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Abstract: Failing BK polyomavirus (BKPyV)-specific immune control is underlying onset and
duration of BKPyV-replication and disease. We focused on BKPyV-specific CD8 T-cells as key
effectors and characterized immunodominant 9mer epitopes in the viral large tumor-antigen (LTag).
We investigated the variation of LTag-epitopes and their predicted effects on HLA-class 1 binding
and T-cell activation. Available BKPyV sequences in the NCBI-nucleotide (N = 3263), and the NCBI
protein database (N = 4189) were extracted (1368 sequences) and analyzed for non-synonymous
aa-exchanges in LTag. Variant 9mer-epitopes were assessed for predicted changes in HLA-A and
HLA-B-binding compared to immunodominant 9mer reference. We identified 159 non-synonymous
aa-exchanges in immunodominant LTag-9mer T-cell epitopes reflecting different BKPyV-genotypes as
well as genotype-independent variants altering HLA-A/HLA-B-binding scores. Decreased binding
scores for HLA-A/HLA-B were found in 27/159 (17%). This included the immunodominant
LPLMRKAYL affecting HLA-B*07:02-, HLA-B*08:01- and HLA-B*51:01-presentation. In two healthy
BKPyV-seropositive HLA-B*07:02 blood donors, variant LSLMRKAYL showed reduced CD8 T-cell
responses compared to LPLMRKAYL. Thus, despite LTag being highly conserved, aa-exchanges occur
in immunodominant CD8 T-cell epitopes of BKPyV-genotypes as well as of genotypes -independent
variants, which may contribute to genotype-dependent and genotype-independent failure of cellular
immune control over BKPyV-replication. The data warrant epidemiological and immunological
investigations in carefully designed clinical studies.

Keywords: BK polyomavirus; large tumor antigen; CD8 T-cell epitope; immune escape; human
leukocyte antigen; immunosuppression; transplantation

1. Introduction

BK polyomavirus (BKPyV) is an opportunistic pathogen causing polyomavirus-associated
hemorrhagic cystitis (PyVHC) in 5-20% of allogeneic hematopoietic stem cell (HSCT) recipients [1-3]
and polyomavirus-associated nephropathy (PyVAN) in 1-15% of kidney transplant (KT) patients [4,5].
Moreover, PyV-associated urothelial cancer (PyVUC) has been recognized as an emerging entity in
immunosuppressed patients with a history of prolonged BKPyV-replication and nephropathy following
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accidental integration of the BKPyV genome into human host cell chromosomes [6-9]. Uncontrolled
BKPyV replication due to insufficient BKPy V-specific immunity appears to be the common denominator
of these three major BKPyV diseases [10-13]. Conversely, immunocompetent individuals remain
without significant illness despite high BKPyV infection rates starting in early childhood and reaching
seroprevalence rates of >90% in the general adult population [14,15]. After primary infection, BKPyV
persists in the renourinary tract and, despite potent BKPyV-specific T-cells and neutralizing antibodies
(NAbs) [13], immunocompetent healthy blood donors show low-level urinary BKPyV shedding
indicating effective escape from immune control [16]. BKPyV immune escape is favored by the
viral agnoprotein which actively interferes with innate immune sensing, hence preventing the timely
alarming of the adaptive immune response [17]. Following transplantation, BKPyV-replication increases
in rates and magnitude in the KT-recipients as a result of immunosuppression, HLA-mismatches,
and preferentially involves donor-derived BKPyV genotypes [18-20]. In addition, low or absent NAb
titers against the donor BKPyV-genotype have been associated with an increased risk of developing
BKPyV-DNAemia and nephropathy after kidney transplantation [21-23]. Similar to rearrangements
of the viral non-coding control region [24], amino acid (aa) exchanges in the BKPyV-Vpl capsid,
and specifically in its BC-loop, have been observed in patients with prolonged BKPyV replication
periods. Some variability in the viral DNA-genome may arise by deamination of the antisense strand
by the apolipoprotein B editing complex (APOBEC) 3, thereby introducing point mutations in the
VPI1-gene encoding the major viral capsid protein Vpl [25]. Although antibody titers to BKPyV
virus-like particles generally correlate with BKPyV-specific CD4 T-cells [26], some reports indicate
lack of correlation of plasma BKPyV loads with the emergence of BC-loop mutations or with rising
NAD titers [27,28]. Although immune control at the level of the viral capsid, and specifically by
BKPyV-Nabs, is likely to be important in protecting from systemic spread of the virus, recent data have
demonstrated that plasma BKPyV loads in KT patients do not result from BKPyV virions [29], but mostly
represent DN Ase-sensitive, unprotected genome fragments similar to what has been reported for
cytomegalovirus (CMV) [30,31]. Unlike described for enveloped viruses carrying viral membrane
proteins, BKPyV-capsid antibodies cannot eliminate infected host cells replicating the non-enveloped
virions by antibody-dependent cytotoxicity, but rather interfere after virus release with new rounds of
infection. Moreover, access of NAbs to renal tubules and their effective blocking of viral cell-to-cell
spread inside the renal tubules is presently unresolved [13]. In view of the strong antiviral T-cell
responses [32,33], we and others have focused on characterizing BKPyV-specific CD8 T-cells [34-36].
We found that clearance of BKPyV-DNAemia is associated with increasing BKPyV-specific CD8
T-cell cytotoxic responses to immunodominant 9mers [37]. Notably, the 9mers clustered in hot spots
of the viral large T-antigen (LTag) [37], some of which could be independently linked to human
leukocyte antigen (HLA)-types such as HLA-B7, HLA-B8 and HLA-B51, partially protecting from
BKPyV-DNAemia [38,39]. Since BKPyV-variants can emerge in KT patients with ongoing viral
replication [23,24], we hypothesize that non-synonymous aa-exchanges in immunodominant LTag
T-cell epitopes may contribute to failing immune control over BKPyV replication. We therefore
addressed the question of whether or not aa-exchanges can occur in the BKPyV LTag, and if so, whether
or not such variants affect previously characterized immunodominant 9mer-epitopes of relevance for
cytotoxic T-cell control, adoptive T-cell transfer, and vaccine development [40].

