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Simple Summary: Fewer than 30% of patients with liver metastases are eligible for major liver
resection, because liver remaining after such a surgery would be insufficient to cover the patient’s
needs; this is called a low percentage of future liver remnant (FLR). Folinic acid (FA) has been shown
to play a crucial role in cellular synthesis, regeneration, and nucleotide and amino acid biosynthesis.
The aim of this piece of research was to evaluate the effect of FA as a potential hypertrophic hepatic
enhancer agent after selective portal vein ligation (PVL) to ensure adequate FLR. We have confirmed
in our rodent model that FA accelerates liver regeneration after PVL and enhances recovery of
liver function. These findings may allow more patients to be eligible for liver resection without
jeopardizing postoperative liver function.

Abstract: Liver resection remains the gold standard for hepatic metastases. The future liver remnant
(FLR) and its functional status are two key points to consider before performing major liver resections,
since patients with less than 25% FLR or a Child–Pugh B or C grade are not eligible for this procedure.
Folinic acid (FA) is an essential agent in cell replication processes. Herein, we analyze the effect of
FA as an enhancer of liver regeneration after selective portal vein ligation (PVL). Sixty-four male
WAG/RijHsd rats were randomly distributed into eight groups: a control group and seven subjected
to 50% PVL, by ligation of left portal branch. The treated animals received FA (2.5 m/kg), while the
rest were given saline. After 36 h, 3 days or 7 days, liver tissue and blood samples were obtained. FA
slightly but significantly increased FLR percentage (FLR%) on the 7th day (91.88 ± 0.61%) compared
to control or saline-treated groups (86.72 ± 2.5 vs. 87 ± 3.33%; p < 0.01). The hepatocyte nuclear
area was also increased both at 36 h and 7days with FA (61.55 ± 16.09 µm2, and 49.91 ± 15.38 µm2;
p < 0.001). Finally, FA also improved liver function. In conclusion, FA has boosted liver regeneration
assessed by FLR%, nuclear area size and restoration of liver function after PVL.

Keywords: selective portal vein ligation; folinic acid; hepatotrophic; rodent model; future liver remnant

1. Introduction

Despite advances in chemotherapeutic approaches and other techniques for the ab-
lative treatment of liver tumors, liver resection remains the gold standard treatment for
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colorectal cancer liver metastases (CRCLM) or other liver malignancies [1–4]; CRCLM
are the main indication for liver surgery in western countries [4,5]. Most of them have a
gastrointestinal origin, which can be explained since the tumor cells can migrate from the
primary tumor through the blood vessels to the liver, establishing and developing new
tumor implants in this organ [4]. This also explains why a high percentage of patients with
primary tumors of the gastrointestinal tract also present CRCLM at the time of diagnosis
(synchronous metastases) [2–4].

Different studies indicate that up to 75% of the hepatic parenchyma could be safely
removed without compromising liver function in patients with a good hepatic functional
status, increasing the risk of liver failure when the liver remnant is less than 25%. Whereas
in patients with a jeopardized hepatic function, the future liver remnant (FLR) should not
be less than 40% [2,4,6,7]. After a partial hepatectomy in which the FLR is insufficient,
so-called “small for size” syndrome (SFSS) will occur. SFSS is defined by the presence of
prolonged cholestasis, coagulopathy, and ascites in the absence of ischemia [8]. Therefore, it
is important to ensure a sufficient FLR or to increase it, as a previous stage to liver resection,
in order to meet the patient’s metabolic requirements, and this is achieved with techniques
that induce hepatic hypertrophy.

In recent years, multiple surgical strategies have been developed to ensure sufficient
FLR. Portal embolization (PE) or selective portal vein ligation (PVL), for example, are
intended to selectively occlude the portal lumen of one or several hepatic segments, trigger-
ing hepatocyte proliferation to achieve compensatory hypertrophy of the rest of the organ,
which reduces the risk of liver failure after liver resection [2,4,9]. Usually, this compensatory
hypertrophy requires a few weeks, and less than 5% hypertrophy is a prognostic indicator
of post-operative hepatic insufficiency [2]. While PE can be performed using interventional
radiology techniques, PVL is performed through a surgical intervention first, and then
the liver resection is performed in a second surgery [2,3,10]. Damage caused by the first
surgery, such as anatomical destructuring or fibrosis, may complicate the second procedure,
increasing the morbidity and complication rate compared to PE [2,10].

