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IMPORTANCE: Accurately measuring the risk of pressure injury remains the most 
important step for effective prevention and intervention. Time-dependent risk factors 
for pressure injury development in the adult intensive care unit setting are not well 
understood.

OBJECTIVES: To develop and validate a dynamic risk prediction model to esti-
mate the risk of developing a hospital-acquired pressure injury among adult ICU 
patients.

DESIGN: ICU admission data were split into training and validation sets. With 
death as a competing event, both static and dynamic Fine-Gray models were 
developed to predict hospital-acquired pressure injury development less than 
24, 72, and 168 hours postadmission. Model performance was evaluated using 
Wolbers’ concordance index, Brier score, net reclassification improvement, and 
integrated discrimination improvement.

SETTING AND PARTICIPANTS: We performed a retrospective cohort study 
of ICU patients in a tertiary care hospital located in San Francisco, CA, from 
November 2013 to August 2017.

MAIN OUTCOMES AND MEASURES: Data were extracted from electronic 
medical records of 18,019 ICU patients (age ≥ 18 yr; 21,220 encounters). 
Record of hospital-acquired pressure injury data was captured in our institution’s 
incident reporting system. The information is periodically reviewed by our wound 
care team. Presence of hospital-acquired pressure injury during an encounter and 
hospital-acquired pressure injury diagnosis date were provided.

RESULTS: The dynamic model predicting hospital-acquired pressure injury more 
than 24 hours postadmission, including predictors age, body mass index, lactate 
serum, Braden scale score, and use of vasopressor and antifungal medications, 
had adequate discrimination ability within 6 days from time of prediction (c = 0.73). 
All dynamic models produced more accurate risk estimates than static models 
within 26 days postadmission. There were no significant differences in Brier scores 
between dynamic and static models.

CONCLUSIONS AND RELEVANCE: A dynamic risk prediction model predicting 
hospital-acquired pressure injury development less than 24 hours postadmission in 
ICU patients for up to 7 days postadmission was developed and validated using a 
large dataset of clinical variables readily available in the electronic medical record.

KEY WORDS: critical care; electronic health records; forecasting; pressure 
ulcer; risk assessment; risk factors

Pressure injuries (PIs), also known as pressure ulcers, decubitus ulcers, or 
bed sores, are a serious form of tissue damage caused by a combination 
of pressure, friction, shearing forces, and moisture. They most frequently 

occur over bony prominences such as the back of the head, ischium, sacrum, 
and heels. Hospital-acquired pressure injuries (HAPIs) are PIs that occur during 
inpatient stays, often in patients with a variety of risk factors, such as older age, 
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decreased perfusion, immobility, poor nutritional status, 
severe illness, and diabetes (1).

Pressure ulcers have a significant impact on short-
term outcomes in the U.S. inpatient populations: patients 
with at least one pressure ulcer have double the median 
length of stay and median treatment costs, and more 
than a five-fold increase in mortality compared with 
patients without ulcers (2). Altogether, patients who de-
velop the PIs are subject to increased pain, secondary 
infections, longer hospital stays, and an increased like-
lihood of mortality due to related complications such as 
secondary infections and sepsis (2, 3).

Accurate risk assessment plays a critical role in pro-
viding preventive measures in a time-sensitive manner. 
Current prevention measures rely mainly on subjective 
risk assessment coupled with periodic patient reposi-
tioning intended to alleviate or relocate pressure (4). 
The most well-known PI risk assessment tool is the 
Braden Scale—a clinical checklist that scores patients’ 
sensory perception, moisture, activity, mobility, nutri-
tion, friction, and shear on a one-to-four scale, with 
patients scoring below a cutoff (usually 17) considered 
higher risk (5). Although the Braden Scale has been 
widely adopted, its clinical utility shows mixed results, 
with some studies showing it to be a significant pre-
dictor for PI (6, 7), whereas other studies failed to 
show this relationship or found it significant only in an 
unadjusted analysis (8, 9). A review of clinical studies 
comparing the efficacy of the Braden Scale and sim-
ilar risk assessment scales found no positive clinical 
impact attributable to their application (10). The sub-
jective nature of the Braden Scale combined with its 
inconsistent clinical utility indicates that a better risk 
prediction tool for HAPI in the ICU is needed.

