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Background.Diabetic nephropathy (DN) is the leading cause of ESRD. Emerging evidence indicated that proteinuria may not be the
determinant of renal survival in DN. The aim of the current study was to provide molecular signatures apart from proteinuria in
DN by an integrative bioinformatics approach. Method. Affymetrix microarray datasets from microdissected glomerular and
tubulointerstitial compartments of DN, healthy controls, and proteinuric disease controls including minimal change disease and
membranous nephropathy were extracted from open-access database. Differentially expressed genes (DEGs) in DN versus both
healthy and proteinuric controls were identified by limma package, and further defined by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Hub genes were checked by protein-protein interaction
networks. Results. A total of 566 glomerular and 581 tubulointerstitial DEGs were identified in DN, which were commonly
differentially expressed compared to normal controls and proteinuric disease controls. The upregulated DEGs in both
compartments were significantly enriched in GO biological process associated with fibrosis, inflammation, and platelet
dysfunction, and largely located in extracellular space, including matrix and extracellular vesicles. Pathway analysis highlighted
immune system regulation. Hub genes of the upregulated DEGs negatively correlated with estimated glomerular filtration rate
(eGFR). While the downregulated DEGs and their hub genes in tubulointerstitium were enriched in pathways associated with
lipid metabolism and oxidation, which positively correlated with eGFR. Conclusions. Our study identified pathways including
fibrosis, inflammation, lipid metabolism, and oxidative stress contributing to the progression of DN independent of proteinuria.
These genes may serve as biomarkers and therapeutic targets.

1. Introduction

Diabetic nephropathy (DN) is the leading cause of chronic
kidney disease (CKD) and end stage renal disease (ESRD)
[1, 2]. Although urinary protein is recognized as the major
culprit to the progression of DN [3], it was observed that
renal outcomes were worse in patients with DN than those
with nondiabetic renal diseases irrespective of proteinuria
[4, 5]. Recent studies reported renal insufficiency could hap-
pen before the presence of albuminuria, which also indicated

that the dominant feature of DN could be progressive
renal decline rather than proteinuria [6, 7]. Thus, identifying
molecules not relating to proteinuria may shed additional
light on DN pathogenesis. However, integrative analysis
investigating such molecules has not been reported.

Renal biopsy captures pathological characteristics of
the disease and the gene expression profiles of renal tissue
provide unbiased comprehensive understanding of the
molecular mechanisms. Several transcriptome analyses
have been taken in DN and they observed molecules and
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pathways aberrantly regulated in DN such as matrix expan-
sion, vascular damage, and inflammation [8–10]. Results
were somehow inconsistent. And these studies focused on
renal glomerular or tubulointerstitial lesions differently.
However, both glomeruli and tubules are seriously affected
in DN, and it is unclear how they relatedly or differently
contribute to DN development. In addition, the controls
were normal renal tissues, whether the pathways were the
initiating mechanism or secondary injury to proteinuria
remains to be explored.

In the current study, to further rule out the confounding
role of proteinuria, we included datasets from both DN and
proteinuric controls including minimal change disease
(MCD) and membranous nephropathy (MN) [11, 12]. And
we separately evaluate glomerular and tubulointerstitial
compartments. The study aims to provide molecular
signatures apart from proteinuria in DN by the integrative
bioinformatics approach.

2. Materials and Methods

2.1. Microarray Data. Microdissection transcriptome data
were obtained from the public genomics data repository
GEO (https://www.ncbi.nlm.nih.gov/geo/). “Diabetic nephrop-
athy OR DN”, “Membranous nephropathy OR membranous
glomerulonephritis OR MGN OR MN”, and “minimal change
diseases OR MCD” were searched, respectively, and kidney
biopsy samples were from the European Renal cDNA bank
(ERCB) cohort, which was established to collect kidney biopsy
tissue for gene expression analysis, were studied. After
excluding duplicated submissions, GEL files from GSE47183
[13] and GSE37463 [14] based on both platform GLP11670
(Affymetrix Human Genome U133 Plus 2.0 Array) and
GLP14663 (Affymetrix Human Genome U133A Array),
and GSE104954 [15] based on both platform GLP22945
and GLP24120 were analyzed. Altogether, 77 glomerular
microdissection samples including 14 with diabetic DN, 15
with MCD, 21 with MN, and 27 from living donors as
healthy controls and 69 tubulointerstitial microdissection
samples including 17 with DN, 13 with MCD, 18 with MN,
and 21 from healthy controls were enrolled. As we aimed to
focus on typical DN, we therefore did not perform our search
by “DKD” (diabetic kidney disease), since it may contain
various kidney injuries associated directly or indirectly with
diabetes.