In 2012, Schnitzbauer et al. reported the first cases of a novel interpretation of two-
staged resection [11], the so-called associating liver partition and portal vein ligation for
staged hepatectomy (ALPPS). ALPPS associates PVL with the partitioning of the ligated
hepatic segment. Thus, this process achieves a faster hepatic hypertrophy than other
surgical techniques, up to an 80% increase in 7 days [2,3,6,10]. However, the ALPPS
technique has also been associated with higher postoperative morbidity and mortality
rates; even though these complications rates may be mitigated with the improvement of
the surgical experience and a better selection of the patients to be treated [12].

Beyond these surgical techniques to increase the FLR, non-surgical options to obtain a
greater and faster growth of the FLR have been evaluated at an experimental level in the last
few years. An example of these approaches are the studies based on the administration of
mesenchymal stem/progenitor cells (MSC) [13–15], induction of hypoxia [16–18], or even
pharmacological enhancement of hepatocyte regenerative response, such as folinic acid
(FA) [19,20]. After partial hepatectomy, FA was shown to increase liver regeneration [20].
Therefore, based on this previous experience, our current research proposes to evaluate the
effect of FA as a hypertrophic hepatic enhancer agent after selective PVL in a rat model.

2. Materials and Methods

This project was approved by the Animal Experimentation Review Board (CEEA) (ref.:
M20/2018/023), as well as the Review Board on Research with Biological Agents (CEIAB)
(ref.: M30/2018/024) of the University of the Basque Country (UPV/EHU). It was con-
ducted in accordance with national and European regulations on animal experimentation
and in accordance with the ARRIVE guide.

A total of 64 male WAG/RijHsd rats, aged 3 months and weighing approximately
250–280 g, were used. The animals were housed with 12 h circadian light/dark cycles and
ad libitum food and water intake. The animals were uniformly distributed in eight different
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groups: seven experimental groups and one control group, with eight animals assigned to
each group. Table 1 shows a summary of the procedures carried out on each of the different
experimental groups.

Table 1. Summary of experimental groups.

Group No. Group
Name PVL Treatment Sample Collection

Time after PVL
No. of

Animals

1 Control no no – 8
2 36 h yes no 36 h 8
3 3 d yes no 3 days 8
4 7 d yes no 7 days 8
5 36 h + FA yes FA (2.5 mg/kg) 36 h 8
6 36 h + saline yes saline 36 h 8
7 7 d + FA yes FA (2.5 mg/kg) 7 days 8
8 7 d + saline yes saline 7 days 8

FA—folinic acid.

2.1. Selective Portal Vein Ligation

Under 1.5% isoflurane anesthesia, the animal was placed in the supine decubitus
position, the abdomen was shaved and the surgical site was aseptized with 70% alcohol.
A median laparotomy was performed and, aided by four retractors, the left lateral lobe
(LLL), the right and the left portion of the median lobe (RML and LML), and some small
intestinal sections were pulled out from the abdominal cavity, and then covered with 37 ◦C
saline-moistened gauze to reduce their desiccation, in order to minimize the risk of future
adhesions.

By placing a ligature on the left branch of the portal vein, portal venous flow to LLL
and LML was interrupted (the sum of the liver mass of both lobes represents approximately
45–50% of the total liver mass) (Figure 1).

Figure 1. Schematic view of the visceral surface of the rat liver with details of the lobar segmentation
of the hepatic parenchyma (right portion of the medial lobe [RML], left portion of the medial lobe
[LML], right lobe [RL], caudated lobe [CL], and left lateral lobe [LLL]), and the distribution of the
portal venous system. It also shows the ligature placement site, demonstrating how it compromises
the portal irrigation of the LLL and LML.