The prevalence of hospitals using electronic medical 
records (EMRs) presents a significant opportunity to use 
the granular data collected by EMR, including data from 
multiple time points, to investigate risk factors related to 
disease development. The dynamic risk prediction frame-
work allows for time-dependent covariates (11–13). For 
example, among patients who have not had a HAPI by 
24 hours postadmission, risk factors such as laboratory 
values and medications ordered up until 24 hours postad-
mission can be used to predict HAPIs. Similarly, among 
patients who have not had a HAPI by 72 hours postad-
mission, risk factors up until 72 hours postadmission 
can be used to predict HAPIs. Dynamic risk prediction 
has recently been used in several disease areas, including 

diabetes (11), heart failure (14, 15), and colorectal liver 
metastases (16). However, many studies predicting PIs 
have only made static predictions using risk factor data 
at or up to a single time point (17–22). We sought to de-
velop and validate a dynamic risk score at different time 
points of a patient’s hospital course to accurately predict 
the risk of developing a HAPI among adult ICU patients.

MATERIALS AND METHODS

Setting

Our tertiary care center located in San Francisco, CA, 
uses an EMR to integrate medical information, including 
diagnoses, medications, laboratory results, charting, 
and procedure codes. The study protocol was reviewed 
and approved by our Institutional Review Board (IRB) 
(Human Research Protection Program IRB—Laurel 
Heights Committee, approval number 13-10753). Since 
the study was retrospective and met the criteria for min-
imal risk to participants, the requirement for informed 
consent was waived. This study followed the Transparent 
Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis guideline.

Study Design and Population

We conducted a retrospective cohort study among 
adult (age ≥ 18 yr) University of California San 
Francisco Health members hospitalized in the ICU 
from November 13, 2013, to August 31, 2017. Record 
of HAPI data is captured in our institution’s Incident 
Reporting system, and the information is periodi-
cally reviewed by our wound care team to confirm a 
true HAPI diagnosis. Presence of HAPI during an en-
counter and date of HAPI diagnosis were provided. 
Each hospitalization encounter in the ICU was treated 
independently in the analysis.

Data Collection and Organization

We collected five components from the EMR software 
EPIC (EPIC Systems Corporation, Verona, WI): 1)  
demographics, 2) preadmission and inhospital en-
counter diagnoses, 3) administered inpatient medica-
tions, 4) flowsheet variables (measurements of patient 
taken at bedside by a provider or a machine), and 5) 
laboratory results (Supplemental Table 1, http://links.
lww.com/CCX/A850). The time of medication was 
approximated by the time when ordered.

http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
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Development of the Hospital-Acquired 
Pressure Injury Risk Score

To determine risk factors at different times during a patient’s 
admission, four patient cohorts were created from the eli-
gible patient encounter data: 1) full sample (baseline cohort) 
to predict any HAPI, 2) subsample excluding encoun-
ters with HAPI, death, or discharge from ICU recorded 
within 24 hours postadmission (24-hr cohort) to predict 
HAPIs at least 24 hours postadmission, 3) subsample ex-
cluding encounters with HAPI, death, or discharge from 
ICU recorded within 72 hours postadmission (72-hr 
cohort) to predict HAPIs at least 72 hours postadmis-
sion, and 4) subsample excluding encounters with HAPI, 
death, or discharge from ICU recorded within 168 hours  
(7 d) postadmission (168-hr cohort) to predict HAPIs at 
least 168 hours postadmission. A static prediction model, 
only using baseline predictors, was developed in each of the 
four cohorts; and a dynamic prediction model, using both 
baseline predictors and predictors that are updated at spe-
cific “landmark times,” was developed in each of the three 
postbaseline cohorts. Supplemental Figure 1A–D (http://
links.lww.com/CCX/A850) includes information on which 
variables were considered for static and dynamic models.

