arrow), 
suggesting that the ~3 subtmit is expressed by podocytes. 
Bar, 25 t~m. 

lary loops revealed with FITC-PTA (not shown). Thus, the 
c~3 subunit appears to be confined to the podocyte mem- 
branes abutting the GBM. 

The FIbronectin Receptors, ~, and as Integrins, Were 
Almost Completely Lacking in Kidney 1issue 
Anti-or4 (mAb B-5G10) failed to react with fetal and adult 
kidney tissue (not shown). Anti-,~ (mAb B1E5) reacted weak- 
ly with endothelia of arteries and of glomerular and inter- 
tubular capillaries both in developing (Fig. 3 g) and adult 
(not shown) kidneys. 

~, Integrin Subunit Was BasaUy Polarized 
in All Tubular Epithelial Cells and Transiently 
Expressed in Podocytes 
Anti-or6 (mAb GoH3) revealed a prominent immunoreac- 
tivity along the BMs of the branching collecting duct, but 
none was seen in uninduced mesenchyme. In primary vesi- 
cles, anti-ot~ (Fig. 5 a) revealed a line of basally polarized 
immunoreactivity, following the BM revealed with anti- 
laminin serum (Fig. 5 b). Furthermore, overall cell surface 
immunoreactivity for the o~6 subunit was detected in the 
cells in the glomerular pole of the vesicles (Fig. 5 a). How- 
ever, no immunoreactivity for laminin was detected in this 
location. In S-shaped bodies, anti-c~6 reacted only weakly 
along the BM of Bowman's capsule, but revealed distinct im- 
munoreactivity along the BMs of the developing proximal 
and distal tubules (Fig. 5 c). 

In comma-shaped bodies, the future podocytes displayed 
a faint overall cell surface immunoreactivity for the ore sub- 
unit (not shown). With further development, a somewhat 
polarized reactivity was detected along the GBM (Fig. 5 c), 
possibly localizing both to endothelial cells and podocytes. 
At the capillary loop stage, anti-o~ (Fig. 5 d) reacted weak- 
ly along the GBM, revealed by anti-larninin immunostaining 
(Fig. 5 e), and very weakly along the BM of Bowman's cap- 
sule. In all adult tubules, a distinct basally confined anti-or6 
reactivity was detected (Fig. 5 f ) .  Furthermore, anti-c~6 react- 

ed weakly with endothelia of arteries and of intertubular and 
glomerular capillaries (Fig. 5 f ) .  

As the o~ integrin subunit has been reported to be com- 
plexed with the/34 subunit in some tissues (Hemler et al., 
1989; Kajiji et al., 1989), we also studied the distribution of 
the 84 subunit by using the mAb $3-41. Anti-/34 reacted 
only with the collecting duct in fetal samples (Fig. 5 g), but 
revealed no immunoreactivity in adult kidneys. It also react- 
ed with endothelia of larger blood vessels. These results sug- 
gest that the c~6 subunit is mainly complexed with the/~ in- 
stead of the/34 subunit in the human kidney. 

Discussion 

Knowledge of the tissue distribution of the individual/~ 
integrins by use of ¢x subunit-specific mAbs, and inferences 
on their functions in vivo are still fragmentary. In this study 
we have characterized the distribution of the c~ subunits of 
the/3~ integrin family in kidney, and show that during de- 
velopment their expression characteristically emerges in dis- 
tinct nephron segments. 

In previous studies, the localization of the ct subunits of 
/~l integrins in a given tissue has usually been taken to im- 
ply the presence of c~/~ heterodimers. Provided that the possi- 
bility of c~ subunits complexing with more than one type of 
/~ subunit (Hemler et al., 1989; Holzmann and Weissman, 
1989; Ruoslahti and Giancotti, 1989) is taken into account, 
we feel that such an assumption is justified. The inference 
that heterodimers, and not single subunits, are indeed being 
detected is supported by observations that uncomplexed c~ or 
/~ subunits do not reach the cell surface but are degraded in 
the cytoplasm (Springer et al., 1987; Heino et al., 1989; 
Rosa and McEver, 1989). 

