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Summary
Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver tumours,
whose incidence and associated mortality have increased over recent decades. Liver cancer is often
diagnosed late when curative treatments are no longer an option. Characterising new molecular
determinants of liver carcinogenesis is crucial for the development of innovative treatments and
clinically relevant biomarkers. Recently, circular RNAs (circRNAs) emerged as promising regulatory
molecules involved in cancer onset and progression. Mechanistically, circRNAs are mainly known
for their ability to sponge and regulate the activity of microRNAs and RNA-binding proteins,
although other functions are emerging (e.g. transcriptional and post-transcriptional regulation,
protein scaffolding). In liver cancer, circRNAs have been shown to regulate tumour cell prolifera-
tion, migration, invasion and cell death resistance. Their roles in regulating angiogenesis, genome
instability, immune surveillance and metabolic switching are emerging. Importantly, circRNAs are
detected in body fluids. Due to their circular structure, circRNAs are often more stable than mRNAs
or miRNAs and could therefore serve as promising biomarkers – quantifiable with high specificity
and sensitivity through minimally invasive methods. This review focuses on the role and the clinical
relevance of circRNAs in liver cancer, including the development of innovative biomarkers and
therapeutic strategies.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1Inserm, Univ Rennes 1, COSS
(Chemistry, Oncogenesis Stress
Signaling), UMR_S 1242,
Centre de Lutte contre le
Cancer Eugène Marquis, F-
35042, Rennes, France
†These authors contributed
equally to the work

* Corresponding author.
Address: Inserm UMR_S
1242, "Chemistry,
Oncogenesis, stress,
Signaling" (COSS), Centre de
Lutte contre le Cancer
Eugène Marquis, Rue de la
Bataille Flandres Dunkerque,
Bat D, F-35042 Rennes,
France. Tel.: +33-2-2323-
3881.
E-mail address: cedric.
coulouarn@inserm.fr
(C. Coulouarn).
Introduction
Circular RNAs (circRNAs) belong to a family of
recently rediscovered RNAmolecules. They are pro-
duced during the maturation of RNA transcripts.
Structurally, circRNAs are covalently closed by a
phosphodiester linkage between downstream
donor and upstream acceptor RNA splice domains.
Mainly considered as splicing errors during the past
decade, circRNAs are now accepted as functional
RNAmolecules. Theydisplay tissue-andcell-specific
expression patterns and are encoded from thou-
sands of genes.1 Emerging evidence demonstrates
that circRNAs are involved in biological processes
contributing to the onset and progression of can-
cer.2–4 In addition, due to their circular structure,
circRNAs are resistant to the action of exoribonu-
cleases and therefore exhibit an expanded half-life
compared to their parental linear counterparts,
allowing detection even when expressed at a low
level.5,6 It is estimated that exonic circRNAs are very
stable incells,withmostspeciesexhibitingahalf-life
of over48hours,7 compared toanaveragehalf-life of
10 hours for mRNAs.6 These properties suggest that
circRNAs could represent clinically relevant bio-
markers for themanagementofpatientswithcancer.
This reviewspecificallyhighlights recentdiscoveries
on the functions and clinical relevanceof circRNAs in
liver cancer, including hepatocellular carcinoma
(HCC) and cholangiocarcinoma (CCA).
CircRNA discovery, biogenesis and
function
CircRNA discovery
CircRNAs were first discovered in 1976 on viroid
particles.8 Then, circular structures were identified
by electron microscopy in the cytoplasm of
eukaryotic cells, notably in HeLa cells.9 Neverthe-
less, it was only in 1993 that circRNAs (circSry, a 1.3
kb circRNA derived from a single exon of the sex-
determining region Y transcript in mice) were
molecularly identified by dedicated experiments,
including RNAse H digestion followed by northern
blotting, reverse-transcription PCR and
sequencing.10 Afterward, several circRNAs previ-
ously described as “scrambled exon RNAs” were
reported, including a circRNA from the rat cyto-
chrome P450 2C24 gene.11 However, no specific
biological function was reported for circRNAs at
that time.

Next-generation sequencing (NGS) ushered in
the beginning of the genome-wide identification of
circRNAs. Traditional RNA-sequencing pipelines
remove non-conventional reads that do not map
with the reference genome, such as reads that arise
from gene fusion or those originating from back-
splicing events. New bioinformatic algorithms
based on back-splice junction overlapping reads
recognition made it possible to efficiently detect de
novo circRNAs and to differentiate them from their
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Key points

� circRNAs contribute to liver cancer by regulating cellular processes
involved in cancer onset and progression.

� circRNAs are currently mainly described as sponges regulating the
activity of microRNAs but more diverse functions are emerging.

� circRNAs represent promising biomarkers due to the stability linked to
their intrinsic circular structure.

� circRNAs are detected in body fluids, freely or embedded into vesicles.

� circRNA-based therapeutics represent a promising approach in cancer.
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linear counterparts.12–15 In addition, novel specific protocols for
NGS library preparation were established to enrich the RNA
fraction with circRNAs, including ribosomal and polyA+ RNA
depletion and RNAse R treatment to degrade linear RNAs.16