On the posterior side of the liver, the portal hilum was located (Figure 2a) and the portal
vein was identified. Under a surgical microscope, the hepatic arteries and biliary ducts were
carefully isolated, dissecting the left portal vein at its entry into the LLL (Figure 2b). Then,
using a blunt micro Deschamps, a 6/0 silk strand was guided under the left portal vein
(Figure 2c). Prior to tying the ligature, it was ensured that no arterial or biliary branches
were compromised; then, the ligature was knotted (Figure 2d).
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Figure 2. Microscope photographs of the hepatic hilium at its entrance to the left lateral lobe (LLL).
Visualization at 10× magnification of the hepatic pedicle (asterisk) surrounded by the different
lobes: right portion of the medial lobe (RML), right lobe (RL), caudated lobe (CL), and LLL (a). The
arrowhead marks the entry zone of the left portal branch into the LLL. Detail of the left portal branch
(2) and the dissected arteries and bile ducts (1) on both sides (b). 6/0 silk ligature slipped behind the
left portal vein branch, avoiding arteries and bile duct (c). Portal vein branch of the LLL occluded
with ligature (d).

Once the absence of bleeding from any structure was verified, the small intestine,
the LLL and the RML, and the LML were re-introduced into the abdominal cavity. Right
after, 1 to 1.5 mL of saline at 37 ◦C was instilled into the abdominal cavity and the incision
was closed by layers; the muscular layer was closed with 4/0 polypropylene, and the skin
was closed with 3/0 silk.

2.2. Folinic Acid or Saline Administration

Once the PVL was accomplished and the surgical incision was closed, saline or FA
was administered via femoral vein.

A small incision in the inguinal region was performed in order to expose and identify
the femoral vein. Then, 1 mL of saline or FA solution (2.5 mg/kg) was slowly administered
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through a 30 G needle. When fluid infusion was accomplished, the needle was removed
and hemostasia was applied (1–2 min); then, the skin was closed with single 3/0 silk stiches.

Finally, just before removing the anesthesia, a subcutaneous injection of meloxicam
(5 mg/mL) was given to ensure postoperative analgesia. Post-surgical recovery was
completed in a clean cage with a heating system at 22 ◦C.

2.3. Blood Collection and Histological Samples Obtention

At the end of the different time periods established for each experimental group, blood
samples were collected, and liver tissue was extracted to measure the weight and volume
and to obtain tissue for histological study.

Under isoflurane 1.5% anesthesia, the abdominal cavity was opened, and the inferior
vena cava was exposed and punctured with a 20 G needle to extract as much blood as
possible (5–6 mL). To obtain the serum, the blood was introduced into SST™ II Advance
tubes (BD Vacutainer®, BD, Franklin Lakes, NJ, USA. Ref.:367955) and centrifuged for
10 min at 3000 rpm. The extracted serum was frozen until analysis.

Regarding liver tissue, the entire liver was removed. Then, the weight was also
recorded, both the total and the atrophic and hypertrophic lobes separately. FLR percentage
(FLR%) was calculated by dividing the FRL (in mg) by the total functional liver weight
(TLW, in mg). It was expressed as a percentage (FLR% = FLR × 100/TLW). Once all
measurements were taken, the liver tissue was fixed in 4% paraformaldehyde solution.

2.4. Serum Samples and Histological Sections Analysis

Serum samples were analyzed in a Cobas® 8000 module c702 analyzer for clinical
use and the following parameters were determined, all using commercial kits for clinical
use: alanine aminotransferase (ALT) (Ref. 05880797 190), aspartate aminotransferase (AST)
(Ref. 05880819 190), alkaline phosphatase (ALP) (Ref. 05166888 190), total bilirubin (TBil)
(Ref. 05795419 190), and albumin (Ref. 0005166861 190), all from Roche (Roche Diagnostics
GMBH, Mannheim, Germany).

Microscopic assessment of hypertrophied liver tissue was performed on transverse
sections of the RML. The samples were embedded in paraffin and 5 µm histological sections
were stained with hematoxylin/eosin. The stained sections were studied under light
microscopy and photographs of five random fields were obtained at 40× to measure at
least 100 hepatocytes per animal. The area quantification was performed, in a randomized
and blinded manner, by an independent researcher. For this purpose, once the hepatocyte
nuclei were identified, it was surrounded with the proper tool for area measurement
of Leica Application Suite (LAS) (Leica Application Suite software, Leica Microsystems,
Wetzlar, Hesse, Germany); then the mean and the standard deviation were calculated.