According to the published study which originally sub-
mitted the microdissected glomeruli microarray, the urinary
protein level of DN, MN, and MCD cases were 3:1 ± 2:7 g/d,
4:6 ± 3:2 g/d, and 6:7 ± 5:8 g/d, respectively [13]. The micro-
dissected renal tubule microarray data were obtained from
MN and MCD patients with nephrotic syndrome [15].
Therefore, the microarray information that we used in the
current study was from DN, MN, and MCD patients of
comparable amount of proteinuria. However, DN patients
seemed to have worse renal function, as DN in GSE47183
had a lower eGFR value of 44 ± 25ml/min per 1.73m2,
compared to MN and MCD patients (eGFR 89 ± 41 and
101 ± 34ml/min per 1.73m2) [13].

2.2. Microarray Datasets Preprocessing and Differentially
Expressed Gene (DEG) Identification. Affymetrix CEL files
were normalized using the robust multiarray average
method, log2 transformed using R software (version 3.6.1).
Expression data with shared probes by the Human Genome
U133 Plus 2.0 Array and Human Genome U133AArray were
combined and batch corrected by “removebatcheffects”
function in Limma package [16]. Probes were annotated at
Entrez Gene level. And those without gene symbols were
removed or genes with more than one probes were averaged.
Limma package was used to screen DEGs in the glomerular
and tubulointerstitial compartments between healthy
controls, patients with MN and MCD versus DN. DEGs were
defined as adjusted P < 0:05 and fold changes >1.5.

2.3. Gene Ontology (GO) and Pathway Enrichment Analysis.
An online bioinformatics tool DAVID version 6.8 (https://
david.ncifcrf.gov/) was used for GO enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis. GO analysis enables the annotation of cel-
lular component (CC), biological process (BP), and molecu-
lar function (MF). KEGG pathway illustrates the path of the
gene cluster and associated functions. GO annotations relat-
ing to other diseases or organs were excluded. Gene count >2
and P < 0:05 were set as the threshold.

2.4. Protein-Protein Interaction (PPI) Analysis. The Search
Tool for the Retrieval of Interacting Genes (STRING) version
11 (http://string-db.org/) was used to construct the PPI
networks of DEGs. Interaction score >0.7 was set as the
cut-off point. Cytoscape software version 3.6.1 was applied
to visualize the PPI network and analyze the interactive
relationships. The plugin cytoHubba [17] was used to explore
hub genes and subnetworks by topological analysis strategy.
The top 30 nodes calculated by the maximal clique centrality
(MCC) algorithm were shown as hub genes in the network.
The plugin Molecular Complex Detection (MCODE) was
performed to identify key clusters.

2.5. Correlation Analysis with Renal Function. The correla-
tion between hub gene expression and estimated glomerular
filtration rate (eGFR) in DN patients was performed in
Nephroseq v5 online platform (http://v5.nephroseq.org/)
and analyzed using the spearman correlation coefficient.
P values <0.05 were considered statistically significant.

3. Results

3.1. Identification of DEGs Specific in DN. A total of 566
glomerular and 581 tubulointerstitial genes were significantly
differentially expressed in DN compared with all of those in
healthy controls, MCD and MN (Figures 1(a) and 1(b)). As
shown in heatmaps, 453 DEGs were upregulated and 105
DEGs were downregulated in glomeruli (Figure 1(c)).
While in tubulointerstitium, there were 287 upregulated
and 290 downregulated DEGs in DN compared with
proteinuric controls (Figure 1(d)). The complete lists of
shared DEGs and the remaining DEGs were presented in
Supplementary File 1.
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3.2. GO Enrichment Analysis of Shared DEGs. A total of
113 GO terms in glomeruli and 83 GO terms in tubuloin-
terstitium of upregulated DEGs were identified according
to Benjamin adjusted P values of <0.05 (Supplementary
File 2). As shown in Figure 2(a) and 2(b), in both glomer-
ular and tubulointerstitial compartments, the upregulated
DEGs were significantly enriched in BPs associated with
fibrosis, inflammation, and platelet dysfunction, including
extracellular matrix organization, collagen catabolic process,
inflammatory response, immune response, and platelet
degranulation and activation. Their CCs were most signifi-
cantly enriched in extracellular space, including matrix and
vesicles, i.e., exosomes and blood microparticles. Moreover,
53 DEGs in both glomeruli and tubulointerstitium located
in exosomes, and 9 in microparticles. We further performed

