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Abstract

We present an algorithm for a class of statistical inference problems. The main idea is to

reformulate the inference problem as an optimization procedure, based on the generation of

surrogate (auxiliary) functions. This approach is motivated by the MM algorithm, combined

with the systematic and iterative structure of the Expectation-Maximization algorithm. The

resulting algorithm can deal with hidden variables in Maximum Likelihood and Maximum

a Posteriori estimation problems, Instrumental Variables, Regularized Optimization and

Constrained Optimization problems. The advantage of the proposed algorithm is to provide

a systematic procedure to build surrogate functions for a class of problems where hidden

variables are usually involved. Numerical examples show the benefits of the proposed

approach.

1 Introduction

Problems in statistics and system identification often involve variables for which measure-

ments are not available. Among others, real-life examples can be found in communication

systems [1, 2] and systems with quantized data [3, 4]. In Maximum Likelihood (ML) estima-

tion problems, the likelihood function is in general difficult to optimize by using closed-form

expressions, and numerical approximations are usually cumbersome. These difficulties are

traditionally avoided by the utilization of the Expectation-Maximization (EM) algorithm [5],

where a surrogate (auxiliary) function is optimized instead of the main objective function.

This surrogate function includes the complete data, i.e. the measurements and the random

variables for which there are no measurements. The incorporation of such hidden data or

latent variables is usually termed as data augmentation, where the main goal is to obtain, in

general, simple and fast algorithms [6].

On the other hand, the MM (MM stands for Maximization-Minorization or Minimiza-

tion-Majorization, depending on the optimization problem that needs to be solved) algorithm
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[7] is generally employed for solving more general optimization problems, not only for ML

and Maximum a Posteriori (MAP) estimation problems. In general, the main motivation for

using the MM algorithm is the lack of closed-form expressions for the solution of the optimi-

zation problem or dealing with objective cost functions that are not convex. Applications

where the MM algorithm has been utilized include communication systems problems [8] and

image processing [9]. For constrained optimization problems, an elegant solution is presented

by Marks and Wright [10], where the constraints are incorporated via the formulation of sur-

rogate functions. Surprisingly, Marks’ approach has not received the same attention from the

scientific community when it comes to compare it with the EM and the MM algorithms. In

fact, these three approaches are contemporary, but the EM algorithm has attracted most of the

attention (out of the three methods), and it has been used for solving linear and nonlinear sta-

tistical inference problems in biology and engineering, see e.g. [11–16], amongst others. On

the other hand, as shown in [7], the MM algorithm has obtained much less attention, while

Marks’ approach is mostly known to a limited audience in the the Communication Systems

community. These three approaches have important similarities: i) a surrogate function is

defined and optimized in place of the original optimization problem, and ii) the solution is

obtained iteratively. In general, these algorithms are “principles and recipes” [17] or a “philos-

ophy” [7] for constructing solutions to a broad variety of optimization problems.

In this paper we adopt the ideas behind [5, 7, 10] to develop an algorithm for a special class

of functions. Our approach generalizes the ones of [5, 7, 10] by reinterpreting the E-step in the

EM algorithm and expressing the cost function in terms of an infinite mixture or kernel. This

kind of problems can be interpreted as inverse problems that, in turn, can be posed as integral

equations, such as channel modelling in wireless communications [18], estimation of the dis-

tribution of stellar rotational velocities [19], and mass estimation in particle physics problems

[20, 21]. In particular cases, the kernel corresponds to a variance-mean Gaussian mixture

(VMGM), see e.g. [22]. VMGMs, also referred to as normal variance-mean mixtures [23] and

normal scale mixtures [24], have been considered in the literature for formulating EM-based

approaches to solve ML [25] and MAP problems, including regularized sparse estimation

problems [22, 26, 27]. Sparse estimation problems have been widely studied in the last two

decades and several techniques have been developed that include different types of penalties or

contraint, see e.g [28, 29] and different strategies for the formulation of those penalties/con-

straints [30]. In this paper we show that our proposal can also be considered for sparsity prob-

lems, however the analysis of the solution is out of the scope of the paper. Our approach is

applicable to a wide class of functions, which allows for defining the likelihood function, the

prior density function, and constraints as kernels, extending also the work in [10]. Thus, our

work encompasses the following contributions: i) a systematic approach to constructing surro-

gate functions for a class of cost functions and constraints, ii) a class of kernels where the

unknown quantities of the algorithm can be easily computed, and iii) a generalization of [5, 7,

10] by including the cost function and the constraints in one general expression. Our proposal

is based, among other things, on a particular way to apply Jensen’s inequality [31]. In addition,

we provide the details on how to construct quadratic surrogate functions for cost functions

and constraints.

Our algorithm is tested by two examples. In the first one we considered the problem of esti-

mating the rotational velocities of stars. The system model corresponds to the convolution of

two probability density functions (pdf’s) and thus it is an infinite mixture. We show that our

reinterpretation of the EM algorithm allows for the direct application of our proposal for the

correct estimation of the parameter of interest. In the second example, we considered the esti-

mation of the channel in wireless communications, where the true distribution can be either

Rayleigh or Rice, depending on environment where the electromagnetic waves propagate. The
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problem is solved considering a sum of a Rayleigh and a Rice term, allowing for a more com-

plex channel distribution. To select the more representative distribution, Akaike’s Information

Criterion [32] was also considered in order to obtain the least complex model that exhibits the

best possible fitting.

2 Rudiments of the proposed approach

2.1 The EM algorithm

Let us consider an estimation problem and its corresponding log-likelihood function defined

as ℓ(θ) = log p(y|θ), where p(y|θ) is the likelihood function, θ 2 Rp, and y 2 RN . Denoting the

complete data by z 2 O(y), and using Bayes’ theorem, we can obtain:

‘ðθÞ ¼ log pðyjθÞ ¼ log pðzjθÞ � log pðzjy; θÞ: ð1Þ

Let us assume that at the ith iteration we have the estimate θ̂ðiÞ. By integrating at both sides of

(1) with respect to pðzjy; θ̂ðiÞÞ we obtain ‘ðθÞ ¼ Qðθ; θ̂ðiÞÞ � Hðθ; θ̂ðiÞÞ, where

Qðθ; θ̂ðiÞÞ ¼
Z

OðyÞ
log pðzjθÞpðzjy; θ̂ðiÞÞdz; ð2Þ

Hðθ; θ̂ðiÞÞ ¼
Z

OðyÞ
log pðzjy; θÞpðzjy; θ̂ðiÞÞdz: ð3Þ

Using Jensen’s inequality [31], it is possible to show that for any value of θ, the function

Hðθ; θ̂ðiÞÞ is decreasing. Hence, the optimization is only carried out on the auxiliary function

Qðθ; θ̂ðiÞÞ because, by maximizing Qðθ; θ̂ðiÞÞ, the new parameter θ̂ðiþ1Þ is such that the likeli-

hood function increases (see e.g. [5, 33]).