2. Materials and Methods

2.1. Assessing Variation in the BKPyV LTag Sequence

The NCBI nucleotide and protein database is a collection of sequences from several sources,
including nucleotide sequences and translations from annotated coding regions in GenBank and RefSeq
as well as records from SwissProt, the Protein Information Resource (PIR), and Brook-haven Protein
Data Bank (PDB). Sequences were aligned against the LTAG-gene and LTag-protein sequence of the
BKPyV-WW reference genome (BKPyV subtype Ib-1; acc. no.AB211371.1), yielding 521 complete and
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121 partial BKPyV LTAG-nucleotide sequences from the NCBI nucleotide database, and 314 complete
and 412 partial BKPyV LTag-protein sequences from the NCBI protein database. The 521 complete
BKPyV LTAG sequences were processed using “reverse complement sequence”, as they were derived
from full-length BKPyV genome sequences and had anti-sense orientation. Nucleotide sequences were
translated into protein sequences using the “translate to protein” tool. All bioinformatic analysis was
done using the CLC Genomic Workbench software (version 12; QIAGEN, Hilden, Germany).

2.2. BKPyV Genotypes, BKPyV-Variants and LTag-9mer Variants

BKPyV can be categorized into four major genotypes (BKPyV I, II, IIl and IV) based on
neutralization and the specific sequences in the major BKPyV capsid gene VP1 [41], but current
genotyping relies on VP1- and LTAG-sequences to identify subtypes Ia, Ib1, Ib2, Ic, II, III, and IVal, IVa2,
IVb1, IVb2, IVcl, and IVc2 [5,23,42,43]. BKPyV-variants were defined as changes in any aa residue not
attributable to a BKPyV genotype. LTag-9mer variants were defined as aa-exchanges in previously
reported immunodominant 9mer T-cell epitopes [34,37].