enrichment analysis for them. DEGs in exosomes were
mainly associated with leukocyte migration, extracellular
matrix organization, and platelet degranulation, and DEGs
in blood microparticles mainly associated with complement
activation, innate immune response, and platelet degranula-
tion (Supplementary File 3). The MFs of upregulated DEGs
were involved in extracellular matrix structural constituent,
receptor activity and chemokine activity.

For downregulated DEGs, 46 GO terms in tubulointersti-
tium were identified by the adjusted P value (Supplementary
File 2). The downregulated DEGs of tubulointerstitium
were enriched in the BPs of oxidative-reduction and
metabolic process, and these DEGs were localized in cyto-
plasm, particularly in mitochondria. Their MFs involved
catalytic activity and oxidoreductase activity (Figure 2(c)).
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Figure 1: Identification of DEGs in DN compared with healthy controls, proteinuric controls including MCD and MN. Venn diagrams
showing the shared glomerular (a) and tubulointerstitial (b) DEGs. Heatmaps of DEGs in glomerular (c) and tubulointerstitial (d)
compartments. Red areas represent highly expressed genes, and blue areas represent lowly expressed genes of DN patients compared with
those of healthy and disease controls. DEGs: differentially expressed genes; DN: diabetic nephropathy; MN: membranous nephropathy;
MCD: minimal change disease; H: healthy controls; vs: versus.
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While the downregulated DEGs of glomeruli were not
markedly enriched in any BPs.

3.3. Pathway Enrichment Analysis. For upregulated DEGs, 13
of 24 (54.2%) enriched pathways in glomeruli and 8 of 16
(50%) in tubulointerstitium were involved in the immune
system regulation, including chemokine signaling pathway,
complement and coagulation cascades, natural killer cell-
mediated cytotoxicity, platelet activation, and NOD-like
receptor signaling pathway. Of note, upregulated DEGs in
both glomeruli and tubulointerstitium were enriched in
NF-kappa B signaling pathway, and PI3K-Akt signaling
pathway (Figures 3(a) and 3(b)). The analysis of downregu-
lated DEGs revealed pathways involving carbohydrate
metabolism and amino acid metabolism (Figure 3(c)).

3.4. PPI Network Analysis and Hub Genes Recognition. In
both glomeruli and tubulointerstitium, the upregulated hub
genes identified by the MCC algorithm of interactions were
associated with inflammatory (C3, CCR2, CCL5, CXCL1,
CCL19, and CCL21) and fibrosis (COL1A1, COL1A2,
COL3A1, and COL15A1; Figures 4(a) and 4(d)). Further-
more, MCODE score system identified two clusters, enriched
in chemokines and collagens, of the upregulated DEGs
(Figures 4(b), 4(c), 4(e), and 4(f)). C3 was in the clusters
associated with inflammation and highly interacted with che-
mokines (Figures 4(b) and 4(e)). The hub genes of decreased
DEGs in tubulointerstitium were shown in Figures 4(g) and
4(h), where the most significant cluster consisted of 11 hub
genes. We then performed GO analysis for these 11 DEGs,
and found that they were located in peroxisomes and
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Figure 2: The Top 10 BP, CC, and MF terms of shared DEGs. GO enrichment analysis of upregulated DEGs in glomerular (a) and
tubulointerstitial (b) compartments. (c) GO enrichment analysis of downregulated DEGs in tubulointerstitium. DEGs: differentially
expressed genes; BP: biological process; CC: cellular component; MF: molecular function; GO: Gene Ontology.
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mitochondria, and enriched in cellular lipid metabolic process
(i.e., EHHADH, HAO2, PECR), fatty acid beta-oxidation (i.e.,
ACOX2, EHHADH, SLC27A2) and oxidation-reduction
process (i.e., DHRS4, DAO, PECR, PIPOX).