2.5. Statistical Analysis

Once normality of the data sets was verified, all the parameters obtained were repre-
sented by the mean and standard deviation (SD). The comparison between the different
experimental groups was carried out using analysis of variance tests (ANOVA), accepting
a statistical significance level of 95% (p < 0.05). If statistically significant differences were
found between the experimental groups, multiple comparison tests were also performed
(Tukey’s multiple comparison test for between-groups comparison). All analyses were
performed with GraphPad Prism 8.2.1 (GraphPad Software, San Diego, CA, USA).

3. Results

In each and every animal subjected to PVL, selective ligation of the left portal vein
induced some degree of LLL atrophy, with different levels of compensatory liver hypertro-
phy according to the experimental groups. Bleeding due to small lacerations in the hepatic
parenchyma during the dissection of the periportal tissues or due to ruptures of arterioles
or capillaries was the main complication during the process. These bleedings were easily
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managed by direct hemostasis with cotton swabs. No postoperative complications were
observed.

3.1. Regenerative Response of the Liver after Selective PVL

Following PVL, compensatory FLR hypertrophy was observed, peaking at 36 h
(7.95 ± 0.55 g) when up to 40% increment in FLR mass was registered. From then on,
no significant changes were found (3rd day: 7.17 ± 0.83 g; 7th day: 7.08 ± 0.62 g; p > 0.05)
(Figure 3a,b).

Figure 3. Mean weight (a) of future liver remnant (FLR) parenchyma and percentage of FLR mass
relative to total liver mass (FLR%) (b) 36 h, 3, and 7 days after selective portal vein ligation (PVL);
control refers to healthy rats, not subjected to any surgical intervention or treated with any sub-
stance. The asterisks show statistically significant differences compared to the control (***: p < 0.001;
****: p < 0.0001). The upper bar shows the significant differences between the groups indicated by it
(ns: p > 0.05).

If we focus on the whole liver, there was no increase in weight, either at 36 h, or at 3 or
7 days (9.82 ± 0.82, 7.97 ± 0.66, and 8.15 ± 0.54, respectively) compared to the control group
(8.69 ± 0.99 g; p > 0.05). Since no significant differences were found when comparing the
36-h, 3-day and 7-day groups, we decided, in accordance with the 3R principle (reduction,
refinement, and replacement), not to test the hepatotrophic effect of FA on the 3rd day, and
to study its effect only in the 36-h and 7-day groups

3.2. Enhancing Effect of FA on Hepatic Hypertrophy after Selective PVL

First, it was verified that saline administration (the medium in which the FA treatment
was administered) did not induce changes in hepatic hypertrophy 36 h or 7 days after
selective PVL (p > 0.05), either in the weight of the FLR (Figure 4a), or in the percentage
of FLR relative to the total weight of the liver (Figure 4b). Following FA administration,
no effect on the amount of regenerated liver mass was observed after PVL either at 36 h,
or on the 7th day. However, analyzing the FLR% after 7 days, we could observe a slight but
significant increase in the percentage of regenerated liver mass (91.88 ± 0.61%) compared
to the control group or the saline-treated group (86.72 ± 2.5 vs. 87 ± 3.33%; p < 0.01).

Under microscopic examination of liver histological sections (Figure 5a), we could
also confirm the pro-hepatotrophic effect of FA by measuring the nuclear area of hep-
atocytes. The hepatocyte nuclear area of animals not subjected to selective PVL was
41.69 ± 14.05 µm2. These figures were increased by approximately 20% and 10% after 36 h
and 7 days (49.18 ± 13.79 and 45.95 ± 11.83 µm2, respectively; p < 0.001). 36 h after PVL,
FA administration induced an almost 45% increase in hepatocyte nuclear area compared to
control figures (61.55 ± 16.09 µm2; p < 0.001) and a 25% increase compared to animals sub-
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jected only to PVL (49.18 ± 13.79 µm2; p < 0.001). The nuclear area quantified after 7 days
was also higher in FA-treated animals; however, this increase did not exceed 20% compared
to the control (49.91 ± 15.38 µm2; p < 0.001) (Figure 5b).

Figure 4. Mean weight (a) of future liver remnant (FLR) parenchyma and percentage of FLR mass
relative to total liver mass (FLR%) (b) 36 h (white bars) and 7 days (gray bars) after selective portal
vein ligation (PVL), of untreated (no pattern bars), saline-treated (dotted pattern), or 2.5 mg/kg folinic
acid (FA)-treated (checkered pattern) animals. The dotted line indicates the mean weight of the FLR
equivalent before PVL. The pads show the statistically significant differences compared to the basal
weight of FLR (####: p < 0.001), and the asterisks show the statistically significant differences between
the groups indicated by the upper bar (**: p < 0.01); ns—p > 0.05.