2.3. Prediction of HLA-A and -B Binding of BKPyV Immunodominant LTag 9mer T-Cell Epitopes

The Immune Epitope Database and Analysis Resource tool (IEBD) was used to predict the binding
score of wildtype and variant immunodominant 9mer LTag T-cell epitopes [34,37] for the 14 most
prevalent HLAs in Europe and North America. To study the impact on HLA-binding of these variants,
we focused on HLA-B7, -BS, -51, which have been described to present immunodominant LPLMRKAYL
epitope [38] using HLA-A24 as control not binding this epitope. A threshold difference of 0.05 in the
HLA-binding score was interpreted as significant change in binding.

2.4. BKPyV-Specific CD8 T-Cell Responses In Vitro

CD14+ cells were isolated from PBMCs of two healthy BKPyV IgG-seropositive blood donors
(donor 1 HLA-A26/28, HLA-B07/55 and donor 2 HLA-A03/03, HLA-B07/07) and differentiated into
mature monocyte-derived dendritic cells (mMo-DCs) as described [40]. mMo-DCs were pulsed with
LTag overlapping 27mer pool and co-cultured with autologous CD14- cells for 9 days. After expansion,
cells were re-stimulated with wildtype 9mer peptides (9mP), a pool of 97 immunodominant wildtype
or variant 9mP, in which solely the wildtype 9mer127 (LPLMRKAYL) was replaced by variant 9mer127
(LSLMRKAYL); with wildtype 9m127 or with variant 9mer127 alone, or with wildtype 9mer126
(NLPLMRKAY) or variant 9mer126 (NLSLMRKAY).

2.5. Statistical Analysis

All statistical data analysis was done in R (v3.6.1; https://cran.r-project.org), and Prism (v§;
Graphpad Software, San Diego, CA, USA) was used for data visualization. Statistical comparison of
non-parametric data was done using Mann-Whitney U test.

3. Results

3.1. Identification of BKPyV LTag Variants

Sequences of BKPyV, also known as human polyomavirus 1, were retrieved from the NCBI
nucleotide database (N = 3'263; as of 13 November 2020), and the NCBI protein database (N = 4'189;
as of 13 November 2020; Figure 1). A total of 1368 protein sequences were compiled, and protein blast
was done using the LTag-protein sequence of BKPyV-WW as reference (acc. no.AB211371.1).

Although the LTag-protein sequence is highly conserved among the different BKPyV subtypes,
genotype-associated aa were identified, and were therefore called genotype aa-signature positions
(Figure S1, Table S1). These included in BKPyV subtype Ia: T3271; in BKPyV subtype Ib-2: L670S; T354S,
L670S; in BKPyV subtype Ic: L670S; in BKPyV subtype IJIII: R36K, S78N, T2451, T3271, A591S, T592K,
D671N, and Q668E in BKPyV subtype III only; in BKPyV subtype IV: S95R, A120G, Q171L, H244Y, T245],
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E365D, 1414V, T592Q), A662G, L670V and Q675E. In addition, aa-exchanges were identified defining
LTag-variants not associated with a specific BKPyV-genotype (Figure 2). Such genotype-independent
variants were located in the DnaJ-homology region (DnaJ) shared between LTag and sTag, in the
retinoblastoma protein binding domain (pRb), the origin of DNA replication binding domain (ori) and
the helicase domain. Moreover, some aa-exchanges clustered with >10 BKPyV sequences for example
in the C-terminus of the ori- domain, in the C-terminus of the helicase- and in the host range-domain.
Notably, many variant BKPyV-LTag sequences were independently identified in full-length BKPyV
genomes submitted by five to 18 different laboratories (Figure 2).

NCBI nucleotide database NCBI protein database
“human polyomavirus 1" “human polyomavirus 1"
N= 3263 N= 4189
Complete BKPyV LTAG Partial BKPyV LTAG Complete BKPyV LTag Partial BKPyV LTag
sequences sequences sequences sequences
N=521 N=121 N=314 N=412
Reverse
complementation of
antisense LTAG
N=521
l v
Translation of nucleotide to protein sequence
N=642

v v

Compilation of LTag protein sequences
N=1368

i

Protein blast
using BKPyV-WW LTag
as reference
N=1368

Figure 1. Bioinformatic analysis flowchart. BKPyV large tumor antigen (LTag) sequences were
downloaded from the NCBI nucleotide and protein database (as of 13 November 2020). Nucleotide
Scheme 12. QIAGEN, Hilden, Germany) and the LTag BKPyV-WW sequence as reference (BKPyV
subtype Ib-1; acc. no.AB211371.1).