In general, the EM method can be summarised as follows:

E-step: Compute the expected value of the joint likelihood function for the complete data (mea-

surements and hidden variables) based on a given parameter estimate, θ̂ðiÞ. Thus, we have

(see e.g. [5]):

Qðθ; θ̂ðiÞÞ ¼ E½ log pðzjθÞjy; θ̂ðiÞ �; ð4Þ

M-step: Maximize the function Qðθ; θ̂ðiÞÞ (4), with respect to θ:

θ̂ðiþ1Þ ¼ arg max
θ

Qðθ; θ̂ðiÞÞ: ð5Þ

This succession of estimates converges to a stationary point of the log-likelihood function

[34].

2.2 The MM algorithm

The idea behind the MM algorithm [7] is to construct a surrogate function gðθ; θ̂ðiÞÞ, that

majorizes (for minimization problems) or minorizes (for maximization problems) a given cost
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functions f(θ) [7] at θ̂ðiÞ such that,

f ðθÞ � gðθ; θ̂ðiÞÞ for minimization problems; or

f ðθÞ � gðθ; θ̂ðiÞÞ for maximization problems; and

f ðθÞ ¼ gðθðiÞ; θðiÞÞ;

where θ̂ðiÞ is an estimate of θ. Then, the surrogate function is iteratively optimized until con-

vergence. Hence, for maximizing f(θ) we have [35]

θ̂ðiþ1Þ ¼ argmax
θ

gðθ; θ̂ðiÞÞ: ð6Þ

For the construction of the surrogate function, popular techniques include the second order

Taylor approximation, the quadratic upper bound principle and Jensen’s inequality for convex

functions, see, e.g., [35].

Remark 1. The iterative strategy utilized in the MM algorithm converges to a local optimum
since

f ðθ̂ðiþ1ÞÞ � gðθ̂ðiþ1Þ; θ̂ðiÞÞ � gðθ̂ðiÞ; θ̂ðiÞÞ ¼ f ðθ̂ðiÞÞ:

2.3 Data augmentation in inference problems

Data augmentation algorithms are based on the construction of the augmented data and its

many-to-one mapping O(y). This augmented data is assumed to describe a model from which

the observed data y is obtained via marginalization [36]. That is, a system with a likelihood

function p(y|θ) can be understood to arise from

pðyjθÞ ¼
Z

pðy; xjθÞdx; ð7Þ

where the augmented data corresponds to (y, x) and x is the latent data [6, 36]. This idea has

been utilized for supervised learning [37] and the development of the Bayesian Lasso [38], to

mention a few examples. In those problems, the Laplace distribution is expressed as a two-

level hierarchical-Bayes model. This equivalence is obtained from the representation of the

Laplace distribution as a VMGM:

a
2
e� ajyj ¼

Z 1

0

1
ffiffiffiffiffiffiffiffi
2pl
p e� y

2=ð2lÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pðyjlÞ

a2

2
e� a2l=2

|fflfflfflfflffl{zfflfflfflfflffl}
pðlÞ

dl:
ð8Þ

In fact, there are several pdf’s than can be expressed as VMGMs, as shown in Table 1 [22],

where g(θ) is the penalty term that can be expressed as a pdf. In addition, in [26] it was

Table 1. Selection of mean-variance mixture representations for penalty functions.

pðyÞ ¼
R1

0
N θðmþ lu; t2s2lÞpðlÞdl.

Penalty function g(θ) u μ p(λ)

Ridge (θ/τ)2 0 0 λ = 1

Lasso |θ/τ| 0 0 Exponential

Bridge |θ/τ|α 0 0 Stable

Generalized Double-Pareto ð1þaÞ

t

� �
log 1þ

jθj
ðatÞ

� �
0 0 Exp-Gamma

https://doi.org/10.1371/journal.pone.0208499.t001
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developed an early version of the methodology presented in this paper, exploring the estima-

tion of a sparse parameter vector utilizing the ℓq-(pseudo)norm, with 0< q< 1.

3 A systematic approach to construct surrogate functions for a

class of inference problems

Here, we consider a general optimization cost defined as:

VðθÞ ¼
Z

OðyÞ

Kðz; θÞdmðzÞ; ð9Þ

where θ is a parameter vector, y is a given data (i.e. measurements), z is the complete data
(comprised of the observed data y and the hidden variables (unobserved data), O(y) is a map-

ping from the sample space of z to the sample space of y, K(�, �) is a (positive) kernel function,

and μ(�) is a measure, see e.g [31]. The definition in (9) is based on the definition of the auxil-

iary function Q in the EM algorithm [5], where it is assumed throughout the paper that there

is a mapping that relates the not observed data to the observed data, and that the complete data
lies in O(y) [5]. Notice that in (9) the kernel function may not be a pdf. However, several func-

tions can be expressed in terms of a pdf. The most common cases are Gaussian kernels (yield-

ing VMGMs) [23] and Laplace kernels (yielding Laplace mixtures) [39].

Remark 2. Notice that, as explained in Section 1, once the hidden data has been selected, the
data augmentation procedure comes with the definition of VðθÞ in (9). From here, we follow the
systematic nature of the EM and MM algorithms in terms of the iterative nature of the technique.