The following procedures were performed on each of 
the four cohorts: ICU admissions were randomly split (7:3) 
into training and internal validation sets (Supplemental 
Fig. 1A–D, http://links.lww.com/CCX/A850). The val-
idation set was reserved for evaluating the resulting 
risk score developed in the training set. Characteristics 
of the training and validation samples were described 
(Supplemental Table 2A–D, http://links.lww.com/CCX/
A850). Candidate predictors of HAPI were determined 
using literature review, clinical judgment, and analyses in 
the training set. Two senior resident physicians, attending 
surgeon, and attending critical care physician reviewed 
the top 110 potential predictors by odds ratio value and 
discussed their clinical importance and relevance. Only 
variables with less than 50% missing data were consid-
ered as potential predictors. The missing category was 
analyzed if any variable had greater than 5% missing data.

Fine-Gray subdistribution hazard models were used to 
account for death during ICU stay as a competing event. 
Please see Supplemental Methods for more discus-
sion of the competing-risks methods (http://links.lww.
com/CCX/A850). Unadjusted analysis was performed 
to assess the association between each candidate pre-
dictor and HAPI. If a variable had both continuous and 
categorical options, the categorical version was used in 

order to improve utility and interpretation of the result-
ing risk score. Backward elimination selection was used 
to develop a multivariable model. Candidate predictors 
that had associations with p value of less than 0.1 from 
the unadjusted analyses were included in a multivariable 
analysis, and covariates not attaining significance at the 
0.05 level were sequentially eliminated until all covari-
ates were significantly associated with the outcome.

A regression coefficient-based approach (23) was 
used to develop a points-based scoring system from 
the selected predictors in the final models. Plots of the 
cumulative incidence function (CIF) stratified by quin-
tiles of the risk score were generated, and differences in 
these risk strata were assessed using Fine-Gray models.

Evaluation of Risk Score Performance

Model performance was evaluated in the validation set 
using Wolbers’ concordance index for prognostic mod-
els with competing risks (24), Brier score (25, 26), net 
reclassification improvement, and integrated discrim-
ination improvement (27–31), and calibration plots. 
Models including only Braden Scale score categories 
from the 24-, 72-, and 168-hour cohorts were also per-
formed, translated to risk scores, and validated using 
Wolbers’ concordance index in order to compare their 
performance to our study’s risk score performance.

Statistical Analysis

Hypothesis tests were two-sided, and the significance 
threshold was set to 0.05. Statistical analyses were per-
formed using SAS (Version 9.4, SAS Institute, Cary, 
NC) and R (Version 4.0.0, R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

Characteristics and Multivariable Fine-Gray 
Competing Risk Models of Each Cohort

Table  1 and Supplemental Table 2A–D (http://links.
lww.com/CCX/A850) describe characteristics in each 
cohort’s training and validation sets. Supplemental 
Table 3A–D (http://links.lww.com/CCX/A850) con-
tains the final candidate lists of predictors for backward 
elimination selection, along with descriptive statistics 
by HAPI/death/censored status, in each cohort’s train-
ing set. Supplemental Table 4 (http://links.lww.com/
CCX/A850) lists variables with less than 5% missing 
data by cohort.

http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
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TABLE 1. 
Characteristics in 24-Hour Cohort Training and Validation Samples

Variable

% (n) or Mean ± sd (n)

Training  
(n = 14,025)

Validation  
(n = 6,012)

Outcome at least 24 hr after admission

  HAPI diagnosis 1.9 (266) 1.8 (111)

  Death without HAPI 6.6 (924) 6.6 (394)

Median (IQR) days from admission to HAPI diagnosis 10 (5–19) 12 (6–20)

Median (IQR) days from admission to death 9 (5–17) 9 (5–18)

Characteristics at start of encounter

  Age (yr) 61.3 ± 17.4 (14,025) 61.2 ± 17.1 (6,012)

  Male gender 53.1 (7,452) 53.3 (3,207)

  Body mass index (kg/m2) 27.0 ± 7.2 (13,553) 26.9 ± 7.1 (5,797)

Preexisting diagnoses

  Diabetes 21.6 (3,022) 20.9 (1,257)

  Chronic pulmonary disease 21.3 (2,988) 22.4 (1,347)

  Renal failure 22.0 (3,080) 23.6 (1,414)

  Congestive heart failure 14.0 (1,967) 14.7 (885)

  Peripheral vascular disease 8.3 (1,164) 8.4 (506)