3.2. Identification of Amino Acid Exchanges in Immunodominant LTag 9mer T-Cell Epitopes

Given the role of the 97 immunodominant LTag-9mer T-cell epitopes described previously [34,37],
we investigated whether or not immunodominant epitopes were altered by the aa-exchanges identified.
Indeed, 159 aa-exchanges occurred in the LTag-9mer epitopes with differing frequencies (Figure 3 and
Table 1). Of these, 127 LTag-9mer variants occurred with frequencies <1%, 14 with frequencies of 1% to
<5%, 10 with frequencies of 5% to <10% and 8 with frequencies of 10% to <25% (Table 1). The most
frequent LTag-9mer variants were identified in the N-terminus of the DnaJ domain with frequencies
up to 6%, in the N- and C-terminus of the ori domain with frequencies up to 23%, and in the helicase
domain with frequencies up to 19% (Figure 3). These 9mer variants had been independently submitted
as partial and full-length BKPyV genome sequences from 6 to 12 different laboratories. Remarkably, the
highest frequencies of the 9mer variants above 18% were noted at LTag-positions 171, 244, 245 and 365
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and independently reported from more than ten different laboratories, and reflected BKPyV genotype
IV. LTag-9mer variants at position 36 and 414 with frequencies of around 5%, were associated with
BKPyV genotype II and III. LTag-9mer variants not associated with a certain BKPyV subtype had
been identified with the highest frequency of 4% at position 241, while most other LTag-9mer variants
displayed frequencies <2%. Together, the data indicated that the highly conserved LTag carried
aa-exchanges in immunodominant 9mer T-cell epitopes that were BKPyV-genotype specific or were
genotype-independently diversified through aa-exchanges.
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Figure 2. Variation in the BKPyV LTag protein sequence. BKPyV subtype specific variation and
amino acid exchanges not related to a certain BKPyV subtype (i.e., BKPyV variants) in the large tumor
antigen (LTag) protein sequence were identified (upper panel); number of laboratories that deposited
full-length BKPyV genome or partial LTag sequences from BKPyV-variants (lower panel). Schematic
drawing of the respective domains in LTag and small T antigen (sTag; according to DeCaprio and
Garcea [44]) are indicated below the diagram (DnaJ homology region (DnaJ), retinoblastoma protein
binding domain (pRb), origin of DNA replication binding domain (ori), host range domain (HR)).
Of note, the amino-terminal part including the DnaJ homology domain is identical for sTag and LTag,
whereas the carboxyterminal domains indicated are specific for sTag or LTag.



Viruses 2020, 12, 1476 6 of 15

25+

154
10+

9mer variant

Frequency of 9mer T-cell epitope variants (%)

B e T T e e e e S S T e e S S S
0 100 200 300 400 500 600 700
Amino acid position

: .W'Ir' L

Number of laboratories

§ Ful-length BKPyV genome sequence
Partial BKPyV LTag sequence

15-

Figure 3. Frequency of aa-exchanges in 97 immunodominant LTag-9mer T-cell epitopes. Amino acid
exchanges in 97 previously reported immunodominant large tumor antigen (LTag) 9mer T-cell
epitopes [34,37] were identified (upper panel) and number of laboratories (lower panel) that reported
the respective change in full-length BKPyV genome (black) or in partial LTag sequences (grey).

Table 1. Altered HLA-A and HLA-B binding of wildtype and variant LTag-9mer T-cells epitopes.

Number of LTag 9mer Variants
Frequency of LTag  Number of LTag with Changed HLA Binding !