3.1 Constructing the surrogate function

Since we are considering the optimization of the function VðθÞ, we can also consider the opti-

mization of the function

J ðθÞ ¼ log VðθÞ: ð10Þ

Without modifying the cost function in (10), we can multiply and divide by the logarithm of

the kernel function, obtaining:

J ðθÞ ¼ log VðθÞ ¼ log VðθÞ
logKðz; θÞ
logKðz; θÞ

¼ logKðz; θÞ � log
Kðz; θÞ
VðθÞ

: ð11Þ

Let us assume that at the ith iteration we have the estimate θ̂ðiÞ. Then, we can multiply by

Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞ

and integrate on both sides of (11) with respect to dμ(z), obtaining:

J ðθÞ ¼
Z

OðyÞ

log VðθÞ
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ ¼ log VðθÞ

¼ Qðθ; θ̂ðiÞÞ � Hðθ; θ̂ðiÞÞ:

ð12Þ

where:

Qðθ; θ̂ðiÞÞ ¼
Z

OðyÞ

log½Kðz; θÞ�
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ; ð13Þ
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Hðθ; θ̂ðiÞÞ ¼
Z

OðyÞ

log
Kðz; θÞ
VðθÞ

� �
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ; ð14Þ

are auxiliary functions. As in the EM algorithm, for any θ, and using Jensen’s inequality [31],

we have:

Hðθ; θ̂ðiÞÞ � Hðθ̂ðiÞ; θ̂ðiÞÞ ¼
Z

OðyÞ

log
Kðz; θÞ
VðθÞ

� �
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

�

Z

OðyÞ

log
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

" #
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

¼

Z

OðyÞ

log
Kðz; θÞVðθ̂ðiÞÞ
VðθÞKðz; θ̂ðiÞÞ

" #
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

� log
Z

OðyÞ

Kðz; θÞ
VðθÞ

dmðzÞ

¼ 0:

ð15Þ

Hence, for any value of θ, the function Hðθ; θ̂ðiÞÞ in (14) is a decreasing function.

Remark 3. The kernel function K(z, θ) satisfies the standing assumption K(z, θ) > 0 since the
proposed scheme is built, among others, on the logarithm of the kernel function K(z, θ). The defi-
nition of the kernel function in (9) allows for kernels that are not pdf’s. On the other hand, some
kernels may correspond to a scaled version of a pdf. In that sense, for the cost function in (9) we
can define a new kernel and a new measure as

�Kðz; θÞ ¼
Kðz; θÞ

R
Kðz; θÞdθ

; d�mðzÞ ¼
Z

K z; θð Þdθ
� �

dmðzÞ;

) VðθÞ ¼
Z

OðyÞ

�Kðz; θÞd�mðzÞ:

Remark 4. In the proposed methodology, it is possible to optimize the surrogate function
defined by

�Qðθ; θ̂ðiÞÞ ¼
Z

OðyÞ

log½Kðz; θÞ�Kðz; θ̂ðiÞÞdmðzÞ; ð16Þ

since Vðθ̂ðiÞÞ in (13) does not depend on the parameter θ. Thus, the proposed method corresponds
to a variation of the EM algorithm that is not limited to probability density functions (e.g. the
likelihood function) for solving ML and MAP estimation problems. Instead, our version considers
general measures (μ(z)), where the mapping over the measurement data O(y) is a given set.

The idea behind using a surrogate function is to obtain a simpler algorithm for the optimi-

zation of the objective function when compared to the original optimization problem. This

can be achieved iteratively if the Fisher Identity for the surrogate function and the objective
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function is satisfied. That is,

@

@θ
J ðθÞ

�
�
�
�
θ¼θ̂ðiÞ

¼
@

@θ
Qðθ; θ̂ðiÞÞ

�
�
�
�
θ¼θ̂ ðiÞ

: ð17Þ

Lemma 1. For the class of objective functions in (9), the surrogate function Qðθ; θ̂ðiÞÞ in (13)

satisfies the Fisher identity defined in (17).

Proof. From (12) we have:

@

@θ
J ðθÞ

�
�
�
�
θ¼θ̂ðiÞ

¼
@

@θ
Qðθ; θ̂ðiÞÞ

�
�
�
�
θ¼θ̂ ðiÞ

�
@

@θ
Hðθ; θ̂ðiÞÞ

�
�
�
�
θ¼θ̂ ðiÞ

:

Next, let us consider the gradient of the auxiliary function Hðθ; θ̂ðiÞÞ:

@

@θ
Hðθ; θ̂ðiÞÞ

�
�
�
�
θ¼θ̂ðiÞ

¼

Z

OðyÞ

Kðz; θÞ
VðθÞ

� �� 1

θ¼θ̂ðiÞ

@

@θ
Kðz; θÞ
VðθÞ

� �

θ¼θ̂ðiÞ

Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

¼

Z

OðyÞ

@

@θ
Kðz; θÞ
VðθÞ

� �

θ¼θ̂ ðiÞ
dmðzÞ ¼

@

@θ

Z

OðyÞ

Kðz; θÞ
VðθÞ

dmðzÞ

2

6
6
4

3

7
7
5

θ¼θ̂ðiÞ

¼ 0:

Hence, (17) holds.

Remark 5. Note that the Fisher identity in Lemma 1 is well known in the EM-framework.
However, we have specialized this result for the problem in this paper (i.e. when K(z, θ) is not
necessarily a probability density function)

Lemma 2. The surrogate function Qðθ; θ̂ðiÞÞ in (13) can be utilized to obtain an adequate sur-
rogate function that satisfies the properties in Mark’s approach in (38)–(40).

Proof. Notice that in Mark’s approach the optimization problem corresponds to the mini-

mization of the objective function. Hence, to maximize, we have

J ðθÞ ¼ � Qðθ; θ̂ðiÞÞ þHðθ; θ̂ðiÞÞ. From (12) we can construct the surrogate functions

~Qðθ; θ̂ðiÞÞ and ~Hðθ; θ̂ðiÞÞ since

J ðθÞ ¼ � ðQðθ; θ̂ðiÞÞ � Qðθ̂ðiÞ; θ̂ðiÞÞ þ J ðθ̂ðiÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~Qðθ;θ̂ðiÞÞ

þ ðHðθ; θ̂ðiÞÞ � Qðθ̂ðiÞ; θ̂ðiÞÞ þ J ðθ̂ðiÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~Hðθ;θ̂ ðiÞÞ

:
ð18Þ

The function ~Hðθ; θ̂ðiÞÞ satisfies ~Hðθ; θ̂ðiÞÞ � ~Hðθ̂ðiÞ; θ̂ðiÞÞ � 0, which implies that

J ðθÞ � ~Qðθ; θ̂ðiÞÞ, satisfying (38). From ~Qðθ; θ̂ðiÞÞ ¼ Qðθ; θ̂ðiÞÞ � Qðθ̂ðiÞ; θ̂ðiÞÞ þ J ðθ̂ðiÞÞ we

can obtain ~Qðθ̂ðiÞ; θ̂ðiÞÞ ¼ J ðθ̂ðiÞÞ, satisfying (39). Finally, given that the auxiliary function

~Hðθ; θ̂ðiÞÞ satisfies (17), ~Qðθ; θ̂ðiÞÞ satisfies (40).