Accordingly, the number of circRNA libraries drastically
increased and repository databases (e.g. circBase) were estab-
lished to annotate circRNAs.17 Recently, Xin et al. used rolling
circle amplification followed by nanopore long read sequencing
to decrypt full-length circRNA sequences, thereby increasing the
roster of known circRNA isoforms.18 It is now accepted that
circRNAs are the most abundant RNA isoforms, originating from
thousands of human genes,19 and that their expression is
conserved in eukaryotes.20
CircRNA biogenesis
Contrary to their linear counterparts, circRNAs are generated by a
non-canonical splicing mechanism, called back-splicing. A
downstream 5’ splice donor site from a pre-RNA transcript reacts
with an upstream 3’ splice acceptor site, which results in the 3’
extremity of a downstream exon joining to the 5’ extremity of an
upstream exon. Therefore, the circularisation junction is formed
of 2 mis-ordered exons (according to their genomic location).
CircRNA back-splicing is an active process that can be promoted
through various mechanisms (Fig. 1). For instance, many studies
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demonstrated that complementary inverted sequences localised
into introns flanking the circularised exon junction could pro-
mote RNA circularisation.21,22 By hybridising to each other,
inverted complementary sequences form a loop bringing distant
splice sites into proximity, and thus facilitating back-splicing
events. Further studies reported that circRNA biogenesis is
driven by RNA-binding proteins (RBPs) located upstream and
downstream of the circularised exons, promoting back-splicing
by direct interaction or dimerisation. For example, by binding
to specific intronic motifs, the RBP Quaking (QKI) induces
circRNA biogenesis during epithelial-to-mesenchymal transition
(EMT).23 It was further demonstrated that artificial insertion of
QKI motifs was sufficient to induce back-splicing. Altogether,
airing RBP interaction or dimerizationC
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these data suggest that a combination of cis-acting elements and
trans-acting factors bring into proximity a downstream 5’ donor
splice site with an upstream 3’ splicing acceptor site, facilitating
back-splicing events. Another so-called “lariat splicing” mecha-
nism has also been reported to promote circRNA formation.
During alternative splicing events, excluded exon(s) are incor-
porated into an intermediate circular lariat containing intron-
exon structures, which could be spliced again to generate
circRNAs7,11(Fig. 1). While the majority of circRNAs are only
comprised of exonic sequences (EcircRNA), a substantial portion
of circRNAs also include retained intronic sequences. The so-
called exonic-intronic circRNAs (EIcircRNAs) have been re-
ported to interact with U1 small nuclear ribonucleoproteins
(snRNP), thereby regulating the transcription of their parental
gene.24 Likewise, some circRNAs consisting of only intronic se-
quences (IcircRNAs; lariat-derived circRNAs) have been
reported.25
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CircRNA functions
Although circRNAs were discovered decades ago, defining their
role remains a major challenge because of their low abundance
and their sequence similarity with parental linear RNAs. To date,
the most frequently reported mechanism of action of circRNAs is
their capacity to sponge microRNAs (miRNAs) although other
functions are emerging (e.g. transcriptional and post-
transcriptional regulation, protein scaffolding) (Fig. 2).26,27 MiR-
NAs are small non-coding RNAs regulating gene expression at
the post-transcriptional level. By binding the 3’ untranslated
regions of mRNAs, miRNAs repress mRNA translation and/or
induce their degradation.28 Accordingly, miRNA abundance and
activity are tightly regulated. Notably, miRNAs can be seques-
tered by RNA sponges, including circRNAs.29 Thus, CDR1 anti-
sense circular RNA (circCDR1as) contains more than 70 miR-7
responsive elements. Through its sponging capability, circCD-
R1as acts as a competitive inhibitor of the tumour suppressor
cRNA
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miR-7, preventing it from binding to and repressing its natural
targets involved in tumour promotion.27,30 However, this feature
is uncommon. Indeed, an expanded identification and charac-
terisation of circRNAs in mammals reported that circCDR1as is
only 1 of 2 circRNAs with an over-representation of binding sites
for a single miRNA.31 In addition, it should be noted that
circCDR1as is detected in circular but not in linear form,
complicating interpretations of its role as a sponge for miR-7.27

circRNA databases (e.g. CircInteractome, starBase) also predict
the presence of circRNA/miRNA networks based on bioinfor-
matics and/or experimental cross-linking immunoprecipitation
(CLIP)-sequencing data.32,33 These databases also include infor-
mation on RBP-circRNA interactions. Indeed, emerging evidence
demonstrated that circRNAs can sponge RBPs, with functional
consequences for their subcellular localisation and activity.34 For
example, it was recently demonstrated that circFOXK2 interacts
with YBX1 and hnRNPK to promote the expression of NUF2 and
PDXK oncogenes in pancreatic cancer.35 In some cases, back-
splicing also competes with canonical splicing. A typical
example concerns muscleblind (MBL or MBNL1 in humans) RNA
which contains several intronic motifs which the MBL protein
can bind to. When overexpressed, MBL binds to these specific
intronic RNA motifs, thus promoting an exon 2 back-splicing
event and reducing its own protein expression as a feedback
mechanism.36 Another study described a regulatory network
involving YAP circRNA (circYAP) and its associated linear RNA. In
breast cancer cell lines, it was demonstrated that circYAP in-
teracts with YAP mRNA, PABP and the translation initiation
protein eIF4G. This interaction inhibits the assembly of the
translation initiation complex on YAP mRNA, resulting in the
inhibition of translation.37 Interestingly, circRNAs can promote
transcription of their parental gene by interacting with U1 snRNP
and the RNA polymerase II complex.24 It is also important to
emphasise that circRNAs may be coding, as demonstrated in
Drosophila by ribosome footprinting sequencing specifically
focused on reads that overlap with specific circRNA circularisa-
tion junctions.38 Likewise, translation of circRNAs can be medi-
ated by internal ribosome entry sites (IRES).39–41 In addition,
emerging data suggest that circRNA translation could be driven
by epitranscriptomic modifications, including N6-
methyladenosine (m6A), in a cap-independent manner.42

Recent studies also demonstrated that the m6A modifications
could distinguish self-circRNAs from immunogene foreign
circRNAs (i.e. those coming from viruses).43 Although the func-
tions of circRNAs have not been fully elucidated, it is clear that
circRNAs contribute to the regulation of gene expression. Thus,
one can assume that the deregulation of circRNAs under path-
ological conditions will greatly affect fundamental processes
required to maintain cellular and tissue homeostasis.
Overview of circRNAs in cancer: mechanisms and
clinical relevance
As reviewed in 2020, circRNAs are involved in physiological
processes by regulating gene expression and protein activity.44

Growing evidence demonstrates that circRNAs are deregulated
in cancer.2,4,44 Indeed, up- or downregulation of specific circR-
NAs correlates with clinical features like TNM stage, differenti-
ation or survival.45 In addition, the ratio between the expression
of circRNAs and the corresponding linear RNAs can be modified,
suggesting that back-splicing is an actively regulated process
involved in cancer. In 2019, a loss-of-function screen using small-
JHEP Reports 2022
hairpin RNAs (shRNAs) directed against highly expressed circR-
NAs indicated that 11.3% of circRNAs are necessary to promote
cell growth in V16A prostate cancer cells. In contrast, among the
related linear counterpart transcripts, 91.8% were not essential to
fulfil this function.46 Thus, by exhibiting tumour suppressive or
oncogenic activities, circRNAs may contribute to cancer onset
and progression. As mentioned above, a well-described function
of circRNAs is their capability to sponge miRNAs, thereby pro-
moting or suppressing tumour progression, depending on the
nature of the miRNA targets.47,48