Laboratory results within 24 hr of admission

  Maximum of WBC values (1,000 cells/µL) 12.9 ± 18.2 (12,662) 12.8 ± 14.0 (5,411)

  Minimum of sodium values (mg/dL) 135.4 ± 4.6 (12,555) 135.4 ± 4.6 (5,371)

  Minimum of hematocrit values (%) 32.0 ± 6.8 (12,673) 32.0 ± 7.0 (5,423)

  Maximum of Paco2 values (mm Hg) 45.2 ± 11.3 (8,003) 45.1 ± 11.1 (3,454)

  Minimum of Pao2 (mm Hg) 98.5 ± 94.6 (7,893) 97.9 ± 93.8 (3,411)

  Maximum of creatinine values (mg/dL) 1.4 ± 1.8 (12,645) 1.4 ± 1.8 (5,410)

  Minimum of blood pH values 7.33 ± 0.10 (8,049) 7.33 ± 0.10 (3,472)

  Minimum of platelet count values (1,000 cells/µL) 191.4 ± 97.9 (12,628) 193.2 ± 98.4 (5,397)

  Maximum of lactate serum values (mg/dL) 2.8 ± 2.7 (7,674) 2.9 ± 2.9 (3,312)

  Maximum of nonfasting glucose values (mg/dL) 169.9 ± 106.5 (9,742) 171.1 ± 111.8 (4,186)

Medication ordered within 24 hr of admission

  Paralytic 4.7 (627) 4.5 (257)

  Vasopressor 25.4 (3,413) 26.7 (1,537)

  Antibiotic 63.4 (8,525) 62.5 (3,591)

  Antifungal medication 44.1 (5,931) 44.1 (2,532)

Minimum of Braden Scale score within 24 hr of admission 16.3 ± 3.5 (12,780) 16.4 ± 3.5 (5,439)

  6–12 14.7 (2,060) 14.2 (851)

  13–14 13.0 (1,821) 12.9 (778)

  15–16 17.3 (2,423) 17.0 (1,023)

  17–23 46.2 (6,476) 46.4 (2,787)

  Missing 8.9 (1,245) 9.5 (573)

HAPI = hospital-acquired pressure injury, IQR = interquartile range.
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Table  2 and Supplemental Table 5A–C (http://
links.lww.com/CCX/A850) present the results from 
the multivariable Fine-Gray models in each of the 
four study cohorts. Supplemental Figure 1A–D (http://
links.lww.com/CCX/A850) summarizes the numbers 
of ICU admissions analyzed and HAPI cases included 
in each analysis.

Twenty-Four-Hour Cohort Dynamic 
Multivariable Prediction Model

In the 24-hour dynamic model, six variables were sig-
nificantly associated with higher risk of HAPI: age 

greater than or equal to 50 years, BMI greater than or 
equal to 40, maximum of lactate serum values greater 
than 3 mg/dL, vasopressor medication use, antifun-
gal medication use, and minimum Braden Scale score 
6–12 (all data within 24 hr postadmission). Missing 
lactate serum was also significantly associated with 
lower risk of HAPI (Table 2).

The left panel of Figure 1 presents plots of the CIF 
for HAPI at least 24 hours postadmission stratified by 
quintiles and their associated point values of the dy-
namic model risk score. The corresponding estimates of 
the CIFs for death without HAPI at least 24 hours post-
admission are presented in the right panel of Figure 1. 

TABLE 2. 
Covariates in 24-Hour Cohort Multivariable Prediction Models and Associated Point 
Values for Hospital-Acquired Pressure Injury

Model Variable Log-SHR (β) SHR (95% CI) p Points

Model with 
static 
predictors 
only

Age ≥ 50 yr 0.444 1.56 (1.13–2.16) 0.007 4

BMI (kg/m2)

  Underweight: < 18.5 vs normal (18.5–<25) 0.450 1.57 (1.04–2.38) 0.034 5

  Overweight: 25–<30 vs normal (18.5–<25) –0.226 0.80 (0.57–1.12) 0.187 –2

  Class 1 obesity: 30–<35 vs normal (18.5–<25) 0.284 1.33 (0.93–1.91) 0.124 3

  Class 2 obesity: 35–<40 vs normal (18.5–<25) 0.371 1.45 (0.89–2.37) 0.138 4

  Class 3 obesity: ≥ 40 vs normal (18.5–<25) 0.705 2.02 (1.28–3.20) 0.003 7

Model with 
both 
dynamic 
and static 
predictors

Age ≥ 50 yr 0.366 1.44 (1.02–2.04) 0.040 4

BMI (kg/m2)