The l~bronectin Receptors, ~43z and 
~ 1  Integrin Complexes, Play a Minor Role in 
Kidney Morphogenesis 
Fibronectin has been implicated in several aspects of tissue 
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morphogenesis (Boucaut et al., 1984a, b; Ruoslahti, 1988; 
Rogers et al., 1989), and the fibronectin receptor O~5~1 
complex has been widely studied as a "prototype " of inte- 
grins. Fibronectin is present in the basement membranes of 
the developing nephron, but disappears during development, 
although it is present throughout intertubular tissue in adult 
kidney (Vartio et al., 1987). In our study, however, the o ~  
integrin was detected only in endothelia, and the o.,#~ com- 
plex, which has been suggested to bind the alternative cell- 
binding (CS-1) segment of fibronectin COdayner et al., 1989), 
was not detected at all. Nor did the a~/~ integrin eolocalize 
with fibronectin. Thus, none of the fibronectin-binding inte- 
grins seemed to consistently codistribute with their ligand in 
kidney, although such an association has been suggested for 
some other developing tissues (Chen et al., 1986; Duband 
et al., 1986). 

The ~zf3~, aj#l, and ~d31 Integrin Complexes Are 
Involved in Glomerulogenesis 
Here we found that the O~2~1, O[3~1, and otd~ integrins are 
expressed in characteristic glomerular cell types during 
nephrogenesis. This, and the transient expression of the 
o~d~ integrin in podocytes during the early stages of glo- 
merulogenesis, suggest that these complexes may play a part 
in nephrogenesis. In our earlier work, using mAbs to the iff~ 
subunit, we found pairs of distinct lines of immtmoreactivity, 
one on each side of the GBM in the adult kidney (Korhonen 
et al., 1990). The present results suggest that the outermost 
lines may correspond to the o~/~ complexes of podocytes. 
However, immunoelectron microscopy is needed to confirm 
its localization to podocytes. During development, the a2/3~ 
complex appeared to be the dominant endothelial integrin, 
while in the adult, no prevalent immunoreactivity for the var- 
ious a subunits could be distinguished in endothelia. At the 
light microscopic level, all the anti-~, -c~2, -a3, -~,  and -c~ 
integrin subunit mAbs appeared to reveal weak immunore- 
activity in adult glomerular endothelia. 

The ¢d3z Integrin Is Seen in All Tubules, 
and the ~zf3z and ,~f3~ Complexes Are Expressed 
in the l~'stal Tubule 
The a2/~m, a3/~, and a6/~ integrin complexes were also de- 
tected at specific locations in kidney tubules. The strict basal 
confinement of the O[3~1 and o ~  complexes is most proba- 
bly due to receptor-ligand interaction. It is in some contrast 
to the usual basolaterai distribution of many integral mem- 
brane proteins of polarized epithelial cells (Gumbiner and 
Louvard, 1985). Interestingly, Na/K-ATPase is excluded 
from regions where the plasma membrane of tubular epithe- 
lial ceils and the BM are opposed (Kashgarian et al., 1985; 
Morrow et al., 1989). Thus, the BM-associated atB~ inte- 
grin complexes may mark a microdomain where the Na/K- 
ATPase is absent. 

In contrast to the polarized expression of the ot3/~ and 
o~d$~ integrins, the a2 subunit showed an overall cell surface 
distribution in the distal tubule and collecting ducts. Earlier, 
we have reported the overall cell surface distribution of the 
~ subunit in distal tubules (Korhonen et al., 1990). Ac- 
cording to a recent report, the a2~ complex may function 
in cell-cell interactions in cultured keratinocytes (Larjava et 

al., 1990); this activity would also explain its distribution in 
the distal tubule. 

The ~J#l and ~d31 Integrin Complexes May Function 
as BM Receptors 
The strict basal confinement of the ~3~ and ~ com- 
plexes suggests that these two different integrins may be used 
as BM receptors in the human kidney. The need for different 
receptors may arise from differences in BM structure in vari- 
ous locations. Alternatively, various integrins could bind to 
similar BM structures, but mediate different functions such 
as different cytoskeletal organization in the ceils. Indeed, 
heterogeneity of BM composition in kidneys has been re- 
ported (Horikoshi et al., 1988; Desjardins and Bendayan, 
1989; Abrahamson et al., 1989; Ekblom et al., 1990; Hunt- 
er et al., 1989). 