Further exploring the association of DEGs and kidney
function, the mRNA expressions of cytokines (CXCL1,
CCL5, and CCL21) and collagens (COL1A1, COL1A2,
and COL3A1) were observed to have a negative correlation
with eGFR in DN patients (Figures 5(a)–5(f)). While the
mRNA expression of genes mediating metabolic (ACOX2,
EHHADH, and HAO2) and oxidative-reduction processes
(DAO, PECR, and PIPOX) positively correlated with eGFR
(Figures 5(g)–5(l)).

4. Discussion

Although DN is not considered an inflammatory disease,
kidney inflammation could be a key pathophysiological
mechanism. In our study, the increased hub genes relating
to the inflammation in glomeruli and tubulointerstitium
included chemokines, i.e., CCL5, CXCL1, CCL19, and
CCL21, chemokine receptor CCR2, and complement C3.
The hub chemokines CCL5 and CCR2 recruited macro-

phages [18, 19], which could produce CXCL1 [20], while
CCL5, CCL19, and CCL21 recruited T cells [21–24]. This
is consistent with the pathological observation that macro-
phages and T cells are the chief inflammatory infiltrates in
DN [25–27]. Novel treatment targeting macrophages, inhib-
itors of CCL2 and CCR2 had been reported to successfully
reduce proteinuria in DN [28, 29]. The increased mRNA
expression of C3 in our study may suggest increased local
production of the complement component. Plus, C3 ranked
as one of the hub genes and highly interacted with proinflam-
matory factors in PPI, suggesting that C3 could aggravate DN
inflammation by pathways besides complement activation.
Previous study reported the increased transcriptome and
protein levels of C3 in a part of diabetic patients with
impaired renal function [10, 30]. And C3 positivity on renal
histopathology correlated with severer kidney damage [30],
whereas blockage of C3 signaling improved renal outcomes
in various DN animal models [31]. Our results indicated that
inflammatory infiltrates, particularly macrophages and T
cells, and locally synthesized C3 could play key roles in the
progression of DN.

One main pathological characteristic of DN is diffuse
extracellular matrix accumulation. Both glomerular and
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Figure 3: KEGG pathway enrichment analysis. KEGG pathway enrichment analysis of upregulated DEGs in glomerular (a) and
tubulointerstitial (b) compartments. (c) KEGG pathway enrichment analysis of downregulated DEGs in tubulointerstitium. DEGs:
differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

9BioMed Research International



Upregulated glomerular DEGs

(a)

(b)

(c)

COL16A1ADAMTS3

COL6A3

THBS2 COL14A1

SERPINF1
COL21A1

ITGA7

LUM

COL5A2

COL1A1

COL6A1

ITGB3
COL1A2

COL5A1

CD44

ITGA4

MMP2 COL15A1

COL3A1

VCAN

FN1
FBN1

MSR1BGN
FIGF

IGFBP3

CTSS
TNC

CP

MMP7CFD

FMOD

COL13A1

COL8A2

SOX9

TLL2

PCOLCE

COL8A1

COL11A1
PTPRC

PRKCB

ITGB2

GZMA

CD28

TLR1
CD86

TLR7

CD2

CD163

CX3CR1

CCL8

VSIG4

CCL18
ETV5

ADRB2

IL1RN

GNA15

PTGER2

CCL5

DNM1

SPARCL1

C4A

TMEM132A

JUP

PDXK CFB

ITIH2

LYZ

CFH

LTF

HPSE

MNDA
PYCARD

SLPI

LPAR1

GPR18

ADCY7

EDNRB

HRH1
CCL19

CXCL6
ENTPD1 BDKRB2

CCL21

TLR5

IFITM1

PDE1A
NMU

P2RX5

ACKR1EDNRA

MAN2B1

P2RY13

CCR1 ADRA2A

P2RY14
DOCK2

CXCL1
QSOX1

C3

PTX3

CSF1R
CXCL8

HGFCCR2
LCP2

LYN
IL33

CCL2

ITGAM

PTGS2

CCR5

CCR2

CCL5

CX3CR1

CXCL8

P2RY13

C3

CCR1

NMU

ADCY7

CCR5

CCL21

ADRA2A
CXCL6

CXCL1

LPAR1
BDKRB2

GPR18

P2RY14

CCL19

COL16A1

COL1A1

COL3A1

COL21A1 COL6A1

COL5A2

COL1A2

COL8A2

COL11A1 COL5A1

COL6A3

COL15A1
COL8A1

COL13A1

COL14A1

Upregulated tubulointerstitial DEGs

(d)