Given that the field is still in its infancy, there is currently
little overlap between studies,3 similar to what we observed
years ago for miRNAs. Although the current literature has not yet
enabled the identification of master oncogenic or tumour sup-
pressive circRNAs, such as RAS or TP53 for coding genes, several
circRNAs have been detected in multiple cancers (e.g. circHIPK3,
ciRS-7, circFOXO3, circMTO1). One archetype of a possible
oncogenic circRNA is circHIPK3, which harbours 18 binding sites
for sponging 9 tumour suppressor miRNAs involved in cell
growth in several cancers, including breast cancer, colorectal
cancer and HCC.49 This observation has revealed new therapeutic
opportunities, such as using target site blocker oligonucleotides
to inhibit the sponging activity of circHIPK3. However, circHIPK3
was also reported to be downregulated in bladder cancer and
involved in cell growth and metastasis inhibition, suggesting that
circRNA function could be highly context-dependent, making it
difficult to define a particular circRNA as oncogenic or tumour
suppressive.3,50 Interestingly, circRNAs have also been shown to
derive from master oncogenic or tumour suppressive genes,
including circTP53, which was reported to promote colorectal
cancer by sponging miR-876-3p and subsequently increasing
cyclin-dependent kinase-like 3 expression.51 An exome capture
RNA-sequencing project was recently conducted in more than
2,000 cancer samples, including cell lines, tumours from diverse
organs and non-pathological tissues. Data were compiled into
MiOncoCirc, the first international cancer-specific circRNA
database.5
CircRNAs and the hallmarks of liver cancer
Liver cancer ranks sixth among the most prevalent cancers
worldwide. Dramatically, both its incidence and associated
mortality have steadily increased over the last decade. HCC and
intrahepatic cholangiocarcinoma (iCCA) account for �80% and
�15% of primary liver tumours, respectively.52–54 Both are
associated with limited therapeutic options as they are
frequently diagnosed late.53,54 Although our understanding of
liver carcinogenesis has improved, notably through functional
genomic studies, effective long-term targeted therapies are still
lacking. By integrative genomics based on gene expression, the
core transcriptional hallmarks of human HCC were previously
highlighted, identifying potentially targetable signalling path-
ways that were commonly altered.55 In 2011, Hanahan and
Weinberg updated the hallmarks of cancer and described 10
hallmarks that govern the evolution of normal cells to a
neoplastic state in most cancers.56 Defining circRNAs that are
involved in the hallmarks of liver cancer could provide new in-
sights into liver carcinogenesis and open avenues for the
development of new therapeutic options. However, to what
extent circRNAs contribute to liver carcinogenesis still requires
experimental investigations. In order to determine how circRNAs
could contribute to liver cancer, we reviewed the current
4vol. 4 j 100413



literature on cancer hallmarks impacted by circRNAs (Fig. 3 and
Table 1).
Hepatocellular carcinoma
Data from the recent literature suggest that circRNAs are relevant
molecules involved in regulatory networks governing HCC onset
and progression. While the role of circRNAs in cell proliferation,
apoptosis, migration and invasion is rather well described, their
role in angiogenesis, immune surveillance and metabolic
switching is still under investigated. The involvement of circR-
NAs in enabling replicative immortality, another hallmark of
cancer cells, has not been investigated in HCC.
CircRNAs in cell proliferation and resistance to cell death
Sustained proliferation is one of the distinguishing features of
cancer cells. Some circRNAs exhibit tumour suppressor activities
and display low expression in HCC (Table 1). For instance,
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circMTO1 was downregulated in HCC and was reported to
sponge miR-9, a well-known oncogenic miRNA. Reduced
expression of circMTO1 in HCC results in increased miR-9 ac-
tivity, leading to reduced expression of its natural targets, such as
the cell cycle inhibitor p21. Accordingly, circMTO1 suppresses
HCC progression and low expression of circMTO1 predicts poor
overall survival.47 Deregulation of cell proliferation pathways in
HCC is also mediated by pro-oncogenic circRNAs. Among them,
SCD-circRNA 2 was upregulated in HCC tissues. A gene regulatory
network was proposed, in which the RBP RBM3 promotes HCC
cell proliferation in a SCD-circRNA 2-dependent manner.57

Oncogenic circRHOT1 was also related to sustained HCC cell
proliferation by recruiting TIP60 (also known as KAT5), a mem-
ber of the MYST sub-family of histone acetyltransferases, to the
promoter of NR2F6 and subsequently enhancing its transcrip-
tion.58 Interestingly, NR2F6 has also been reported as a central
intracellular immune checkpoint for cancer immune surveillance
that suppresses adaptive anti-cancer immune responses.59 An
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Table 1. Reported functions of circRNAs in liver carcinogenesis.

Liver cancer circRNA ID circRNA function Sponged molecules Regulated targets Reported functions Ref.

circRNA induced in HCC
HCC SCD-circRNA2* RBP interaction N/A p-ERK ↑ Sustaining proliferative signalling, invasion

and metastasis

57

HCC circRHOT1* transcription regulation NRF26 TIP60 NRF26 ↑ Sustaining proliferative signalling, resisting
cell death,
invasion and metastasis

58

HCC circ-100338* RBP interaction N/A MMP9 ↑ Sustaining proliferative signalling, invasion
and metastasis, inducing angiogenesis

110

HCC circ-0000092* miRNA sponging miR-338-3p ↓ HN1 ↑ Sustaining proliferative signalling, invasion
and metastasis, inducing angiogenesis

73

HCC circPRMT5* miRNA sponging miR-188-5p ↓ HK2 ↑ Sustaining proliferative signalling, invasion
and metastasis, deregulating cellular
energetics

111

HCC circMAT2B* miRNA sponging miR-338-3p ↓ PKM2 ↑ Sustaining proliferative signalling, invasion
and metastasis, deregulating cellular
energetics

75

HCC circASAP1* miRNA sponging miR-326 ↓ miR-532-5p ↓ MAPK1 ↑ CSF-1 ↑ Sustaining proliferative signalling, invasion
and metastasis, tumour-promoting
inflammation

80

HCC circb-catenin* translated, decoy N/A b-catenin ↑ Sustaining proliferative signalling, invasion
and metastasis

60

HCC circUHRF1* miRNA sponging miR-449c-5p ↓ TIM3 ↑ Sustaining proliferative signalling, immune
surveillance escape

112

circRNA repressed in HCC
HCC circTRIM33-12* miRNA sponging miR-191 ↑ 5hmc ↓ Sustaining proliferative signalling, immune

surveillance escape, invasion and metastasis

77

HCC circHIAT1* miRNA sponging miR-3171 ↑ PTEN ↓ Sustaining proliferative signalling, evading
growth suppressors, resisting cell death