Figure 5. Representative histological section stained with Hematoxylin-Eosin of the hypertrophied
liver parenchyma; the scale bar corresponds to 50 µm (a); and mean values of the hepatocyte nuclear
area in squared micrometers (µm2) of animals subjected to selective portal vein ligation (PVL) and
analyzed after 36 h (white) or 7 days after PVL (gray), treated or not with folinic acid (FA) (square or
smooth pattern, respectively); the dotted line represents the mean value of the nuclear area of the
control group (b). The asterisks show the statistically significant differences compared to the control
group (***: p < 0.001), and the pads show the statistically significant differences between the groups
indicated by the upper bar (###: p < 0.001).

Figure 6 shows the relative frequency histogram of the nuclear area measured. It can
be shown that, 36 h after PVL (Figure 6a), there was a frequency shift, demonstrating a
major number of larger nuclei, a fact that is even more accentuated with the FA treatment.
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After 7 days (Figure 6b), we could see how the relative frequencies of the control group and
the PVL and PVL + FA groups overlap, reinforcing the previous results, without noticing
any differences between the experimental groups.

Figure 6. Histogram of relative frequencies of nuclear area quantified in control animals (dashed line)
and in animals subjected to selective portal vein ligation (PVL) (solid line) and analyzed 36 h after
PVL (a) (square—untreated animals; triangle—animals treated with folinic acid (FA)); or analyzed
after 7 days of evolution (b) (rhombus—untreated animals; circle—animals treated with FA).

3.3. Liver Functional Status after Selective PVL

At the same time, biochemical analysis was performed to determine the serum levels of
several biomarkers in serum samples. Firstly, a marked increase in AST (Figure 7a) and ALT
(Figure 7b) was observed as early as 36 h after PVL (460 ± 93.63 and 496.2 ± 144.4 IU/L,
respectively). For both enzymes, it was also observed that, either in those animals that
received saline serum or in those treated with FA, the increase in serum levels was lower,
with no significant differences for the FA treatment (p > 0.05). For AST, determinations
performed 7 days after PVL show that the enzyme values decrease, almost reaching the
basal values (p > 0.05). In contrast, AST levels detected after 7 days presented a marked
decrease, dropping below the reference values (10.50 ± 3.73 IU/L; p < 0.001); saline infusion
did not significantly modify these figures. However, FA treatment was able to reverse this
reduction (29 ± 3.52 IU/L; p > 0.05).

TBil also showed a marked increase 36 h after PVL (Figure 7c). The administration of
saline reduced the TBil values by 40% (0.082 ± 0.013 mg/dL); however, FA was able to de-
crease serum TBil to values similar to those detected in the control group (0.048 ± 0.013 vs.
0.053 ± 0.010 mg/dL, respectively; p > 0.05). On the 7th day after PVL, TBil values were
within normal range in all of the groups, and no significant differences were observed
as a consequence of saline or FA administration (0.033 ± 0.005 vs. 0.033 ± 0.012 mg/dL;
p > 0.05).

Finally, in contrast to those observed for the other parameters analyzed, albumin
showed lower serum levels 36 h and 7 days after selective PVL (3.3 ± 0.14 and 3.4 ± 0.16 g/dL,
respectively; p < 0.001). Saline-treated animals did not show significant differences com-
pared to non-treated animals (p > 0.05), whereas FA administration led to a normalization of
albumin values both at 36 h and 7 days (3.9 ± 0.093 and 3.9 ± 0.12, respectively) (Figure 7d).
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Figure 7. Aspartate aminotransferase (AST) (a), alanine aminotransferase (ALT) (b), total bilirubin
(TBil) (c) and albumin (d) serum levels detected in serum samples from animals subjected to selective
portal vein ligation (PVL) and without treatment (no pattern), intravenous administration of saline
(dotted pattern), or with intravenous administration of 2.5 mg/kg folinic acid (FA) (checkered
pattern), and analyzed 36 h (white) or 7 days (gray) after PVL. Units are expressed in international
units per liter (IU/L) for AST and ALT, milligrams per deciliter (mg/dL) for TBil, and grams per
deciliter (g/dL) for albumin. The asterisks show the statistically significant differences compared to
the control group (**: p < 0.01; ***: p < 0.001), and the pads show the statistically significant differences
between the groups indicated by the upper bar (#: p < 0.05; ##: p < 0.01; ###: p < 0.001); ns: p > 0.05.