(e)

(f)

C1S

VSIG4

CASP1 CFH
FCGR2B

NPY1R
CXCL8

CECR1

SLPIC3
ACKR1

LYZ
PIGR

CXCL1
CCL2 QPCTICAM1 CTSZ

LTF
CD69

PLCB4

TAC1

HRH1

AHNAK

PTGER1

CCR2

LYN

CX3CR1
CSF2RB

CCL5

IGLL5

C1QB

MRC1

SELL

CD86

CD2

CD3D

CD247

GZMA

ANXA1

CCL21 PYCARD

CCL19

IFITM1

CXCL6

MNDA

PLAC8

PECAM1
VWF TIMP1LCK

CD44 FN1

ITGB3

PTPRC

CLU

ITGB2

PROM1

COL3A1

TPM1

THBS2

ADAMTS1

POSTN

HGF

MYC SERPING1
TNC

ITGAM SELP CFD

LCN2CTSS FSTL1

RCN1

COL4A1

COL1A1

COL1A2

COL6A3
COL15A1

CP

COL4A2

VIMACTN1

A2M

VCAN

LUM

CHST15

TGM2

CD52

HLA-DPB1
EVI2B

CD48

CD1C

HLA-DQB1

HLA-DPA1

CD53

IL10RA

PLEK
TGFBI

MMP7

RAC2
LAMC2

ITGB6
ENG

MCAM

CP

FSTL1 VCAN

ITGB3TNCRCN1

COL1A1

COL4A2COL1A2

COL3A1 COL15A1

COL4A1

CCL19CCR2

ANXA1 CCL5

CX3CR1

CXCL8CCL21

CXCL6
NPY1R C3

CXCL1
SERPING1

A2M

FN1

TIMP1

ACTN1

CLU

VWF

HGF CFD

Downregulated tubulointerstitial DEGs

(g) (h)

MAPTPRNP
KLK1

GPC3 PCYOX1
GNA11 APOM ADH5

ALB

EGF
VEGFA

ERBB3
FGF1

ADM

DAB2

SERPINA6

WT1 FABP1

BST1

AGXT

ACSL1

SLC27A2

EPHX2

DHRS4

SLC2A5

KNG1
CUBN LPL

PTGER3

MME
APOE APOH

PLG

GRHPR

PLD1

MGAM

SH3GL2

LPA

PRLR

HRG

MCCC1

HIBCH

BCKDHBACAD8

ACADSB

GGH

ACO1

PIPOX

GCDHTST
CRYM

ACOX2

PECR

ECI2

ACADL

ACAA1

GCLC
ASPA

MAOB

GLYAT
ARG2

GLS
ALDH4A1

PRODH2

ADH6
PCK2

GLUD2

SORD

ALDH6A1

ALDH7A1

FAH
ABAT

AOC1

PC

UPB1

ALDH3A2

EHHADH

IDH1
HAO2

HADH

DAO

MAOA

GATM
PHYH

ALDH1B1

GLUD1

ACOX2

HAO2

DHRS4

SLC27A2 IDH1

DAO

AGXT

EPHX2

EHHADH

PECR

PIPOX

Figure 4: PPI network and modules constructed by cytoscape. PPI network of upregulated DEGs in glomerular (a) and tubulointerstitial
(d) compartments and downregulated DEGs in tubulointerstitium (g). Hub genes were selected by MCC algorithms using cytoHubba
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Figure 5: Correlation between eGFR and mRNA expression of hub genes in tubulointerstitium. (a–f) The expression of upregulated genes
relating to inflammation or fibrosis negatively correlated with eGFR. (g–l) The expression of downregulated genes regulating lipid
metabolism and oxidative processes positively correlated with eGFR. eGFR: estimated glomerular filtration rate.
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tubular basement membrane thickening occur at an early
stage [32, 33]. And in developed DN, glomeruli are often
enlarged due to the increase of mesangial matrix, which
further could result in nodular sclerosis [34, 35]. Meanwhile,
tubulointerstitial fibrosis is common, and the interstitial
volume is also increased with collagen and other matrix
components [36]. In accordance with the pathological
presentation, in our study, the GO annotation of upregulated
DEGs in both glomeruli and tubulointerstitium demon-
strated that extracellular matrix organization, extracellular
space, and extracellular matrix structural constituent were
predominantly enriched, suggesting the exceptionally active
profibrotic process in DN. This was also evidenced by a more
recent genome-wide association study in diabetic kidney
disease, which highlighted biology involved in glomerular
basement membrane collagen [37]. The nonresolving
profibrotic process of DN has been well acknowledged as a
pathogenetic mechanism leading to ESRD in DN [32, 38].