9mer Variants (%) 9mer Variants
) T N Total
<1% 127 19 15 2 36
1-<5% 14 4 1 1 6
5-<10% 10 2 1 - 3
10-<25.0% 8 2 1 - 3

! To address the impact of reported aa exchanges on HLA-presentation, we applied the Inmune Epitope Database
and Analysis Resource tool analyzing changes in the binding score of HLA-B*07:02, HLA-B*08:01, HLA-B*51:01
and HLA-A*24:02. A threshold difference of 0.05 between the wildtype and variant LTag 9mer T-cell epitope
HLA-binding score was interpreted as significant change in binding (| indicates a significant decrease in binding of
at least 0.05; T indicates a significant increase in binding of at least 0.05).
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3.3. LTag-9mer Variants Affect HLA-B*07:02, HLA-B*08:01 and HLA-B*51:01 Binding

Genotype-independent aa-exchanges occurred at 55 individual LTag positions in immunodominant
9mer T-cell epitopes, and thus, occurred more frequently than aa related to BKPyV genotype II, III and
IV found at six LTag positions (p < 0.001; Figure 4). However, BKPyV genotype specific aa-exchanges
occurred with higher frequencies than aa-exchanges related to BKPyV variants (median frequency of

18.2% (£6.1% 95%CI) vs. 0.2% (+£0.4% 95%CI); p < 0.001; Figure 4).
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Figure 4. BKPyV-genotype independent amino acid exchanges in immunodominant LTag-9mer T-cell
epitopes on HLA-A and HLA-B binding. The indicated BKPyV variant sequences occurred in previously
reported LTag-9mer T-cell epitopes [34,37]. HLA binding was predicted using the Immune Epitope
Database and Analysis Resource tool (red | indicates a significant decrease in binding of at least 0.05;
green T indicates a significant increase in binding of at least 0.05). Schematic drawing of the respective
domains in LTag and small T antigen (sTag; according to DeCaprio and Garcea [44]) are indicated below
the diagram (DnaJ homology region (Dna]J), retinoblastoma protein binding domain (pRb), origin of
DNA replication binding domain (ori), host range domain (HR)). Of note, the amino-terminal part
including the DnaJ homology domain is identical for sTag and LTag, whereas the carboxyterminal
domains indicated are specific for sTag or LTag.
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Next, we investigated whether or not such changes were predicted to be associated with decreased
HLA-presentation and possibly impaired T-cell control. To this end, we applied the Inmune Epitope
Database and Analysis Resource tool analyzing changes in the binding score of the LTag-9mers carrying
aa-exchanges linked to a specific BKPyV-serotype or BKPyV-serotype independent variants. Several
aa-exchanges were associated with a significant change of the binding score to HLA-A and HLA-B
(Figure S2). Overall, 27/159 (17%) LTag-9mer variants showed a significantly decreased binding score,
while 18/159 (11%) LTag-9mer variants increased binding scores. For 3/159 (2%) LTag-9mer variants,
both increased and decreased bindings scores were predicted affecting different HLA-types (Table 1).

Specifically, aa-exchange 1414V (frequency of 4.7%) was associated with BKPyV subtype II/11I,
and led to decreased HLA-A/HLA-B binding of the BKPyV-serotype I-encoded peptide VIFDFLHCYV,
but did not have an effect on the HLA-binding of other LTag-9mer variants such as FDFLHCVVE,
FLHCVVENV and VVENVPKRR (Figure S2 and Figure 4). Similarly, the P534A exchange (0.1%; BKPyV
variant) affected the MHC-anchor position of the LTag 9mer epitope 9m533 YPVPKTLQA [37] with
starting position 533 and dramatically decreased the binding score for HLA-B*07:02, HLA-B*08:01 and
HLA-B*51:01. When the aa-exchanges occurred at positions other than P534A, the binding score was
also decreased for HLA-B*07:02 and HLA-B*08:01 compared to the reference YPVPKTLQA LTag-9mer
T-cell epitope, but the effects were less pronounced compared to the specific 9mer anchor position
(Figure S2 and Figure 4).