4. Discussion

Major liver resection, which commonly involves the resection of four or more liver
segments [21], is the gold standard treatment for primary and secondary liver malignan-
cies, but commonly less than 30% of patients are eligible for this approach because of
different comorbidities or a high number or size of tumor implants. For example, in those
patients with mild steatosis, cholestasis and early cirrhosis (Child–Pugh A), or severe
steatosis and cholestasis, major hepatectomy is only recommended when the FLR is above
30–35% or 40%, respectively; in patients with normal liver function, an FLR of at least 20%
can be considered [22]. However, in those patients graded as Child–Pugh B or C plus portal
hypertension, even small liver resections can result in severe post-hepatectomy hepatic
insufficiency or failure [23].
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Though PVL is currently applied in cases of inadequate liver remnant volume to induce
hypertrophy, it cannot be used in all kinds of patients. Many groups reject the indication for
patients with impaired hepatic regenerative capacity, such as cirrhotic patients or chronic
alcohol consumption [24–26]. But also, there are concerns because of the mortality rates
associated with these techniques, as well as some uncertainty about the influence of PVL
on oncologic response and outcome [2,3,6,7,10,27]. To overcome the undesired effect of
surgery on tumor progression, some authors propose adding chemotherapy to PVL. Fisher
et al. reviewed the outcome of patients with colorectal cancer liver metastases treated
with selective portal vein embolization. They compared those patients who underwent
chemotherapy between embolization and hepatic resection versus those who did not
receive chemotherapy, finding a lower rate of disease progression in those who received
chemotherapy [28].

Thus, experimental studies are still needed to find strategies that enhance liver regen-
eration without compromising the functional status of the liver or enhancing the growth of
tumor implants. For this purpose, some key points are the choice of the experimental model
and the study time after the tested surgical procedure. Most of these studies have been
carried out in a rat experimental model [29–33], although others have opted for rabbits [34],
or even pigs [35]. In most of the studies, the study period ranges from 24 h to 7 or 8 days
after the surgical procedures, which is the same period used in our model. Even though
some studies refer to 3 days [31,36,37] as the point of peak hypertrophy, in our model
we have observed that hypertrophy reached its maximum as early as 36 h after selective
PVL. This is consistent with the studies of Higgins and Anderson, who had demonstrated
that, after partial hepatectomy, the greatest increase in liver mass occurred in the first
24–48 h [38].

In this context, several approaches have been proposed to improve the liver regenera-
tion process before partial hepatectomy is performed; some of them are already being used
today in hepatic surgery for tumor resection, such as ALPPS. Liao et al. carried out these
studies in an ALPPS model in rabbits, arguing that the anatomical differences between the
rat liver and human beings might make it an inappropriate model and the results may not
be applicable to humans. They compared the results of ALPPS with selective PVL, and
demonstrated that, at 7th day, ALPPS achieved a significantly higher percentage of FLR
than PVL (27.5 ± 7.3% vs. 20.3 ± 7.3%, respectively) [34]. Unfortunately, these favorable
results in terms of FLR did not correlate with the serum levels of the liver markers analyzed
after 3 days, since the different parameters showed worse values in those animals subjected
to ALPPS compared to those subjected only to selective PVL.

García-Pérez et al. obtained similar results in rats when comparing selective PVL
with ALPPS, demonstrating that the association of PVL with in situ liver partitioning
induced a significantly greater increase in both liver volume and weight as early as 48 h,
the effect being maintained up to 12 weeks [33]. Their figures are also higher than those
reported in this piece of work. In contrast, selective PVL was shown to have less effect on
altering serum AST, ALT, and TBil values. Within 24 to 48 h after ALPPS, AST and ALT
reached significantly higher values than those found after selective PVL (values higher
than 6000 and 3000 IU/L, respectively), which went back to normal progressively until
the 8th day. TBil was also elevated (values higher than 0.2 IU/L), and these levels were
maintained after eight days (p > 0.05, compared to control animals). A similar behavior
was observed in our PVL model; liver transaminases (AST and ALT) remained elevated
after 36 h without reaching normal levels after 7 days.

