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ABSTRACT Mammals evolved in a microbial world, and consequently, microbial
symbionts have played a role in their evolution. An exciting new subdiscipline of
metagenomics considers the ways in which microbes, particularly those found in the
gut, have facilitated the ecological and phylogenetic radiation of mammals. How-
ever, the vast majority of such studies focus on domestic animals, laboratory models,
or charismatic megafauna (e.g., pandas and chimpanzees). The result is a plethora of
studies covering few taxa across the mammal tree of life, leaving broad patterns of
microbiome function and evolution unclear. Wildlife microbiome research urgently
needs a model system in which to test hypotheses about metagenomic involvement
in host ecology and evolution. We propose that bats (Order: Chiroptera) represent a
model system ideal for comparative microbiome research, affording opportunities to
examine host phylogeny, diet, and other natural history characteristics in relation to
the evolution of the gut microbiome.
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Since the initiation of the Human Microbiome Project in 2008, there have been
considerable advances in our understanding of microbial impacts on human health

and disease (1). Similar studies in wildlife have not advanced at the same pace due to
limited funding, despite the fact that researchers are increasingly recognizing critical
links between humans and wildlife, both as key operatives in emerging infectious
disease and as comparative models for human diseases. Studying animal microbiomes
can also help us answer key questions about host evolution and ecology, but the vast
majority of studies focus on a narrow range of host taxa. The result is that information
about mammalian microbiome evolution derives from a depauperate set of snapshots
that are neither evenly distributed across the spectrum of mammalian diversity nor
representative of the array of different ecological niches found in mammals.

MICROBIOME SAMPLING ACROSS THE MAMMAL TREE OF LIFE

Understanding how host-associated communities influence evolution—and evolve
themselves—is an increasingly important goal for comparative biology and microbial
ecology (2–4). The natural history of microbial gut communities in wild mammals is still
poorly understood, but headway has been made in understanding patterns (5, 6),
processes (7), and rates of divergence (8) in these systems over the last decade. Few
studies sample host taxa in proportion to the percentage of mammal diversity that they
comprise; for example, a large number of early microbiome studies focus on primates
(9–13), which represent only �5% of the diversity of living mammals (14), but are our
closest evolutionary relatives. Other charismatic megafauna are also overrepresented in
the microbiome literature compared to their taxonomic diversity; the giant panda, a
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single species with a highly derived diet and lifestyle, has been the subject of at least
five microbiome studies (15–19). Because it is not feasible to sample the microbiomes
of all mammal species, it would be helpful to identify a clade that can be used as a
tractable starting place for understanding patterns and processes of microbiome
evolution across closely related species with different ecologies. With so many mammal
groups to choose from, what would make any one clade an attractive choice? Here, we
review the reasons why we believe bats are a good system within which to investigate
new questions about the role of microbes in driving host evolution, physiology, and
fitness.