Moreover, GO analysis showed that both glomerular and
tubulointerstitial DEGs were enriched for genes located in
extracellular vesicles, including exosomes and blood micro-
particles. Extracellular vesicles are host cell-derived packages
of information which mediate intercellular communication
[39]. Accumulating evidence indicated that the levels of
kidney-derived exosomes and blood microparticles elevated
in diabetic patients [40–43]. Previous study reported that
endothelial and podocyte extracellular vesicles had profi-
brotic effects on mesangial and tubular cells [44, 45], and
tubular extracellular vesicles could induce inflammation
[46]. It is also demonstrated that platelet microparticles
in diabetic patients contributed to endothelial injury by
extracellular communication [47]. And our analysis showed
that increased DEGs in exosomes and blood microparticles
mainly involved in leukocyte migration, complement activa-
tion, extracellular matrix organization, and platelet degranu-
lation, which further supported the roles of extracellular
vesicles mediated intercellular communication in the process
of DN inflammation and fibrosis.

Injury of renal tubular cells is a prominent histopatho-
logical feature of DN and is regarded as an important
contributor to impaired kidney function [48]. Exploring
key pathways leading to tubular injury, in addition to
exacerbated inflammation as discussed above, we found
that the downregulated DEGs might have renoprotective
effects as they positively correlated with eGFR. These
decreased DEGs were significantly enriched in pathways
associated with metabolism process and oxidation reduction
process according to GO enrichment analysis. And the
results of hub genes were similar, with function relating to
metabolism process particularly lipid metabolism, i.e.,
EHHADH, HAO2, PECR, ACOX2, SLC27A2, and
oxidation-reduction process, i.e., PECR, DHRS4 DAO,
PIPOX. Downregulation of the lipid metabolism genes could
result in tubule epithelial lipid accumulation, which is com-
mon in human DN and correlated with deterioration of renal
function [49, 50]. Normally, tubular epithelial cells rely on
fatty acids as energy source [48], while defective fatty acid
utilization cause energy depletion. Tubular epithelial cells
have high levels of baseline energy consumption and

substantial mitochondria, and energy depletion would result
in excess oxidative stress, subsequent injury, and even cell
death [51, 52]. In our study, the PPI network of decreased
DEGs also showed close interactions between lipid metab-
olism and oxidative stress. These results suggested that
dysregulation of lipid metabolism and oxidative process
could coordinately contribute to the tubulointerstitial
impairment in DN.

Our study has several limitations. First, due to lack of
detailed information of patients, it is difficult to control and
evaluate the influence of demographic factors or the stage
of the disease process on the analysis. Second, renal function
impairment among different groups was unmatched. Third,
the analysis was based on transcripts, which are not always
the same as those on the protein level. Fourth, shared DEGs
not enriched in enrichment analysis or selected as hub genes
could also play an important role in the DN progression.
However, as conventional treatment based on strict control
of hypertension, hyperglycemia, and proteinuria fails to
prevent DN patients from renal failure, novel therapeutic
strategies are urgently needed. And this analysis suggests
that strategies focus on impeding renal inflammation and
fibrosis, correcting dysregulated tubular lipid metabolism
and oxidative-reduction process from an integrative bioin-
formatics aspect.

5. Conclusions

In summary, our study disclosed the pathogenic molecules
and pathways promoting the progression of DN independent
of proteinuria. We identified a total of 566 glomerular and
581 tubulointerstitial shared DEGs and highlighted the
importance of pathways associated with fibrosis, inflam-
mation, lipid metabolism, and oxidative stress in DN.
These genes and pathways could be potential targets for
the treatment of DN.
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