61

HCC circLARP4* miRNA sponging miR-761 ↑ RUNX3 ↓ p53 ↓ p21 ↓ Sustaining proliferative signalling, evading
growth suppressors

62

HCC circMTO1* miRNA sponging miR-9 ↑ p21 ↓ Sustaining proliferative signalling, invasion
and metastasis

47

HCC circITCH miRNA sponging miR-224-5p ↑ mafF ↓ Sustaining proliferative signalling, resisting
cell death, genome instability and mutation

65,113

circRNA induced in CCA
iCCA circ-0000284* miRNA sponging miR-637 ↓ LY6E ↑ Sustaining proliferative signalling, resisting

cell death,
invasion and metastasis

64

iCCA circ-0005230* miRNA sponging miR-1238 ↓ miR-1299 ↓ N/A Sustaining proliferative signalling, resisting
cell death,
invasion and metastasis

63

iCCA circACTN4* miRNA sponging
transcription regulation

miR-424-5p ↓ YAP ↑
FZD7 ↑

Sustaining proliferative signalling,
invasion and metastasis

82

circRNA repressed in HCC and CCA
HCC iCCA circ_0001649* miRNA sponging miR-127-5p ↑ miR-612 ↑ miR-4688 ↑ SHPRH ↓ Sustaining proliferative signalling, resisting

cell death, invasion and metastasis

66,67

HCC iCCA circSMARCA5* miRNA sponging miR-17-3p ↑ miR-181b-5p ↑ TIMP3 ↓ Sustaining proliferative signalling, invasion
and metastasis

48,81

CircRNA, circular RNA; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; miR/miRNA, microRNA.
* In vivo functional confirmation in preclinical mouse models.
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original mode of action of circb-catenin, a circRNA derived from
b-catenin, a well-characterised oncogene in liver cancer, has
recently been reported.60 Indeed, circb-catenin is translated into
a 370-amino acid b-catenin isoform and acts as a decoy. This
shorter isoform can stabilise full-length b-catenin by antago-
nising GSK3b-induced b-catenin phosphorylation and degrada-
tion, leading to activation of the Wnt pathway, and promoting
tumour cell growth.60

Another well-described feature of tumour cells is their ability
to evade anti-proliferative signals governed by tumour sup-
pressor genes (i.e. quiescence, cell cycle arrest, senescence, cell
death).56 Such properties are essential to maintain a pool of
active transformed cells, notably by repressing or inactivating
cell cycle regulators. For instance, a network involving circHIAT1,
miR-3171 and the PTEN tumour suppressor gene was shown to
contribute to HCC progression (Table 1). Thus, circHIAT1 down-
regulation in HCC was responsible for miR-3171 release, thereby
promoting PTEN repression.61 Similarly, it was demonstrated that
miR-671 activation, as a consequence of circLARP4 sponge
downregulation, drives the silencing of master tumour sup-
pressor genes RUNX3, CDKN1A and TP53 in HCC.62

Programmed cell death by apoptosis is responsible for the
removal of damaged cells. Notably, apoptosis serves as a bulwark
against the propagation of transformed cells. Investigations into
pro- and anti-apoptotic programmes will be critical to elucidate
the paths whereby tumours succeed in progressing to states of
high-grade malignancy and resistance to therapy.56 Lately,
circRNAs were reported for their entailment in signalling tracks
governing the apoptotic machinery in liver cancer. Several
studies identified circRNAs that can regulate apoptosis (Table 1).
Pro-oncogenic circRNAs such as circRHOT1, circ-0005230, or
circ0000284 have all been shown to exert anti-apoptotic actions
on HCC and iCCA cell lines. Through intrinsic miRNA sponging
properties, these circRNAs promote tumourigenesis by preser-
ving anti-apoptotic factors, such as NRF26 and LY6E, from
degradation.58,63,64 Meanwhile, a decreased expression of cir-
cITCH and circ-0001649 contributes to cell death resistance by
loosening the sponging of specific anti-apoptotic miRNAs. Thus,
pro-apoptotic natural targets (e.g. MAFF and SHRPH) lack
circRNA protection against miRNA degradation and are unable to
counteract tumour cell spreading.65–67 Remarkably, most of
these circRNAs are also involved in sustained abnormal cell
proliferation, resulting in unbalanced cell homeostasis and can-
cer progression.

CircRNAs in invasion, metastasis and angiogenesis
Invasion and metastasis are tightly associated with EMT, a critical
cellular process governing the plasticity of epithelial cells which
lose adherent junctions, apico-basal polarity and acquire the
abilities to resist apoptosis, to invade, and to disseminate.56,68

However, to what extent circRNAs are involved in acquiring
mesenchymal features and a metastatic phenotype has not been
extensively explored in liver cancer (Table 1). RNA-sequencing
identified a signature of circRNAs that were significantly
deregulated in HCC tissues, including circSMARCA5. Low
expression of circSMARCA5 in HCC was attributed to the regu-
lation of DExH-box helicase 9 (DHX9), an abundant nuclear RNA
helicase, and was shown to promote HCC cell growth and
metastasis. One mechanism of action resulting from the reduced
expression of circSMARCA5 involved a decreased expression of
the metallopeptidase inhibitor TIMP3 due to the increased ac-
tivity of miR-17-3p and miR-181b-5p, 2 miRNAs naturally
JHEP Reports 2022
sponged by circSMARCA5. Further highlighting its importance in
cancer, it was recently reported that circSMARCA5 can bind to its
parent gene locus, forming an R-loop, which results in the
downregulation of tumour-promoting SMARCA5 in breast can-
cer.69 In glioblastoma multiform, circSMARCA5 is also a tumour
suppressor and acts as a decoy for SRSF1 (serine and arginine
rich splicing factor 1) through a GAUGAA binding motif, thus
controlling cell migration and angiogenesis, notably by regu-
lating VEGFA mRNA splicing.70 In HCC, circSMARCA5 down-
regulation was associated with poor outcomes, including shorter
overall and recurrence-free survival.48 The role of circRNAs in
HCC metastasis was further evaluated by circRNA expression
profiling in 15 patients who displayed pulmonary metastasis and
15 patients that did not show any metastasis or recurrence.
Hence, circASAP1 was specifically upregulated in HCC with a
high metastatic potential. Gain and loss of function experiments
demonstrated that circASAP1 promotes HCC cell metastasis by
acting as a competitive endogenous RNA for miR-326 and miR-
532-5p, leading to the induction of their common targets, the
kinase MAPK1/ERK2 and CSF1, also known as macrophage
colony-stimulating factor (M-CSF). By regulating these 2 targets,
circASAP1 modulates HCC cell proliferation, invasion and
tumour-associated macrophage (TAM) infiltration.48 More
recently, an original mechanism of action has been reported for
circPABPC1, a tumour suppressive circRNA downregulated in
HCC.71 Although circPABPC1 is predominantly localised in the
cytoplasm, its small size (91 bases) makes it unlikely to be a
miRNA sponge. Indeed, circPABPC1 functions as a protein scaf-
fold for ITGB1, a key integrin involved in HCC metastasis.
Frequent loss of circPABPC1 correlates with increased ITGB1 level
in patients with advanced HCC. Mechanistically, circPABPC1
physically links ITGB1 to the proteasome 26S and promotes its
degradation in a ubiquitin-independent manner, thereby
reducing tumour cell adhesion, migration, and metastatic
spreading.71