To analyze in detail the aa-exchanges at specific anchor positions of MHC-class I, we focused
on the previously well characterized immunodominant 9m127 T-cell epitope LPLMRKAYL having
its starting position at LTag aa position 27 (Figure 4). The LTag-9mer variant 9m127 LSLMRKAYL
is not associated with a specific BKPyV-genotype, and occurred with a low frequency of 0.9%,
being independently reported from 2 different laboratories (Figure 3). Interestingly, the P28S aa-exchange
did not change the predicted low HLA-presentation of the overlapping LTag-9m126 NLSLMRKAY or
-9m128 SLMRKAYLR [37] (Figure S2).

Based on the clinical study by Leboeuf et al. [37], relevant examples of BKPyV-genotype
independent variants causing aa-exchanges that impair HLA-class I-specific anchor positions and
corresponding predictions of immunodominant 9mer T-cell epitopes were found at LTag-starting
positions 406 and 533 (Figure 4 and Figure 52). Interestingly, some aa-exchanges occurring in other than
anchor positions were also significantly impacting the binding score of wildtype 9mers, as in the LTag
9m328 LTRDPYHTIL. The variants LTRDPYYIl and LTRDPYHII were predicted to decrease HLA-B*07:02,
B*08:01, and most dramatically HLA-B*51:01 binding impairing T-cell receptor binding and activation.
In contrast, aa-exchanges at position 241 (LTREPYHTI) had little effect on HLA-binding, and even
appeared to slightly increase the binding score for HLA-B*08:01 compared to BKPyV LTag-9mer
reference (Figure 4).

Given the implications of these predictions on CD8 T-cell function, we conducted a functional study
comparing CD8 T-cell responses to the immunodominant 9mer127 LPLMRKAYL and the corresponding
variant LSLMRKAYL in PBMCs from two healthy BKPyV IgG-seropositive blood donors carrying
HLA-B*07:02 allele using an established protocol [40]. Using flow-cytometry and intracellular cytokine
staining (ic-FACS) for interferon-(IFN)y, the responses to the variant 9mer127 were significantly
reduced, whereas the responses to 9m126 wildtype NLPLMRKAY or variant NLSLMRKAY remained
similar (Figure 5A). When replacing the wildtype 9m127 with the variant in the 9mer pool (9mP)
consisting of 97 immunodominant 9mers [37,40], the IFNy-responses were also reduced but well
detectable as expected (Figure 5A). More detailed characterization of donor 1 revealed reduced
IFNvy-responses in the 9mer-EliSpot as an independent assay (Figure 5B, left panel); and reduced
polyfunctional responses to the variant 9m127 by ic-FACS for IFNYy, tumor-necrosis-factor-(TNF)«x
and CD107a-degranulation (Figure 5B, middle and right panel). To examine the contribution of
HLA-B*07:02-specific CD8 T-cells to IFNy-responses, the corresponding streptamers were used as
described [37,40], after stimulation with wildtype or variant 9mer127 peptides (Figure 5C, left panel).
The results revealed reduced responses to the variant 9mP, and low or no responses to the variant
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9mer127 or 9mer126. Taken together, the results provided first functional evidence for a model of
reduced CD8 T-cell control to variants or immunodominant 9mer-epitopes (Figure 5D) implicated in
cellular BKPyV-immune control [38,39].
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Figure 5. Comparing CD8 T-cell responses to wildtype and variant 9mer127. (A) Top: Predicted

HLA-binding scores for wildtype 9mer127 and 9mer126 as well as their respective variants. Bottom:

Representative flow-cytometry and intracellular cytokine staining (ic-FACS) for interferon-(IFN)y

(left) and cumulative results of two healthy BKPyV-IgG-seropositive HLA-B07-positive blood donors

(right) showing the percentage of IFNy + CD8 T-cells after re-challenge with wildtype (black) or

variants peptides (orange). (B) BKPyV-CD8 T-cell function was independently evaluated for IFNy
by 9mer-ELISpot (left); or for CD107a+ IFNy+ CD8 T-cell degranulation responses (middle); or by
ic-FACS for polyfunctional TNFa+ IFNy+ CD8 T-cell responses (right). (C) HLA-streptamer staining of
CD8 T-cells was performed using PE-labelled streptactin with HLA-B*0702 molecules bearing wildtype