Remark 6. Since d
dθ Qðθ; θ̂

ðiÞÞ ¼ d
dθ

~Qðθ; θ̂ðiÞÞ, it is simpler to consider the function Qðθ; θ̂ðiÞÞ

instead of ~Qðθ; θ̂ðiÞÞ in penalized (regularized) and MAP estimation problems, as shown in [26]

and [27].

We summarize our proposed algorithm in Table 2.

3.2 Surrogate functions for inverse problems

The objective function in (9) can be understood as an integral equation [40], where the

unknown function of the integral equation corresponds to the kernel K(z, θ). In this kind of
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problems, samples from VðθÞ are available, whilst dμ(z) is assumed known. Several problems

can be posed as this kind of problems. In the following, we explain how to use the approach

presented in this paper to solve different inverse problems that arise in the integral equation

form.

3.2.1 Stellar rotational velocity estimation. One of the many problems in Astronomy

deals with is the estimation of rotational velocities of stars. This particular problem is of great

importance, since it allows astronomers to describe and model the stars formation, their inter-

nal structure and evolution, as well as how they interact with other stars, see e.g. [19, 41, 42].

Modern telescopes allow for the measurement of the rotational velocities from the telescope

point of view, that is, a projection of the true rotational velocity. This is modelled (spatially) as

the convolution of the true rotational velocity pdf and a uniform distribution over the sphere

(for more details see e.g. [19]):

pðyjsÞ ¼
Z 1

y

y
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p pðxjsÞdx; ð19Þ

where p(y|σ) is the uniform projected rotational velocity pdf and p(x|σ) is the true rotational

velocity pdf to be estimated, and σ a hyperparameter. Thus, we can define the kernel function

as K(x, σ) = p(x|σ) and dmðxÞ ¼ y

x
ffiffiffiffiffiffiffiffi
x2� y2
p dx. This definition allows for the direct utilization of

the expressions in (13) in order to estimate the parameter σ that defines the unknown rota-

tional velocity pdf. We illustrate with one example in Section 6.1.

3.2.2 Channel estimation in wireless communications. It is well known in the Commu-

nications community that the wireless channel corresponds to the superposition of different

copies of the transmitted signal that have been reflected, refracted and scattered. Thus, those

copies arrive at the receiver with different phase. Those components are referred to as multi-
path components [43]. On the other hand, it has been shown empirically that a good model

for the multipath channel corresponds to either Rayleigh or Rice distributions [44]. However,

there are cases when those distributions do not provide a good model for the channel. One of

those cases corresponds to the presense of different channel models in the vicinity of the trans-

mitter and the vicinity of the receiver. This situation ocurrs particularly in the so called urban
scenarios, where the channel exhibits different behaviouirs in different places. For this sce-

nario, an adequate model that takes into consideration different models and a transition from

a local distribution and a global distribution is a continuous mixture of the form [18]

pðxÞ ¼
Z

OðxÞ

Kðx;σÞdmðσÞ; ð20Þ

where K(x, σ) is a pdf in a local area, μ(σ) is a distribution of σ which depends on the path

Table 2. Proposed algorithm.

Step 1: Find a kernel that satisfies (9).

Step 2: i = 0.

Step 3: Obtain an initial guess θ̂ ðiÞ.

Step 4: Compute Qðθ; θ̂ ðiÞÞ as in (13).

Step 5: Compute ~Qðθ; θ̂ ðiÞÞ.

Step 6: Incorporate ~Qðθ; θ̂ ðiÞÞ in the optimization problem and solve.

Step 7: i = i + 1 and back to Step 4 until convergence.

https://doi.org/10.1371/journal.pone.0208499.t002
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from transmitter to the local cluster, and σ is a vector in the parameter space. Our approach

can be directly used in order to estimate the true nature of the channel when expressed as a

mixture. This can be done since the four most common chanel distributions are Rayleigh,

Rice, log-normal and Nakagami-m [45]. Hence, assuming that the local and global distribution

families are known, the attainment of the auxiliary function Qðσ; σ̂ ðiÞÞ is straightforward and

thus the ML estimate of σ.

3.2.3 Neutrino mass search in particle physics. In the Particle Physics community there

is a plethora of works dealing with the estimation of masses of neutrinos, see e.g. [20] and the

references therein. Among the methods that are generally used to determine the absolute mas-

ses of neutrinos we find the β-decay and the direct determination of neutrino mass, see e.g

[21]. In β-decay methods, the neutrinos are analized based on their energy spectrums, where

the measurements, corresponding to the observed β-spectra, are associated with an integral

equation of the form [20, 21]

FðUÞ ¼
Z

RðEÞT 0ðE;UÞdEþ b; ð21Þ

where b is a constant that represents the measurement noise, R(E) is the emitted β-spectra,

and T 0(E, U) is the impulse response of the equipment. Again, by regarding T 0(E, U) as the

kernel function and R(E)dE as a measure, the attainment of the auxiliary function Q is

straightforward.

3.2.4 Estimation of mixture distributions. Mixture distributions have been widely stud-

ied in the literature, particularly finite mixtures, see e.g. [46, 47]. Their representation can be

expressed in a general fashion by the notation [48]

pðyjθÞ ¼
Z

OðyÞ
Kðz; θÞdμðzÞ; ð22Þ

where K(z, θ) is a suitable function that may be either a pdf (for continuous random variables)

or a probability function (for discrete random variables). The expression in (22) represents

both the sum

pðyjθÞ ¼
X

zj2OðyÞ

Kðzj; θÞ; ð23Þ

for a finite mixture, or the integral

pðyjθÞ ¼
Z

OðyÞ
Kðz; θÞdz; ð24Þ

for an infinite mixture.