Tumour cell spreading requires a tailored vascular system to
ensure its operational needs. Hence, during tumour progression,
a new tumour-associated vasculature is generated by uncon-
trolled angiogenesis.56,72 In silico analysis suggested that circR-
NAs, including hsa_circ_0000092, could contribute to the
tumour-associated angiogenic switch occurring during liver
carcinogenesis (Table 1). Hsa_circ_0000092 is upregulated in
HCC and significantly associated with shortened overall survival.
A comprehensive analysis of both coding and non-coding RNAs
suggested that hsa_circ_0000092 interferes with the negative
regulation of haematopoietic- and neurologic-expressed
sequence 1 (HN1) by miR-338-3p. Increased expression of
oncogenic HN1 not only promotes HCC cell invasion and
migration, but also angiogenesis.73

CircRNAs in metabolic switching
An important hallmark of cancer is the adjustment of energy
metabolism to support cancer cell proliferation. During carci-
nogenesis, cells classically switch towards aerobic glycolysis to
meet their energy demands. This typical glycolytic reprogram-
ming is associated with well-known oncogenes.56,74 However,
there is still little evidence regarding the role of circRNAs in this
process (Table 1). Meta-analysis of gene expression datasets
demonstrated that circMAT2B was upregulated in HCC
(compared to paired adjacent normal tissues) and strongly
associated with glycolysis. More specifically, circMAT2B pro-
motes glycolysis-dependent cell proliferation and migration
7vol. 4 j 100413
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under hypoxic conditions both in vitro and in vivo. A regulatory
axis was proposed in which circMAT2B positively regulates the
miR-338-3p target gene pyruvate kinase M2, a key enzyme
involved in glycolysis.75 CircMAT2B is also clinically relevant
since its elevated expression is associated with shortened overall
survival.75

CircRNAs in immune system surveillance escape and
inflammation
It has long been recognised that tumour onset and progression
are continuously monitored by the immune system. Thus,
proliferating tumour cells have somehow developed the capa-
bility to evade immune surveillance.56,76 A recent study pin-
pointed that circTRIM33-12 downregulation in HCC was
correlated with poor clinical features, suggesting its potential
utility as an independent HCC risk factor (Table 1). Mechanisti-
cally, circTRIM33-12 expression was negatively associated with
cell proliferation, migration and invasion through the miR-191-
dependent positive regulation of TET1 demethylase. In addi-
tion, circTRIM33-12 was shown to participate in immune evasion
via the regulation of activating receptor NKG2D (natural-killer
group 2 member D) ligands. Thus, circTRIM33-12 regulates
natural killer cell-, cd + T cell- and CD8+ T cell-mediated immune
responses to cancers.77

Inflammation is an essential mechanism to protect the body
against injuries and pathogenic microorganisms. Nevertheless, in
the context of carcinogenesis, substantial evidence indicates that
the immune system could exert tumourigenic properties.78 For
instance, by releasing cytokines, infiltrated immune cells indi-
rectly promote tumour growth and survival.79 One study re-
ported the involvement of circRNAs in tumour-promoting
inflammation in HCC (Table 1). Hence, it was highlighted that an
enhanced expression of circASAP1 indirectly induces CSF1
expression, a macrophage mitogenic factor, by sponging miR-532
and miR-326, and therefore promotes TAM recruitment.80 There
is growing evidence that TAM infiltration is strongly associated
with tumour onset, progression and aggressiveness.79 Thus, cir-
cASAP1 could promote HCC development by participating in
TAM infiltration.80
Intrahepatic cholangiocarcinoma
Only few studies have reported on the role of circRNAs in iCCA so
far (Table 1). One study focused on circSMARCA5, a tumour
suppressor circRNA already largely described for its role in the
progression of several cancers, including HCC. The expression of
circSMARCA5 was reduced in iCCA tissues and negatively
correlated with advanced TNM stage and overall survival. Over-
expression of circSMARCA5 was further associated with
decreased iCCA cell proliferation.81 Very recently, circACTN4 has
been shown to be induced in iCCA and to promote tumour cell
growth and metastasis by regulating the Hippo and Wnt sig-
nalling pathways. Interestingly, circACTN4 has been reported i)
to act as a sponge for miR-424-5p which could target YAP in the
cytoplasm and ii) to recruit YBX1 to initiate FZD7 transcription in
the nucleus. This study implies that circACTN4 acts as a signal-
ling nexus allowing for the coordinated activation of Hippo and
Wnt pathways in iCCA.82 However, the dynamic regulation of
circRNA shuttling between the nucleus and the cytoplasm, in
relationship to their function, is an important feature which re-
mains to be elucidated. A couple of other studies identified
aberrantly expressed circRNAs in both CCA cell lines and resected
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iCCA tumours. Thus, circ-0001649 and circ-0005230 were
respectively down- and upregulated in iCCA. These circRNAs
were associated with cell proliferation, migration and inva-
sion.63,67 Very recently, upregulation of circHMGCS1-016 was
also reported to contribute to iCCA development and immune
tolerance by sponging miR-1236-3p to regulate CD73 and GAL-8
expression.83 Several circRNAs derived from CASC15, a trans-
forming growth factor beta-induced long non-coding RNA, have
also been associated with an inflammatory microenvironment in
iCCA.84 Most of the studies reported so far have focused on
circRNAs within iCCA tumours. Nevertheless, circRNA are also
found circulating in body fluids (e.g. embedded in extracellular
vesicles [EVs]) and could therefore provide promising clinical
opportunities. For instance, the expression of circ-0000284 was
increased in CCA cell lines, tissues and plasma EVs. The circ-
0000284-enriched EVs produced by CCA cells were able to
enhance migration, proliferation and invasion of the normal
surrounding cells both in vitro and in vivo.64 These results not
only highlight circRNAs as mediators of cellular communication
but also as potentially promising biomarkers.
Limitations and challenges in interpreting data on
circRNAs
While studies reporting on the functions of circRNAs in liver
cancer are promising, it is important to point out that circRNAs’
sponge activity is the major mechanism investigated so far
(Table 1). Many of these studies rely on the cytoplasmic location
of the circRNA of interest as a rationale to investigate miRNA
activity, although this is where most exon-encoded circRNAs are
located.7,19 Most studies also look for evidence of sponge activity
by searching for any predicted miRNA binding sites in the
circRNA and correspondingly expressed miRNAs and/or looking
for interaction of the circRNA with proteins from the RNA-
induced silencing complex (RISC). Although these strategies
suggest interactions, they do not demonstrate function and
should be complemented with loss of function or depletion
studies to validate a functional effect on miRNAs. It is also
important to consider that essentially all of the sequences
attributed to circRNAs are contained in the parental mRNA, so
unless the circRNA is more abundant than the mRNA or is
somehow locking the miRNA into the RISC, it is hard to under-
stand the stoichiometry to explain how circRNAs can effectively
act as sponges in many cases. Similarly, a circRNA contains the
same mRNA sequence encoded by the same exons (with the
exception of the back-splice) so that ectopic expression of
circRNA and mRNA from the same gene could have the same
effect. This point should be addressed in functional studies given
that in many cases, the expression of circRNAs tends to follow
the expression of the mRNAs, so increases in expression of
circRNAs are usually associated with increased expression of
mRNA. However, given that the median half-live of circRNAs is
estimated to be at least 2 to 5 times higher than that of linear
mRNA,6,7,85 one can hypothesise that the contribution of circRNA
to RNA sponging activity is greater than that of their linear
counterpart. Thus, the dynamic of mRNA splicing and trans-
lation, the half-life of circRNA vs. mRNA, as well as their sub-
cellular location, should be considered, as these features may
contribute to the differential sponge activity of circRNA vs.
mRNA. Additional studies, including Ago-CLIP followed by long
read sequencing without RNAse R treatment, will be needed in
the future to better understand the stoichiometry of each
8vol. 4 j 100413