Another remarkable fact observed in our data set is that those experimental groups
that only received saline infusion and were analyzed 36 h after PVL, showed a significant
amelioration in AST, ALT, and TBil values. It is important to point out that blood loss
occurs during surgery, even if only a small amount, which can lead to acute hypovolemic
shock, with the subsequent decrease in intravascular volume resulting in organ damage,
such as the liver [39]. It is known that fluid therapy, either with colloidal solutions, plasma,
or crystalloid fluids such as saline, allows a prompt recovery of liver function, as well as
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the reduction of comorbidities after major liver surgeries. Therefore, the restitution of
volemia with the addition of 1 mL of saline after PVL could explain why the figures of
the serum markers analyzed are better than the ones obtained after PVL without saline
administration [40].

Dili et al. also analyzed the differences in liver hypertrophy induced by ALPPS or
selective PVL after 2, 3, and 7 days. As with the previously mentioned authors, they also
demonstrated that the ALPPS technique achieved a higher FLR on the 2nd and 3rd day,
but not on the 7th day [37]. They also reported a significant release of AST and ALT on
day 1 after ALPPS and PVL, with no differences between the two techniques; however, they
did not provide further data regarding the subsequent days. Finally, the data published
by Sheng et al. and Shi et al. were in line with the previous studies [32,41]. Therefore,
this previously reported evidence indicates that there is no direct relationship between the
consecution of a good volume of FLR and the adequate functional status of the resulting
hepatic tissue, preventing liver failure and the increased mortality and morbidity that has
been seen in studies of this technique [42–44].

Other experimental approaches [13–19] associating other treatments to PVL with
hepatectomy, such as the use of mesenchymal stem cells (MSC), have shown promising
results. Khuu et al. injected Adult Human Liver Mesenchymal Stem/Progenitor Cells
(ADHLSCs) into the spleen of SCID mice and studied the migration of cells from the splenic
site of injection to the liver parenchyma [13]. Their results showed that, as early as 10 min
after cell transplantation, isolated viable individual cells or clusters were evident mainly in
the periportal structures of the recipient liver. Furthermore, they were able to detect viable
and differentiated cells in the livers of recipient mice up to 60 days after transplantation.
Microscopic evaluation of immunostained liver sections revealed a morphology similar
to that of hepatocytes, showing that transplanted nondifferentiated ADHLSCs are able
to contribute to mouse liver regeneration after partial hepatectomy. Similar results were
published by Wabitsch et al. [14]. After 70% partial hepatectomy, those mice receiving
MSC showed a significantly higher hepatocyte and sinusoidal endothelial cell proliferation.
Other than this, mice receiving MSC showed a significantly lower loss of body weight.
Transaminases levels were also lower in MSC-treated animals 3 and 5 days post-operation.
Serum albumin levels did not show significant changes, and serum TBil was below detection
limits. In a rat model of partial hepatectomy, Li et al. also achieved similar results [15].
Intra portal injection of bone marrow-derived MSC, performed 24 h after 70% partial
hepatectomy, enhance liver regeneration.

Schadde et al. suggested that hemodynamic changes after PVL or ALPPS and the
resulting hypoxia may explain liver regeneration; they found that exacerbation of hypoxia
in the PVL group promoted liver regeneration, whereas enhancement of hypoxia in the
ALPPS group suppressed regeneration. They also demonstrated that pharmacologically
induced hypoxic signaling (by dimethyloxaloglycine (DMOG) administration, a prolyl-
hydroxylase inhibitor) accelerates liver regeneration [16]. These results are in accordance to
previously published studies by Maeno et al. and Schmeding et al. [17,18], that described
a notable release of hypoxia-inducible factor 1α (HIF-1α) in regenerating liver after par-
tial hepatectomy. Ohtake et al. also analyzed effect of drug administration, omeprazole,
on hepatocytes proliferation. They observed that, after omeprazole administration, liver re-
generation was enhanced, and they hypothesized that this phenomenon could be mediated
by an increase of the gastrin levels [19].