A variety of receptors with affinity for laminin have been 
described, and the laminin molecule has several domains 
that may interact with receptors (see Beck et al., 1990). Pos- 
sibly several laminin receptors are functional during nephro- 
genesis. In addition to integrins, the 67-kD laminin receptor 
has been studied in this context (Laurie et al., 1989), but dif- 
ferent nephron segments were not identified. The carboxy- 
terminal part of the laminln A chain has been suggested to 
play a role in the morphogenesis of the tubular epithelium 
of the kidney, and the expression of this chain during devel- 
opment coincides with the onset of tubular morphogenesis 
(Klein et al., 1988; Ekblom, 1989; Ekblom et al., 1990). 
The carboxy-terminal end of the laminin molecule has been 
reported to be preferentially directed towards the epithelial 
cell surface in some BMs, including the proximal tubule 
(Schittny et al., 1988; Abrahamson et al., 1989), and fur- 
thermore, the ~d3, integrin was recently shown to bind to 
the E8 fragment of laminin (Aumailley et al., 1990). In this 
respect it is of interest that the cttfl~ integrin is coexpressed 
with laminin A chain by tubular epithelial cells, and that the 
transient expression of the o~6 subunit by podocytes coin- 
cides with that of laminin A chain (this study; Ekblom et al., 
1990). The ¢6~m complex is thus a good candidate for me- 
diating the tubulogenic activity of laminin. 

It is possible that the expression of various integrin recep- 
tors reflects the lines of differentiation of the cells. ~cently, 
I.anguino et al. (1989) suggested that cell type-specific fac- 
tors can modulate the ligand specificity of the ct2~ complex 
in endothelial cells to include laminin. It would be interest- 
ing to know whether this receptor plays a role in mediating 
the putative angiogenic influence of laminin (Grant et al., 
1989) during the morphogenesis of glomerular capillaries. 

During tissue morphogenesis, the adhesive interactions of 
cells with each other and with the ECM are thought to play 
a crucial role (Hay, 1983; Ekblom et al., 1986). During 
nephrogenic differentiation the various nephron segments 
with their distinct cell types and properties arise from an ap- 
parently homogenous mesenchymal cell mass. Several classes 
of molecules have been studied in this context: ECM proteins 
such as fibronectin (Ekblom, 1981), tenascin (Aufderheide 
et al., 1987), collagens (Ekblom et al., 1981a), and laminin 
(Ekblom et al., 1980; Klein et al., 1988; Laurie et al., 1989; 
Ekblom et al., 1990), the ganglioside GD3 (Sariola et al., 
1988), as well as some cell surface receptors such as uvo- 
morulin (Vestweber et al., 1985), syndecan (Vainio et al., 
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Figure 5. (a and b) Anti-c~6 reacts with the cells of the collecting duct (open arrow), and with the primary vesicle in a basally polarized 
manner (arrowhead) in 16-wk fetal kidney. It also reveals cell surface immunoreactivity in the distal pole of the vesicle, where the glomeru- 
lax invagination forms during further development (arrow). Double immunostaining with anti-laminin serum (b) reveals basement mem- 
branes, and also that laminin does not colocalize with c~6 immunoreactivity in the cells of the distal pole of the vesicle. (c) In an early 

The Journal of Cell Biology, Volume 111, 1990 1252 



1989), N- and P-cadherins (Takeichi, 1988), and the 67-kD 
laminin receptor (Laurie et al., 1989). The precise coordina- 
tion of these interactions is instrumental in the morphogene- 
sis of the kidney. The/~1 integrins provide an example of 
molecules involved in cell-ECM interactions displaying seg- 
ment-specific expression. They may therefore play an impor- 
tant role in guiding the differentiation of distinct nephron 
segments. 
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