BATS ARE TAXONOMICALLY AND ECOLOGICALLY DIVERSE

Bats are unique among mammals as the only ones capable of powered flight. With
nearly 1,400 described species, approximately 20% of all living mammal species are
bats (20–22) (Fig. 1, inset). Bats also enjoy a cosmopolitan global distribution and are
found on every continent save Antarctica (21). As such, they can serve as excellent
models for understanding microbiome evolution at both local and landscape scales
(23). Some evidence suggests that geographically widespread bat species show differ-
ences in microbiome structure among local populations (24), but the functional and
fitness implications of this observation require more extensive analyses in taxonomic
replicates. In addition to being widespread, bats also boast an astounding ecological
diversity unrivaled by any other mammalian group (22, 25, 26). Diet is thought to be a
major driver of microbiome structure and function (6), and few mammal groups
compare to bats when it comes to dietary diversity. Within the order Chiroptera,
different species have evolved to engage in frugivory, insectivory, carnivory, omnivory,
nectarivory, and even hematophagy (27) (Fig. 1). In mammalian microbiome studies,
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FIG 1 Host diet mapped onto the bat tree of life demonstrating multiple independent transitions to different diets (phylogeny from the work of Shi and
Rabosky [62]). Bat families are labeled on the outer ring of the phylogeny. (Inset) Bat diversity relative to the rest of mammals. Approximately 70% of mammal
diversity is contained in the orders Rodentia, Chiroptera (bats), and Eulipotyphla (hedgehogs, shrews, and allies). Mammal phylogeny from the work of
Bininda-Emonds et al. (63).
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there is often a strong correlation between host phylogeny and diet, making it difficult
to parse apart the effects of diet and phylogeny on microbiome evolution (28). Bats
provide a potential solution to this issue, because several feeding modes have evolved
in parallel two or more times within the order. For example, frugivory evolved at least
twice, once in the Pteropodidae and at least once in the Phyllostomidae, and similar
instances of parallel evolutionary diet changes can be found for carnivory and necta-
rivory (Fig. 1). Importantly, many of these parallel transitions have occurred across the
two major suborders of Chiroptera. Suborders Yinpterochiroptera and Yangochiroptera
diverged over 60 million years ago, meaning that millions of years separate the
evolution of frugivory in the phyllostomids (Yangochiroptera) and pteropodids
(Yinpterochiroptera) (29). It is therefore important to test whether specialization on fruit
proceeded via the same bacterial taxa or functions in these divergent host lineages. If
not, alternative forces structuring microbiome communities in these bat groups, such
as divergence in host physiology or behavior, may provide even more interesting
explanations. Within each suborder, it would also be useful to assess microbiome
structure as a function of dietary complexity among closely related frugivores. For
example, do generalist species have functionally generalized microbiomes compared to
those which feed on only a few plant species? Is there a standard toolkit of gut bacteria
necessary for being frugivorous? More broadly, such an ecologically rich evolutionary
system may prove useful in resolving the heated debate over whether host phylogeny
or diet is more important in driving microbiome community structure and at what
macroevolutionary scales each of these forces is most relevant (5, 6, 30).

ECOSYSTEM-SCALE IMPLICATIONS FOR BAT MICROBIOMES

The ecological diversity of bats makes them incredibly economically important
because they provide ecosystem services ranging from insect pest control (31, 32) to
pollination of human fruit crops (33, 34). Understanding the microbiomes of bats can
help shed light on their ability to carry out these and other vital ecosystem functions
and can highlight potential dangers posed by rapid and continued habitat destruction.
It has been shown in one species of primate that poor-quality habitats are associated
with gut microbiomes that produce fewer short-chain fatty acids and have lower
hydrogen metabolism than microbiomes of hosts living in higher-quality habitats (35);
such studies in bats may likewise reveal troubling patterns of lower microbiome fitness
in suboptimal habitats. Because nontrivial proportions of bat microbial community
members are absent from conventional 16S databases (36), broad-scale studies also
represent an opportunity for microbial taxonomists to discover, describe, and annotate
the functions of novel bacterial species associated with bat hosts. With sufficient
whole-genome coverage, it may be possible to discover even new candidate phyla of
bacteria fulfilling important roles in host ecosystems. Using bats as a model clade,
future microbiome studies could address critical questions including the following: do
mammals with the same feeding habits contain the same taxonomic or functional
consortia? Do single mammal species have the same consortia across their ranges, and
if not, why do these differences arise? Do degraded habitats have a measurable impact
on the fitness of their hosts via the microbiome, and can we detect wide-scale dysbiosis
at the ecosystem level? Such studies will generate new questions and hypotheses
about the myriad ways in which microbes shape life on earth.