Table 2. CircRNA as biomarkers for liver cancer diagnosis and prognosis.

Liver cancer circRNA ID Biological sample Biomarker relevance Ref.

Upregulated circRNA
HCC (HBV related) circRNA-100338 HCC tissue Prognostic 114

HCC (HBV related) hsa_circ_0000976
hsa_circ_0007750 hsa_circ_0139897

plasma Diagnostic 115

HCC (HBV related) hsa_circ_0027089 plasma Diagnostic 116

HCC (early stage) circ-CDYL HCC tissue Surveillance biomarker, early diagnostic 95

HCC circRNA ciRS-7 (Cdr1as) HCC tissue Microvascular invasion 117

HCC circ_0008450 HCC tissue Prognostic 118

HCC circRHOT1 HCC tissue Prognostic 58

HCC circBIRC6 HCC tissue Prognostic 119

HCC hsa_circ_0000517 HCC tissue Prognostic 120

HCC hsa_circ_0128298 HCC tissue Diagnostic, prognostic 121

HCC hsa_circ_0091579 HCC tissue Diagnostic, prognostic 122

HCC hsa_circ_0016788 HCC tissue Diagnostic, prognostic 123,124

HCC circPCNX HCC tissue Prognostic 125

HCC hsa_circ_0056836 HCC tissue Diagnostic, prognostic 126

HCC hsa_circ_0005075 HCC tissue Diagnostic, prognostic 127,128

HCC hsa_circ_0091581 HCC tissue Prognostic 129

HCC hsa_circ_0128298 HCC tissue Diagnostic, prognostic 121

HCC circ-10720 HCC tissue Prognostic 130

HCC circRNA-101368 HCC tissue Prognostic 131

HCC circMAT2B HCC tissue Prognostic 75

HCC circ_0000267 HCC tissue Prognostic 132

HCC circ_001569 HCC tissue Prognostic 133

HCC circRNA-104718 HCC tissue Prognostic 134

HCC hsa_circ_0067934 HCC tissue Prognostic 135

HCC SCD-circRNA 2 HCC tissue Prognostic 57

HCC circRNA_0000502 HCC tissue Prognostic 136

HCC circPTPRM HCC tissue Prognostic 137

HCC circPVT1 HCC tissue Prognostic 138

HCC circRNA MYLK HCC tissue Prognostic 139

HCC circABCB10 HCC tissue Prognostic 140

HCC circ-ZNF652 HCC tissue Prognostic 141

HCC hsa_circ_0103809 HCC tissue Prognostic 142

HCC circ_0021093 HCC tissue Prognostic 143

HCC hsa_circ_0000673 HCC tissue Prognostic 144

HCC hsa_circRNA_103809 HCC tissue Prognostic 145

HCC circZFR HCC tissue Prognostic 146

HCC circMET HCC tissue Prognostic 147

HCC circ-HOMER1 HCC tissue Prognostic 148

HCC circFBXO11 HCC tissue Prognostic 149

HCC circ-TCF4.85 HCC tissue Diagnostic 150

HCC circBACH1 HCC tissue Diagnostic, prognostic 151

HCC circRNA-SORE HCC tissue Sorafenib resistance 99

HCC hsa_circ_0003998 HCC tissue, plasma Diagnostic, prognostic 152

HCC circASAP1 HCC tissue, plasma, plasma exosomes Prognostic 80

HCC circ-ZEB1.33 HCC tissue, serum Diagnostic, prognostic 153

HCC circRNA_101237 HCC tissue, serum Prognostic, cisplatin resistance 154

HCC circ-FOXP1 HCC tissue, serum Diagnostic, prognostic 155

HCC circ_0000798 Peripheral blood mononuclear cells Diagnostic, prognostic 156

HCC circ_104075 Serum Diagnostic 94

HCC hsa_circ_000224 Serum Diagnostic 157

HCC circPTGR1 Serum exosomes Prognostic 158

CCA circCdr1as CCA tissue Prognostic 159

Downregulated circRNA
HCC hsa_circ_0001649 HCC tissue Prognostic, diagnostic 160

161

HCC circMTO1 HCC tissue Prognostic 47

HCC circZKSCAN1 HCC tissue Diagnostic 162

HCC circSETD3
hsa_circ_0000567

HCC tissue Prognostic 97

HCC hsa_circ_0028502 HCC tissue Diagnostic 163

HCC hsa_circ_0076251 HCC tissue Diagnostic, prognostic 163

HCC circ-ITCH HCC tissue Prognostic 65

HCC hsa_circ_0068669 HCC tissue Diagnostic, prognostic 164

HCC hsa_circ_0003570 HCC tissue Diagnostic 165

HCC hsa_circ_0078602 HCC tissue Diagnostic, prognostic 166

HCC hsa_circ_0004018 HCC tissue Diagnostic 167

HCC circC3P1 HCC tissue Prognostic 168

(continued on next page)
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Table 2 (continued)

Liver cancer circRNA ID Biological sample Biomarker relevance Ref.