Our approach can be tailored for the estimation of the parameters of a finite mixture of the

form

pðyjβÞ ¼
YN

k¼1

XM

j¼1

lj�jðyk; yjÞ; ð25Þ

where we have assumed that pðyjβÞ ¼
QN

k¼1
pðykjβÞ, pðyjβÞ ¼

PM
j¼1
lj�jðyk; yjÞ, and

λ = [λ1,. . ., λM] are the mixing weights, ϕj(y, θj) are the components densities parametrised

by θj. The kernel function defined in our approach can be utilized to represent jth component
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in the discrete mixture in (25) as

Kjðzj; βjÞ ¼ lj�jðy; θjÞ; ð26Þ

where the β = [β1,. . ., βM] is the vector of parameters to be estimated, with βj = [λj, θj]. Notice

that the dependence with respect to the variable z is implicit. Utilizing the expression derived

in (13) we obtain the following E-step

Qðβ; β̂ðiÞÞ ¼
XM

j¼1

logKjðzj; βjÞ
Kjðzj; β̂

ðiÞ
j Þ

PM
j¼1

Kjðzj; β̂
ðiÞ
j Þ
: ð27Þ

Notice that, as shown in [49], the auxiliary function Qðβ; β̂ðiÞÞ in (27) is the same that we

obtain when we consider that the data are fully categorized, i.e. each yk, k = 1,. . ., N, is assumed

to be drawn from only one distribution of the mixture. This assumption yields a data augmen-

tation problem that is solved using the EM algorithm [46].

Remark 7. If we consider a combination of infinite mixtures and finite mixtures of the form

pðyjβÞ ¼
YN

k¼1

Z

pðykjxkÞpðxkjβÞdxk; ð28Þ

with

pðxkjβÞ ¼
XM

j¼1

lj�jðxk; θjÞ; ð29Þ

we can utlize the same approach described here to solve the problem of estimating the parameters
in (28), β. In this case, the jth kernel is defined as [50]

Kjðxk; βjÞ ¼ lj�ðxk; yjÞ; ð30Þ

and measure

dmðxkÞ ¼ pðykjxkÞdxk: ð31Þ

Then, the log-likelihood function can be expressed as

‘NðβÞ ¼
XN

k¼1

log ½VkðβÞ�; ð32Þ

with

VkðbÞ ¼
XM

j¼1

Z 1

� 1

Kðxk; βjÞdmðxkÞ: ð33Þ

This choice of functions leads to the direct implementation of our proposal, from which it is
obtained

Qkðβ; β̂
ðiÞÞ ¼

XM

j¼1

Z 1

� 1

log K xk; βj

� �h iKðxk; β̂
ðiÞ
j Þ

Vkðβ̂ðiÞÞ
dmðxkÞ; ð34Þ
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and the ML estimator can be locally obtained from

�Qðβ; β̂ðiÞÞ ¼
XN

k¼1

Qkðb; β̂
ðiÞÞ; ð35Þ

β̂ðiþ1Þ ¼ argmax
β

�Qðβ; β̂ðiÞÞ: ð36Þ

4 Marks’ approach for constrained optimization

4.1 Constrained problems in statistical inference

Statistical Inference and System Identification techniques include a variety of methods that

can be used in order to obtain a model of a system from data. Classical methods, such as Least
Squares, ML, MAP [51], Prediction Error Method, Instrumental Variables [52], and Stochastic
Embedding [53] have been considered in the literature for such task. However, the increasing

complexity of modern system models has motivated researchers to revisit and reconsider

those techniques for some problems. This has resulted in the incorporation of constraints and

penalties, yielding an often more complicated optimization problem. For instance, it has been

shown that the incorporation of linear equality constraints may improve the accuracy of the

parameter estimates, see e.g [54]. On the other hand, the incorporation of regularization terms

(or penalties) also improves the accuracy of the estimates, reducing the effect of noise and

eliminating spurious local minima [55]. Regularization can be mainly incorporated in two

ways: by adding regularizing constraints (a penalty function) or by including a probability

density function (pdf) as a prior distribution for the parameters, see e.g. [27]. Another way to

improve the estimation is by incorporating inequality constraints, where certain functions of

the parameters may be required, for physical reasons amongst others, to lie between certain

bounds [56]. From this point of view, it is possible to consider the classical methods with con-

straints or penalties, as in [53, 55–57].

Perhaps one of the most utilized approaches for penalized estimation (with complicated

non-linear expressions) is the MM algorithm—for details on the MM algorithm see Section

2.2. This technique allows for the utilization of a surrogate function that is simple to handle, in

terms of derivatives and optimization techniques, and that is, in turn, iteratively solved. How-

ever, its inequality constraint counterpart, here referred to as Marks’ approach [10], is not as

well known as the MM algorithm. Moreover, there is no straightforward manner to obtain

such surrogate function. In this paper we focus on a systematic way to obtain the correspond-

ing surrogate function using Marks’ approach for a class of constraints.

4.2 Mark’s approach

The approach in [10] deals with inequality constraints by using a similar approach to the EM

and MM algorithms. The basic idea is, again, to generate a surrogate function that allows for

an iterative procedure whose optimum value is the optimum value of the original optimization

problem.

Let us consider the following constrained optimization problem:

θ� ¼ arg min
θ

f ðθÞ

s: t: gðθÞ � 0;
ð37Þ

where f(θ) is the objective function and g(θ) encodes the constraint of the optimization prob-

lem. In particular, let us focus on the case where g(θ) is not a convex function. This implies
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that the optimization problem cannot be solved directly using standard techniques, such as

quadratic programming or fractional programming. This difficulty can be overcome by utiliz-

ing a surrogate function Qðθ; θ̂ðiÞÞ at a given estimate θ̂ðiÞ, such that

gðθÞ � Qðθ; θ̂ðiÞÞ ð38Þ

gðθ̂ðiÞÞ ¼ Qðθ̂ðiÞ; θ̂ðiÞÞ ð39Þ

d
dθ

gðθÞ
�
�
�
�
θ¼θ̂ðiÞ

¼
d
dθ

Qðθ; θ̂ðiÞÞ
�
�
�
�
θ¼θ̂ ðiÞ

ð40Þ

Provided the above properties are satisfied, then the following approximation of (37):

θðiþ1Þ
¼ arg min

θ
f ðθÞ

s: t: Qðθ; θ̂ðiÞÞ � 0;

ð41Þ

iteratively converges to the solution of the optimization problem (37). As shown in [10], the

optimization problem in (41) is equivalent to the original problem (37), since the solution of

(41) converges to a point that satisfies the Karush-Kuhn-Tucker conditions of the original

optimization problem.