In addition to registering liver weight, Ki-67 labeling is commonly used as an indicator
of cell proliferation in liver parenchyma not subjected to PVL, as well as the counting
of the number of nuclei in mitosis. In those studies that analyzed the differences in
liver regeneration between selective PVL and ALPPS, a significantly higher number of
hepatocytes positively labeled for Ki-67 was detected in the latter cases [15,29,31–37]. In
our study, because of the impossibility of conducting Ki-67 immunohistochemical studies,
we used the measurement of the nuclear area of hepatocytes as an indirect measure of their
proliferative/regenerating state. This assessment is supported by the studies of Wang et al.
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and Fausto et al., who demonstrated that the increase in nuclear area is directly related
to the increase in the amount of genetic material [45,46]. In addition, it also allows for a
simple determination of the proportion of polyploid nuclei.

In our study, as in others already published, we observed a significant increase in FLR%
after selective PVL. Whereas FA-treated animals had an increase in FLR% of 54.96 ± 9.96%
compared to animals only subjected to PVL, those receiving saline had a lower increase in
FLR% of 45.26 ± 9.66 (p < 0.01). It is interesting to note that this positive effect of FA was
only observed when analyzing FRL%, not when weight per se was considered. The reason
for this phenomenon lies in the fact that, once the liver reaches its maximum mass of around
7–8 g, no further increase in size can be observed. However, when considering the hyper-
trophied liver mass after PVL in relation to the total liver mass (hypertrophied + atrophic
liver mass), differences can be observed.

Our therapeutic approach with FA allows us to associate the increase in FLR with
slightly lower changes in the hepatic serum markers analyzed both at 36 h and at 7 days. It
is true that most of the previous studies have shown that liver enzyme levels return into
normal levels 7 to 14 days later without any specific treatment [30–33,36]. However, our ex-
perimental treatment with FA achieves significantly better values as early as 36 h in most of
the analyzed parameters. We hypothesize that these better outcomes obtained as a result of
FA administration are based on the crucial role that this compound plays in proper cellular
function, especially related to cellular synthesis, repair and regeneration (DNA synthesis,
repair, and methylation, as well as nucleotide and amino acid biosynthesis), as well as
energy production (ATP) and protein synthesis, and the production of immunomodulatory
molecules, inosine, and adenosine [47–49].

This phenomenon was already observed years ago in a study published by our research
group. Portugal et al. compared the efficacy of cyclosporine, superoxide dismutase (SOD),
allopurinol and FA in enhancing hepatocyte regeneration after hepatic ischemia in rats [50].
First of all, Portugal found that the peak in liver regeneration was at 24 h, which was
quite close to that determined in this study (36 h). Furthermore, he showed that FA (also
cyclosporine and SOD) significantly increased the intensity of the regenerative response in
the liver. This increase was defined in terms of mitotic hepatocyte number, but not in an
accelerated rate of hepatic regeneration.

Our experimental approach, which involves the use of FA to accelerate liver regener-
ation, could have another potential therapeutic effect at the same time. It has long been
known that FA increases the cytotoxicity of chemotherapeutic agents against certain tumor
lines of colorectal cancer, such as fluorouracil [51]. Therefore, in our opinion, it is interesting
to study these aspects in more detail, and once its potential as a hepatic hypertrophy-
inducing agent has been proven, it should also be studied together with its antitumor
effect.

A limitation of our study is that we only tested a single dose of FA and at a single
time. Some studies indicate that a diet rich in FA (40 mg FA/kg diet) for 4 weeks tends to
increase hepatocyte division and improve liver morphology in aged rats [52]; however, it is
important to take into account that other authors, such as Marsillach et al. [53], have shown
that moderately high doses of FA (25 mg/kg) exacerbate liver fibrosis in rats. In addition, it
would also be interesting to analyze whether this effect of the FA is maintained in those
cases of major PVL (70–90%).

5. Conclusions

FA administration improves serum values of liver function markers as early as 36 h
after PVL and, in some of them (TBil and albumin), leads to their normalization. In addition,
it also allows that, both at 36 h and on the 7th day, the nuclear area of the hepatocytes was
larger, indicating higher DNA replication. However, not until the 7th day is the effect on
the increase of FLR% evident.
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These data suggest that FA could be used as a liver regeneration booster, in associa-
tion with PVL, as a previous surgical procedure to CRCLM resection in patients with an
insufficient FLR.
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