HCC circTRIM33–12 HCC tissue Prognostic 77

HCC hsa_circ_0091570 HCC tissue Diagnostic, prognostic 169

HCC circRNA_101505 HCC tissue Prognostic cisplatin resistance 170

HCC circHIAT HCC tissue Prognostic 61

HCC circADAMTS13 HCC tissue Prognostic 171

HCC circ-EPHB4
hsa_circ_0001730

HCC tissue Diagnostic 172

HCC circSMARCA5 HCC tissue, plasma Diagnostic, prognostic 48,173

HCC circADD3 HCC tissue, plasma Diagnostic, prognostic 174

HCC hsa_circ_0001445 Plasma Diagnostic 175

HCC hsa_circ_0051443 Plasma exosomes Diagnostic 176

HCC hsa_circ_00156 Serum Diagnostic 157

HCC hsa_circ _000520 Serum Diagnostic, prognostic 157

CCA, cholangiocarcinoma; CircRNA, circular RNA; HCC, hepatocellular carcinoma.
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molecule implicated in the sponging of miRNAs. It should also be
noted that even if the aforementioned studies performed
experimental validations using animal models (subcutaneous
injection of cancer-derived cell lines stably over- or under-
expressing a specific circRNA), the readout of these experi-
ments is mainly tumour growth. Therefore, even though in vivo
experiments confirmed the tumour suppressive or pro-
oncogenic role of circRNAs, further investigations are needed to
validate their involvement in several of the hallmarks of cancer.
This aspect could be critical if circRNAs’ function is context-
dependent and should be considered in view of emerging stra-
tegies for specific knockdown of circRNAs in vivo.86
CircRNAs: clinical opportunities in liver cancer
CircRNAs are promising clinically relevant biomarkers
In addition to the new insights on their regulatory functions,
circRNAs also provide good opportunities to improve the man-
agement of patients with liver cancer. Indeed, even if most
circRNAs are expressed at a low level (roughly <10% of the
expression of their linear counterpart),87 their circular structure
provides a higher resistance to exonuclease activity and there-
fore an expanded half-life. Such intrinsic physical features mean
that circRNAs could be promising diagnostic and prognostic
biomarkers. In addition, circRNAs are found circulating in liquid
biopsies (e.g. blood, urine, saliva, bile),5,88 either freely or
embedded into EVs.89 A recent study demonstrated that circR-
NAs are more specifically enriched and stable in exosomes
compared to host secretory cells.90 Therefore, exosomal circRNAs
could be useful minimally invasive biomarkers. They provide
clear benefits over protein biomarkers which are prone to
degradation and present limited organ specificity.91 In addition,
methodologies used for circRNA detection are usually more
specific and sensitive than the immunoassays commonly used
for protein biomarkers.92 Indeed, as nucleic acids, circRNAs can
be easily and specifically amplified by reverse-transcription
quantitative PCR using specific primers overlapping the back-
splice junction.34 It was further demonstrated that circRNAs
display tissue- and cell-specific expression patterns,1 a feature
which could be helpful for diagnosis. Thus, circRNAs appear as
promising molecules for the management of patients with can-
cer, as they exhibit many of the features expected of a biomarker:
they are often more stable than linear RNAs, including miRNAs,
and require minimally invasive intervention to be detected in
body fluids by specific and sensitive methods. Accordingly,
several ongoing clinical trials are exploring circRNAs as
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biomarkers in cancer, including biliary tract cancers (e.g.
NCT03334708, NCT04584996, NCT04792437). However, it should
be noted that a high level of circRNAs from serum/plasma may
also only reflect a high level of circulating cells, as was reported
for miRNAs.3,93

CircRNAs for liver cancer diagnosis and prognosis
Recent profiling studies support the utility of circRNAs as po-
tential diagnostic and prognostic biomarkers in patients with
liver cancer (Table 2). However, these studies currently suffer
from limited sample sizes; hence, a robust signature of circRNAs
commonly deregulated in patients with liver cancer remains
elusive. Despite this weakness, merging the results of 3 inde-
pendent studies identified circ_104075 as a circRNA recurrently
upregulated in tissues and sera of patients with HCC compared
to healthy individuals.94 Its expression is particularly high in HCC
compared to other types of cancer and liver disease, suggesting
that it could represent a biomarker for HCC diagnosis.94 Further
statistical analyses demonstrated that circ_104075 exhibited a
better sensitivity and specificity than biomarkers commonly
used to diagnose HCC, such as alpha-fetoprotein.94 Such obser-
vations could be practice changing given that alpha-fetoprotein
serum dosage and ultrasound, which are routinely used to di-
agnose early stage HCC, sometimes lack precision.54 Thus, pa-
tients could benefit from these innovative specific biomarkers if
they enable the early detection of HCC. Similarly, circCDYL was
expressed during the early stages of HCC, and thus might be a
clinically relevant biomarker for early diagnosis and surveillance
in high-risk populations, including patients with hepatitis B or C
infection and/or cirrhosis.95

The prognostic potential of circRNAs has also been reported in
liver cancer. A recent meta-analysis in HCC highlighted a tight
correlation between an elevated expression of pro-oncogenic
circRNAs and poor clinical outcomes such as reduced overall
survival.96 Two other studies reported that low expression of
circMTO1 and circSETD3 in HCC was significantly associated with
poor prognosis.47,97 In the same vein, it was shown that low
levels of circSMARCA5 in iCCA correlate with poor overall sur-
vival. Interestingly, overexpression of circSMARCA5 in iCCA cell
lines improves chemosensitivity to gemcitabine and cisplatin.81