Remark 8. Mark’s approach can be considered as a generalization of the MM algorithm,
since the latter can be derived (for a broad class of problems) from the former. Let us consider the
following problem:

θ� ¼ argmin
θ

f ðθÞ: ð42Þ

Using the epigraph representation of (42) [58], we obtain the equivalent problem

θ� ¼ arg min
θ

t

s: t: f ðθÞ � t;
ð43Þ

Using Mark’s approach (41), we can iteratively find a local optimum of (42) via

θðiþ1Þ
¼ arg min

θ
t

s: t: Qðθ; θ̂ðiÞÞ � t;
ð44Þ

where Qðθ; θ̂ðiÞÞ in (44) is a surrogate function for f(θ) in (42). From the epigraph representation
we then obtain

θðiþ1Þ
¼ argmin

θ
Qðθ; θ̂ðiÞÞ; ð45Þ

which is the definition of the MM algorithm (see 2.2) for more details.

5 A quadratic surrogate function for a class of kernels

In this section we focus on a special class of the kernel functions K(z, θ). For this particular

class, the following is satisfied:

@

@θ
log ½Kðz; θÞ� ¼ AðzÞθ þ b; ð46Þ
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where A(z) is a matrix and b is a vector, both of adequate dimensions. Then, we have that

@

@θ
Qðθ; θ̂ðiÞÞ ¼

Z

OðyÞ

½AðzÞθ þ b�
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

¼

Z

OðyÞ

AðzÞ
Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

2

6
6
4

3

7
7
5θ þ b

Z

OðyÞ

Kðz; θ̂ðiÞÞ
Vðθ̂ðiÞÞ

dmðzÞ

¼ Rθ þ b:

ð47Þ

Remark 9. Notice that the previous expression is linear with respect to θ. This implies that the
function Qðθ; θ̂ðiÞÞ is quadratic with respect to the parameter vector θ.

From the Fisher Identity in (17) we have that

@

@θ
J ðθÞ

�
�
�
�
θ¼θ̂ ðiÞ

¼ Rθ̂ðiÞ þ b; ð48Þ

from which we can solve for R in some cases. In other cases, the matrix R can also be com-

puted using Monte Carlo algorithms. In particular, if A(z) is a diagonal matrix, then R is also a

diagonal matrix defined by R = diag[r1, r2,. . .]. Thus, we have

@

@yk
J ðθÞ

�
�
�
�
θ¼θ̂ ðiÞ
¼ rkŷ

ðiÞ
i þ bk ) rk¼

@

@yk
J ðθÞ

�
�
�
θ¼θ̂ ðiÞ

� bk

ŷ
ðiÞ
k

;

where θi is the ith component of the parameter vector θ, θ̂ðiÞi is the ith component of the esti-

mate θ̂ðiÞ, ri is the ith element of the diagonal of R, and bi is the ith element of the vector b.

Hence, when optimizing the auxiliary function Qðθ; θ̂ðiÞÞ we obtain

@

@θ
Qðθ; θ̂ðiÞÞ ¼

r1

r2

. .
.

2

6
6
4

3

7
7
5 θ þ b ¼ 0 ) ŷ

ðiþ1Þ

k ¼ �
bk

rk
:

Equivalently,

θ̂ðiþ1Þ ¼ R� 1b: ð49Þ

This implies that in our approach, it is not necessary to obtain the auxiliary function Q
and optimize it. Instead, by computing R and b at every iteration, the new estimate can be

obtained.

Remark 10. The computation of the matrix R can be cumbersome when the matrix A(z) is
not diagonal. In those cases, the integral that defines R can be computed utilizing Markov Chain
Monte Carlo, quasi-Monte Carlo [59] or quadrature methods [60].

The class defined in (46) arises naturally when dealing with VMGM, because the corre-

sponding kernel function is normal and, thus, its logarithm is a quadratic function.

In particular, the utilization of VMGM encompasses different expressions commonly used

for parameter estimation. Indeed, we have:

(i) Lasso: The Lasso [61], expressed as a Laplace pdf, is represented by a VMGM [38], with

p(θ|z) a zero-mean Gaussian distribution (of iid terms) as the kernel and p(z) an
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exponential distribution with parameter γ2/2. That is,

pðθÞ ¼
Yp

j¼1

g

2
e� gjyjj ¼

Yp

j¼1

Z

N yj
ð0; zjÞ

g2

2
e
�

g2

2
zj

0

@

1

Adzj: ð50Þ

(ii) Elastic-Net: The Elastic-Net penalty [62] is interpreted as a pdf if it corresponds to the

product of two pdf’s, a Laplacian (as in the Lasso case) and a Gaussian pdf. In this sense, by

grouping those pdf’s, we obtain [63]

pðθÞ ¼ kEN
Yp

j¼1

Z 1

1

N yj
0;
ðlj � 1Þ

ljk

 !

pðljÞdlj; ð51Þ

with pðljÞ /
ffiffiffiffiffiffiffi

1

lj � 1

q
e� 1

8

ð1� kÞ2

k lj .

(iii) Group-Lasso: The Group-Lasso penalty is obtained via VMGM-representation as

pðθÞ ¼ kGL
Yp

j¼1

Z 1

0

N θg
0;
lg

g
IGg

� �

w2

Ggþ1
ðlgÞdlg; ð52Þ

where w2
l is the chi-squared distribution with l degrees of freedom.

For the class of kernels here described, the proposed method for constructing surrogate

functions can also be understood as part of sequential quadratic programming (SQP) methods

[64] when, for instance, the above penalties are utilized as constraints in a constrained ML esti-

mation problem. Indeed, the general case of equality and inequality-constrained minimization

problems is defined as [65]:

θ� ¼ arg min
θ

f ðθÞ

s:t: hðθÞ ¼ 0; gðθÞ � 0;
ð53Þ

which is solved by iteratively defining quadratic functions that approximate the objective

function and the inequality constraint around a current iterate θ̂ðiÞ. In the same way, our pro-

posal generates an algorithm with quadratic surrogate functions, where an auxiliary function

~Qðθ; θ̂ðiÞÞ in (18) must be constructed for f(θ) and/or g(θ) in (53).