BAT MICROBES CAN SHED LIGHT ON DISEASE, IMMUNITY, AND LONGEVITY

Bats and their microbes are increasingly recognized as important components of
zoonotic disease cycles (37, 38). A few studies have identified potentially pathogenic
members of the excreted bat microbiome such as Bartonella spp. (39, 40) and Leptospira
spp. (41). Bats are also known or suspected to be the reservoir of several viruses that
are lethal to humans, such as severe acute respiratory syndrome (SARS), Ebola, and
rabies viruses (42–44), as well as of Plasmodium parasites closely related to those in
rodents that are used as models to study malaria (45). Genomic insights have generated
plausible explanations for how bats may have evolved to harbor such deadly microbes
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(e.g., reference 46), but in spite of abundant evidence that the microbiome interfaces
directly with the host immune system (47, 48), there has not yet been an integrative
study addressing whether microbial symbionts contribute to bats’ innate ability to act
as pathogen reservoirs. As an additional axis of variation, bats which have flexible
roosting habits can be found in close proximity to humans and may potentially swap
microbes with humans and their companion animals (49). Bats may transfer microbes
to livestock when they exist in close proximity (e.g., pigs consuming partially eaten
fruits dropped by fruit bats [50]) or use the same habitats (e.g., horses coming into
contact with bat droppings in pastures [51]). Studying bat microbiomes would there-
fore have obvious public health implications and could help to explain the epidemi-
ology of emerging infectious diseases.

Similar avenues of research can also consider what impact, if any, the host micro-
biome has on susceptibility of bats to white nose syndrome (WNS), a frequently fatal
cutaneous infection that has reduced hibernating bat populations by up to 90% in
North America (52). Because not all individuals are killed by the infection, there may be
selection on the skin microbiomes of surviving individuals to become enriched with
antifungal bacteria. Indeed, one study discovered that in WNS-positive populations, the
skin microbiome of bats was enriched with Rhodococcus and Pseudomonas spp., which
are known to have antifungal activity (53). Additional studies in this area can answer the
questions of how exactly these bacteria inhibit the growth of the causative agent of
WNS and what enrichment of the microbiome with these bacteria might mean for the
long-term survival of affected host populations.

Bat microbiomes can be used more generally to understand the links between the
microbiome and the evolution of other phenomena of interest, such as immunity and
longevity. To date, studies addressing the link between host aging and the microbiome
in humans and lab animals have uncovered direct links between microbial metabolic
products and life span of the host (54). Bats represent an exciting system in which to
test for links between the microbiome and aging because they are exceptionally
long-lived for a mammal of their size (55, 56). Mice are conventional model mammals,
but the commonly used BALB/c mouse strain has a life span of about a year and half,
making studies of longevity in these animals rather short-lived (57). Bats of comparable
mass can achieve life spans of up to 40 years, and many are philopatric to particular
roosts, making repeat sampling of individuals throughout their lifetimes possible (58,
59). Because these animals’ microbiomes can be sampled nonlethally, they are inher-
ently attractive for such studies (36). However, it is worth noting that these animals are
especially sensitive to disturbance during hibernation, so experimental designs should
minimize unintended disturbance of roosts, particularly in areas where white nose
syndrome has decimated bat populations (60). It may also be possible to keep bats in
captive colonies in order to sample them throughout successive years of their lives.
Recent evidence suggests that metabolites produced by gut microbes in bats might
offset the oxidative damages incurred during active flight, resulting in downstream
impacts on aging (61). However, many questions still remain. By what mechanism does
the microbiome help to extend life span, and is this pattern consistent across mam-
mals? How does interindividual variation impact the relationships between longevity
and microbiome community structure? We believe that studies of bat microbiomes can
help to answer these important questions and more.

FUTURE DIRECTIONS

Bats represent an untapped resource for understanding microbiome evolution in
mammals. Because of their exceptional diversity, longevity, and ecological importance,
we believe that studies of their microbial symbionts will reveal exciting new roles for
microbes in driving host evolution and fitness and may help us to better understand
the dynamics of emerging zoonotic pathogens. We provide applications of bat micro-
biome research in the hopes that more researchers will realize the potential that this
system has to offer. Multi-omics approaches can be used to parse apart the contribu-
tions of host genome, metagenome, and microbial metabolites to the processes
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described above, and as the costs of these methods continue to decrease, such studies
will only become more feasible. The results of studying bat microbiomes using these
approaches will undeniably advance the fields of host-microbe interactions, compara-
tive physiology, and public health.
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