9m127 peptide as described [37,40], comparing response to wildtype or variant peptides. (D) Model of
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immune control or failure of BKPyV-specific CD8 T-cells to wildtype or variant aa-exchanges in
immunodominant LTag-specific 9mer epitopes. The early viral gene region-encoded LTag is shown
in red, late viral gene region-encoded proteins such as the viral capsid proteins are shown in green.
The host cell proteasome processes viral proteins generating small peptides which are transported
into the endoplasmic reticulum (ER) via the transporter-associated with antigen processing (TAP).
Left: In case of BKPyV encoding the wildtype LTag, immunodominant epitopes are able to stably bind
to the respective MHC class I molecule in the ER. The MHC class I- epitope complex is transported
via the secretory apparatus to the cell surface. BKPyV-specific CD8 T-cells recognizing the MHC
class I-epitope complex via its T-cell receptor and CD8. Activated BKPyV-specific CD8 T-cells kill
the BKPyV-replicating host cells at an early stage of viral replication. Right: In case of BKPyV
encoding variant LTag, the variant epitopes cannot properly bind to MHC class I in the ER. As a result,
this epitope MHC complex is unstable and not transported to the cell surface and recognition and
killing by BKPyV-specific CD8 T-cells cannot occur, permitting uncontrolled BKPyV-replication.

4. Discussion

BKPyV-specific T-cells play a key role in antiviral immune control [13,32,45,46]. Recent work
from our group pinpointed clusters of immunodominant 9mer epitopes in the viral LTag as relevant
targets of BKPyV-specific T-cells [34,37,40]. In the present study, we investigated aa-exchanges in LTag,
and predicted effects of the resulting 9mer epitopes on HLA-A and HLA-B binding scores. Our study
has three major findings:

First, BKPyV genotype-specific aa-signatures can be identified in the otherwise structurally and
functionally highly conserved LTag. The frequency of these aa-signatures corresponds to those reported
for BKPyV-subtypes in numerous studies with BKPyV I being most frequent, followed by type 1V,
and less frequently II and III [16,23,43,47,48]. Although BKPyV-LTag is highly conserved among the
BKPyV genotypes and related polyomaviruses, the genotype-specific aa represent sequence signatures
allowing for specific attribution to the respective LTag-protein and imply that the encoding genotype
virus is functional and transmitted.

Second, certain genotype-specific aa-signatures affect immunodominant 9mer peptides presented
by HLA-A/HLA-B to BKPyV-specific T-cells. Thereby, a decrease in the HLA-binding score of the
corresponding LTag-9mer epitope is predicted compared to the BKPyV-genotype I reference. Examples
are the LTag-9mer epitopes VIFDFLHCV and LTRDPYHII associated with BKPyV-genotype Il and
III or LTag-9mer epitope LTRDPYYII encoded BKPyV-genotype IV. The data suggest the testable
hypothesis that first exposure to a BKPyV-subtype is associated with an HLA- and epitope-specific
T-cell response typically associated with cellular immune control in the general healthy population.
However, secondary exposure to a different subtype through kidney transplantation may be associated
with an impaired T-cell control in addition to immunosuppression. Similarly, novel increases in
HLA-binding scores of new subtype or variant 9mer-epitopes may not be met by matching CD8
T-cell memory or actually being 9mer-epitope naive. A similar failure scenario can be envisaged for
adoptive T-cell transfer or for allogeneic HSCT. Our observations would potentially also account for
hitherto little understood clinical cases having high persisting plasma BKPyV loads despite detectable
BKPyV-specific T-cell responses in assays based solely on subtype-I peptides.

Third, aa-exchanges were identified in positions not attributable to a specific BKPyV-genotype,
but affected the binding score of genotype-independent immunodominant LTag-9mer epitopes.
In particular, critical aa-exchanges at MHC class I-specific anchor positions of immunodominant
LTag T-cell epitopes (e.g., LPLMRKAYL to LSLMRKAYL) significantly decreased the binding score of
HLA-B*07:02, HLA-B*08:01, HLA-B*51:01. Our data from two healthy BKPyV IgG-seropositive
blood donors support the predicted effects of failing CD8 T-cell function when changing the
9mer peptide from LPLMRKAYL to LSLMRKAYL in assays such as 9mer-EliSpot and ic-FACS
for IFNy, tumor-necrosis-factor-(TNF)x and CD107a-degranulation (Figure 5). The data suggest that
BKPyV-variants in the LTag may account for genotype-independent failure of cellular immune control,
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whereby such variants may emerge during on-going viral replication escaping immune selection
pressure (Figure 5D).