6 Numerical examples

In this section, we illustrate our proposed algorithm with two numerical examples.

6.1 Example 1: Estimation of the distribution of stellar rotational velocities

A common model for p(x|σ) found in the Astronomy literature is the Maxwellian distribution

(see e.g. [19, 66])

pðxjsÞ ¼
ffiffiffi
2

p

r
1

s3
x2e� x2=ð2s2Þ: ð54Þ

In practice, the measurements correspond to realizations of p(y|σ) [19], from which the
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likelihood function can be defined as:

pðyjsÞ ¼
YN

k¼1

pðykjsÞ; ð55Þ

where y = [y1,. . ., yN]T,

pðykjsÞ ¼
Z 1

yk

yk
xk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
k � y2

k

p pðxkjsÞdxk;

xk is Maxwellian distributed, and N is the number of measurement points. Hence, the log-like-

lihood function can be expressed as:

‘ðsÞ ¼
XN

k¼1

log
Z 1

yk

yk
xk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
k � y2

k

p pðxkjsÞdxk

" #

: ð56Þ

If we define the complete data z = (x, y), the kernel function K(�, �) and the measure μ(�) in (9)

can be defined as

Kðxk; sÞ ¼ pðxkjsÞ ¼

ffiffiffi
2

p

r
x2
k

s3
e� x2

k=ð2s
2Þ; ð57Þ

and

dmðxk; ykÞ ¼
yk

xk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
k � y2

k

p dxk: ð58Þ

Then, the log-likelihood function in (56) can be written as:

‘ðsÞ ¼
XN

k¼1

log ½VkðsÞ�; ð59Þ

with

VkðsÞ ¼

Z 1

yk

Kðxk; sÞdmðxk; ykÞ; ð60Þ

Thus, the ML estimator is obtained from:

ŝML ¼ argmax
s

XN

k¼1

log VkðsÞ: ð61Þ

Since the parameter that is needed to be estimated is part of the convolution in (19), the opti-

mization problem in (61) cannot be solved in a straightforward manner. Instead, we utilize the

re-interpretation of the EM algorithm that we propose for solving (61).

First, notice that from the surrogate function Qðs; ŝðiÞÞ can be expressed as:

Qðs; ŝðiÞÞ ¼
XN

k¼1

Qkðs; ŝ
ðiÞÞ; ð62Þ

with

Qkðs; ŝ
ðiÞÞ ¼

Z 1

yk

log ðKðxk; sÞÞ
Kðxk; ŝðiÞÞ
Vkðŝ

ðiÞÞ
dmðxk; ykÞ: ð63Þ
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For convenience, we can differentiate the auxiliary function Qðs; ŝðiÞÞ in (62) with respect to

1/σ obtaining:

@Qðs; ŝðiÞÞ
@ð1=sÞ

¼
XN

k¼1

Z 1

yk

3s �
x2
k

s

� �
Kðxk; ŝðiÞÞ
Vkðŝ

ðiÞÞ
dmðxk; ykÞ: ð64Þ

Then, equating to zero and solving for σ we finally obtain

ŝðiþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðy; ŝðiÞÞ

3N

r

; ð65Þ

where

Sðy; ŝðiÞÞ ¼
XN

t¼1

Z 1

yk

x2

k
Kðxk; ŝðiÞÞ
Vkðŝ

ðiÞÞ
dmðxk; ykÞ: ð66Þ

In Table 3 we summarized the specialisation of our proposed algorithm for this example.

For the numerical simulation, we have considered the problem solved in [19], with the true

dispersion parameter σ0 = 8. The measurement data y = [y1,. . ., yN] was generated using the

Slice Sampler (see e.g. [67]) applied to (19). The simulation setup is as follows:

• The data length is given by N = 10000.

• The number of Monte Carlo (MC) simulations is 50.

• The stopping criterion is given by:

kŝðiÞ � ŝði� 1Þk=kŝðiÞk < 10� 6;

or the maximum number of iterations of 100 has been reached.

The results are shown in Fig 1, were the estimated p(x|σ) for each MC simulation is shown.

It is clear that the estimated Maxwellian distributions are very similar to the true density distri-

bution. The mean value of the estimated parameter was ŝ ¼ 7:9920. The estimation from each

MC simulation is shown in Fig 2. It can be clearly seen that the estimated parameter ŝ is close

to the true value.

6.2 Example 2: Channel estimation in wireless communications

When modelling the wireless channel, a popular technique that is commonly used corresponds

to the transmission of a sine tone at a given frequency, see e.g. [68]. The received power is then

modelled as a random variable. The corresponding distribution has been widely studied in the

literature from measurements, and the empirical data have shown that the two most common

distributions are Rayleigh an Rice [44, 45]. Hence, using similar ideas as in [50], in this exam-

ple we formulate the channel distribution as a discrete sum based on a Rayleigh and a Rice

component to determine the nature of the wireless channel.

Table 3. Proposed algorithm for Maxwellian distribution estimation in Example 1.

Step 1: i = 0.

Step 2: Obtain an initial guess σ̂ ðiÞ.

Step 3: Compute the integral given by (66).