Likewise, downregulation of circ-0003418 resulted in cisplatin
resistance in HCC cells through activation of the Wnt/b-catenin
pathway.98 Lately, circRNA-SORE was reported to mediate sor-
afenib resistance in HCC by stabilising YBX1, a master oncogenic
factor. CircRNA-SORE acts by trapping YBX1 and thus, preventing
its degradation by the E3 ubiquitin system. More interestingly,
10vol. 4 j 100413
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Fig. 4. CircRNAs as innovative biomarkers and therapeutic targets in liver cancer. The left panel highlights tumour-suppressive and pro-tumourigenic
circRNAs acting on well-known cancer hallmarks. The right panel highlights circRNAs as innovative biomarkers and therapeutic targets using ASOs. ASO,
antisense oligonucleotide; circRNA, circular RNA; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma.
circRNA-SORE-related features spread across cancer cells
through exosomal communication.99 These observations raise
the possibility of developing innovative circRNA biomarkers to
predict response to therapy.

CircRNAs as companion biomarkers for targeted therapies in
liver cancer
Several targeted therapies are currently under clinical evaluation
in liver cancer.100 In this context, the development of robust
diagnostic tools to select the most suitable personalised therapy
could be valuable. In HCC, nivolumab, an immune checkpoint
inhibitor targeting PD-1, was approved by the FDA in 2017.
However, objective anti-tumour response rates were only 15-
20%.54,101 Therefore, a circRNA signature predictive of anti-PD1
response might be relevant. This innovative concept involving
the development of companion biomarker tests from circRNA
signatures may represent a breakthrough to guide targeted
therapies. So far, to the best of our knowledge, there is no pub-
lished report of circRNAs as companion biomarkers and/or
theranostic targets that can predict response to a specific ther-
apy, either in HCC or in iCCA.

Future directions: circRNAs and therapeutic opportunities
As mentioned above, there is growing evidence showing that
circRNAs are deregulated in cancer and contribute to the regu-
lation of oncogenic processes (Fig. 3). Thus, circRNAs might be
considered as relevant therapeutic targets in cancer. The singu-
larity of circRNA regulatory functions offers various opportu-
nities to regulate their action during tumour progression and
therefore, to develop innovative therapeutic strategies.
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The pro-oncogenic activity of numerous circRNAs relies on
sponging of tumour suppressor miRNAs.47,48 Thus, several stra-
tegies could be developed to reduce this pro-oncogenic activity,
including the development of specific target site blockers (TSBs).
TSB antisense oligonucleotides (ASOs) could be designed to
target miRNA response elements carried by circRNAs. Thus, by
competitive binding, TSBs could restore the tumour suppressor
activity of a given miRNA. Although this strategy has not been
applied to circRNAs yet, it showed great efficacy when applied to
linear RNA sponges in vitro and in vivo.102 Another strategy
aiming at directly decreasing circRNA abundance could be even
more efficient. For that purpose, antisense locked nucleic acid
gapmers specifically targeting the back-splice junction of circR-
NAs could switch off the expression of a specific circRNAwithout
affecting the expression of the parental linear RNA. Several
studies already demonstrated the efficacy of this approach not
only with gapmers, but also with small-interfering RNAs and
shRNAs. Besides, it was shown that circHIPK3 silencing in mice
via adeno-associated virus shRNA could alleviate diabetic pro-
liferative retinopathy.103 CRISPR/Cas13-based RNA editing sys-
tems104 could also be used to specifically silence circRNA activity.
In addition, the abundance of pro-oncogenic circRNAs could be
modulated at an upstream level by interfering with the splicing
machinery to control the occurrence of back-splicing events.
Indeed, it was already reported that circRNA biogenesis during
EMT is tightly regulated by the RBP splicing factor QKI5.23 Thus,
one could hypothesise that modulating the expression level of a
specific RBP could control the expression of circRNAs. Otherwise,
as indicated above, there is strong evidence that circRNA
biogenesis is mediated by hybridisation of complementary
11vol. 4 j 100413
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intronic regions flanking circRNA sequences.21,22 Thus, one might
anticipate that targeting these complementary sequences on
pre-messenger RNAs using ASOs may block circRNA biogenesis
by preventing the interaction of back-spliced regions. On the
contrary, ASOs targeting key splice domains could be designed to
enhance circRNA biogenesis. Recently, a base editing strategy
targeting key back-splice domains showed great efficacy to
specifically repress circRNA expression without affecting the
linear counterpart RNAs (bioRxiv; https://doi.org/10.1101/2021.
08.05.455347). This study provides an efficient method to
deplete circRNAs for functional studies.

Nucleic acid-based therapeutics represent a promising
approach in cancer. To date, several RNA-based drugs like ASOs
are already FDA approved, and many are under clinical evalua-
tion,105 paving the way for circRNA-based therapeutics. Indeed,
circRNAs are often more stable than mRNA or miRNA molecules,
and methods have already been developed to produce synthetic
circRNAs.106 The advantage of this approach is the possibility of
designing specific circRNAs. For example, a synthetic circRNA
containing 5 binding sites for miR-21, an overexpressed onco-
miRNA, was shown to effectively suppress miR-21 activity and
to induce apoptosis in gastric cancer cell lines.107 Similarly,
synthetic circRNAs could be designed to sequester onco-
proteins. Indeed, a specific artificial circRNA able to sequester
and inactivate the RBP hnRNP has already been engineered.108
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Considering that RBPs participate in cancer progression, espe-
cially via splicing deregulation, this proof-of-concept study
opens new avenues for promising circRNA-based therapeutics.
In addition, it was demonstrated that exogenous circRNA can
efficiently produce proteins in vitro.109 Thus, circRNA carrying
IRES could be specifically engineered to express tumour sup-
pressor proteins.
Conclusions
A plethora of therapeutic strategies are being developed to target
circRNAs in liver cancer. Although proof-of-concept studies have
reported promising results, it must be taken into account that
circRNAs are still newly described protagonists in cancer onset
and progression. Indeed, a great deal of effort is needed to fully
understand the physiological roles, the regulatory functions and
the biogenesis of circRNAs. A better understanding of these
molecular mechanisms will provide a deeper insight into the
specific role of circRNAs in the whole RNA regulatory network
governing cancer hallmarks. This knowledge could eventually
pave the way for circRNA-mediated molecular therapies and for
clinically relevant biomarkers in liver cancer (Fig. 4). Thus, as an
emerging field, circRNAs represent a wealth of opportunities for
future research.
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