Although our data call for dedicated clinical studies independently evaluating the epidemiology,
the risk factors, and the functional consequences of LTag aa-exchanges identified here, we note that
all relevant aa-exchanges have been reported by several laboratories, hence rendering outliers and
sequencing artefacts less likely. Most aa-exchanges were located close to pre-defined functional LTag
domains. While we currently cannot yet predict effects on BKPyV replication, their presence in clinical
samples argues for validity and in favor of clinical and biological significance. A large proportion
of the BKPyV data were obtained from full-length genome sequences implying a dedicated setting
which, together with its submission to public databases, may suggest high data quality. Moreover,
the full-length BKPyV genome sequences enabled us to compare relative frequencies across different
positions, unlike for partial sequences mostly submitted for diagnostic, clinical or subtyping reasons.
The majority of BKPyV sequences available in the NCBI nucleotide and protein database were derived
from BKPyV genotype I and IV. This distribution pattern is consistent with serological studies indicating
that BKPyV genotype I is found in 60-70% of patients worldwide, followed by genotype IV in 10-20%
of blood donors and transplant patients alike [43,47,48], while genotypes II and III are generally
rare [16,23].

While significant immunological research focuses on the Vp1-capsid protein of BKPyV and related
HPyVs, we observed in kidney transplant patients clearing BKPyV DNAemia that the proportion
of BKPyV-specific CD8 T-cells is greater among LTag-specific cellular immune responses than the
one among Vpl-specific cellular responses [11]. The relevance of CD8 T-cells directed to LTag was
independently confirmed by others as reviewed [13] and supported in our follow-up study [37].
From the virological perspective, incepting viral replication at an early time point may be advantageous
in viral progeny control as compared to late stages, when high numbers of virions have readily
accumulated and possibly leak from the host cell nucleus [13]. Our recent work suggests that alarming
innate and adaptive immune responses may be delayed in the late phase of BKPyV replication [17].
Finally, we speculate that LTag-targeted CD8 T-cell responses including those directed against the
N-terminus shared with small T-antigen [37] may protect against BKPyV-associated urothelial carcinoma
expressing solely LTag or truncated derivatives from chromosomally integrated BKPyV genomes [8,9],
when there is little or no Vp1 expression [7].

Taken together, our results add another layer to interpreting the increased risk of BKPyV-DNAemia
and nephropathy in KT patients in donor-recipient pairs having BKPyV-serotype mismatch [5],
which has been solely attributed to lacking the corresponding genotype-specific NAbs [18,21].
Conversely, high NAbs in the recipient against the donor genotype may be a marker for matching
genotype-specific T-cells [26], adding to the partial protection and earlier clearance of plasma BKPyV
loads in many [22,49,50], but not all cases [28]. Other observational studies can also be discussed in the
new light of our findings, which report significant correlations of decreasing BKPyV-specific T-cells
from pre-transplant to post-transplant with increased risk [12]. Increasing BKPyV-specific T-cells were
associated with shorter duration, decline, and clearance of BKPyV-viremia [11,33,51,52]. Re-analyzing
the role of LTag-subtypes and -variants will be of interest in this context.

5. Conclusions

Despite a high degree of conservation of LTag, aa-exchanges occur in LTag-9mer CD8 T-cell
epitopes that significantly alter the predicted HLA-A/HLA-B-presentation of BKPyV- genotypes and
-variants and potentially impact BKPyV-specific T-cell activation and function. Genotyping BKPyV,
NAbs, and emerging variants in transplant patients may provide novel direct and indirect information
about BKPyV-specific LTag CD8 T-cell responses as markers of immune control. The data warrant
further epidemiological and immunological investigations in carefully designed clinical studies.
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