Step 4: Compute ŝðiþ1Þ (65)

Step 5: i = i + 1 and back to Step 3 until convergence.

https://doi.org/10.1371/journal.pone.0208499.t003
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Fig 1. Estimated distribution for the stellar rotational velocity.

https://doi.org/10.1371/journal.pone.0208499.g001

Fig 2. Convergence of the proposed approach to the global optimum.

https://doi.org/10.1371/journal.pone.0208499.g002
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First, the discrete mixture that we want to adjust from data is given by

pðxjθÞ ¼ l1pRayleighðxjs2
1
Þ þ l2pRiceðxjv; s2

2
Þ; ð67Þ

where

pRayleighðxjs2
1
Þ ¼

x
s2

1

e
� x2

2s2
1 ; ð68Þ

pRiceðxjv; s2
2
Þ ¼

x
s2

e
�
ðx2þv2Þ

2s2
2 I0

xv
s2

2

� �

; ð69Þ

θ ¼ ½s2

1
; l1; v; s

2

2
; l2�; ð70Þ

and I0(�) is the modified Bessel function of zeroth order. In addition, we must also include the

constraint λ1+ λ2 = 1 so p(x) is a pdf. Thus, we can directly apply our proposed approach by

assuming that each measurement point can be associated with a hidden variable that describes

if such data point comes from the Rayleigh component or the Rice component, as it is tradi-

tionally formulated when dealing with discrete mixtures [46]. Hence, the auxiliary function

Qðθ; θ̂ðiÞÞ is given by

Qðθ; θ̂ðiÞÞ ¼
X2

t¼1

X2

j¼1

z
ðiÞ
tj log lj þ

XN

t¼1

X2

j¼1

z
ðiÞ
tj log fjðxt; θjÞ; ð71Þ

where θ̂ðiÞ is the current estimate, z is the unobserved (hidden) data and ztj is an indicator

parameter such that ztj = 1 if the t-th observation comes from component j and is zero other-

wise. It is given by:

z
ðiÞ
tj ¼

l
ðiÞ
j fjðxt; y

ðiÞ
j Þ

P2

l¼1
l
ðiÞ
l flðxt; θ

ðiÞ
l Þ
: ð72Þ

The estimate θ̂ðiþ1Þ at the next iteration is then given by:

θ̂ðiþ1Þ ¼ argmax
θ

Qðθ; θ̂ðiÞÞ; ð73Þ

from which we obtain the following expressions:

v̂ðiþ1Þ

j ¼

PN
t¼1
z
ðiÞ
tj xt

I1ðr
ðiÞ
tj Þ

I0ðr
ðiÞ
tj Þ

Pjðb̂
ðiÞ
j Þ

ð74Þ

½ŝ2

j �
ðiþ1Þ ¼

PN
t¼1
z
ðiÞ
tj x2

t þ v̂2
j

h i
ðiÞ � 2xtv̂

ðiÞ
j

I1ðr
ðiÞ
tj Þ

I0ðr
ðiÞ
tj Þ

� �

2Pjðb̂
ðiÞ
j Þ

ð75Þ

l̂
ðiþ1Þ

j ¼
Pjðb̂

ðiÞ
j Þ

P2

l¼1
Plðb̂

ðiÞ
l Þ

ð76Þ
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with

r
ðiÞ
tj ¼

xtv̂
ðiÞ
j

½ŝ2
j �
ðiÞ

ð77Þ

Pjðb̂
ðiÞ
j Þ ¼

XN

t¼1

z
ðiÞ
tj ð78Þ

We also consider the utilization of Akaike’s Information Criterion (AIC) in order to obtain an

accurate yet simple model and, thus, discriminating from a Rayleigh channel, a Rice channel,

and a mixture of both.

With the above formulation, we consider two cases: a Rayleigh distributed channel and a

Rice distributed channel.

6.2.1 Rayleigh distributed channel. In this example, the random variable x is drawn from

the Rayleigh distribution

pðxÞðTrueÞ ¼
x
s2

exp �
x2

2s2

� �

ð79Þ

with σ2 = 1, using the Slice Sampler [69]. The best estimated model corresponds to the

single Rayleigh component in the mixture. The corresponding estimation of σ2 yields

ŝ2
1
¼ 1:0007� 9:003� 10� 4. Fig 3 shows the true Rayleigh distribution and the mean esti-

mated pdf from the 50 MC simulations. We observe an important agreement between the true

pdf and the estimated model.

Fig 3. Rayleigh distribution estimation using a Rayleigh-Rice mixture.

https://doi.org/10.1371/journal.pone.0208499.g003
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6.2.2 Rice distributed channel. In this case, the data is drawn from the Rice distribution

pðxÞðTrueÞ ¼
x
s2

exp �
x2 þ v2

2s2

� �

I0

xv
s2

� �
ð80Þ

with v = 4 and σ2 = 1, using the Slice Sampler. The best model is selected as a single Rician

component. The corresponding estimated parameters are v̂2 ¼ 4:003� 1:3� 10� 3 and

ŝ2
2
¼ 0:9858� 2:2� 10� 3. In Fig 4 we show the true Rice distribution and the mean estimated

pdf from 50 MC simulations. We can observe that the estimator exhibits a good performance

for the estimation of a Rice distribution.

Conclusions and future work

In this paper we have presented a systematic approach for constructing surrogate functions in

a wide range of inference problems. Our approach can be utilized for constructing surrogate

functions for both the cost function and the constraints, generalizing the popular EM and

MM algorithms. Our approach is based on the utilization of data augmentation and kernel

functions, yielding simple optimization algorithms when the kernel can be expressed as

VMGM. We have shown how our proposal can be utilized to solve inverse problems that are

expressed as integral equations and mixture distributions.

In addition, we have shown that our approach can be utilised for constrained/penalized ML

and MAP estimations problems. In particular, common problems in statistical inference can

directly be solved using our proposal since they can be posed as Variance Mean Gaussian Mix-

tures (VMGM), yielding quadratic surrogate functions.

Fig 4. Rice distribution estimation using a Rayleigh-Rice mixture.

https://doi.org/10.1371/journal.pone.0208499.g004
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In the last two decades the problem of sparse estimation has attracted a lot of attention.

Since our approach can be utilized in those problems, and since it is based on the principles of

the MM algorithm, a detailed analysis can be done in terms of accuracy and convergence of

our technique, and compared against other techniques, such as the ones in [28, 30], and [29],

where different Lasso-type problems are compared, the MM algorithm is utilized in con-

strained problems for ML estimation in generalized linear model regression, and the MM

algorithm is used for (unconstrained) sparse estimation under non-convex penalties,

respectively.

Supporting information
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9. Figueiredo MAT, Bioucas-Dias JM, Nowak RD. Majorization–Minimization Algorithms for Wavelet-

Based Image Restoration. IEEE Trans Image Process. 2007; 16(12):2980–2991. https://doi.org/10.

1109/TIP.2007.909318 PMID: 18092597

10. Marks BR, Wright GP. A General Inner Approximation Algorithm for Nonconvex Mathematical Pro-

grams. Operations Research. 1978; 26(4):681–683. https://doi.org/10.1287/opre.26.4.681
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