  Underweight: < 18.5 vs normal (18.5-< 25) 0.376 1.46 (0.95–2.24) 0.088 4

  Overweight: 25–<30 vs normal (18.5–<25) –0.224 0.80 (0.56–1.13) 0.208 –2

  Class 1 obesity: 30–<35 vs normal (18.5–<25) 0.273 1.31 (0.90–1.91) 0.152 3

  Class 2 obesity: 35–<40 vs normal (18.5–<25) 0.397 1.49 (0.90–2.47) 0.124 4

  Class 3 obesity: ≥ 40 vs normal (18.5–<25) 0.728 2.07 (1.32–3.26) 0.002 7

Maximum of lactate serum values within 24 hr of admission (mg/dL)

  > 3 vs ≤ 3 0.356 1.43 (1.05–1.95) 0.025 4

  Missing vs ≤ 3 –0.343 0.71 (0.51–0.99) 0.046 –3

Vasopressor medication ordered within 24 hr  
  of admission

0.307 1.36 (1.01–1.83) 0.045 3

Antifungal medication ordered within 24 hr  
  of admission

0.345 1.41 (1.07–1.86) 0.014 3

Minimum of Braden Scale score within 24 hr of admission

  6–12 vs 17–23 0.487 1.63 (1.13–2.36) 0.010 5

  13–14 vs 17–23 –0.054 0.95 (0.61–1.47) 0.808 –1

  15–16 vs 17–23 –0.008 0.99 (0.65–1.51) 0.970 0

  Missing vs 17–23 0.291 1.34 (0.78–2.29) 0.289 3

BMI = body mass index, SHR = subdistribution hazard ratio.

http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
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There were also statistically significant differences in 
CIFs for strata 3, 4, and 5 compared with stratum 1. 
Supplemental Table 6 (http://links.lww.com/CCX/
A850) summarizes these results from all models from 
the three cohorts. Supplemental Table 7 (http://links.
lww.com/CCX/A850) shows how a clinician can use our 
dynamic prediction model with a patient case example.

Performance of the Hospital-Acquired Pressure 
Injury Risk Score

Table  3 and Supplemental Table 8 (http://links.lww.
com/CCX/A850) summarize the performances of 
all model risk scores in the internal validation set. 
Supplemental Figure 1A–D (http://links.lww.com/
CCX/A850) summarizes the numbers of encounters 
analyzed and HAPI cases included in each analysis. 
Overall, the 24-hour dynamic model demonstrated the 
highest discrimination ability for HAPI within 7 days 
or less postadmission (Table 3). The static model risk 

score differentiated adequately between patients who 
did and did not have a HAPI within 2 days postadmis-
sion. Discrimination ability deteriorated drastically for 
greater than or equal to 3 days from admission. The 
24-hour dynamic model risk score had concordance 
indices greater than or equal to 0.7 within 3, 5, and 7 
days postadmission, respectively, and discrimination 
ability was poor for greater than or equal to 8 days 
postadmission. In contrast, a 24-hour risk score based 
on Braden Scale score categories alone could only dis-
criminate adequately within 5 days postadmission. The 
dynamic model produced more accurate risk estimates 
than the static model between 2 and 26 days postad-
mission for the 24-hour models.

Calibration plots for each model risk score are pre-
sented in Figure 2 and Supplemental Figure 2A–C 
(http://links.lww.com/CCX/A850). The 45° line indi-
cates perfect calibration. For the baseline model risk 
score, observed and predicted probability of HAPI 
agreed well for predicted risk values less than or equal 

Figure 1. Cumulative incidence function for hospital-acquired pressure injury (HAPI) and competing risk death at least 24 hr from 
admission by quintiles of dynamic model risk score.

http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
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to 9%, with lack of calibration in the upper range of 
predicted risk; but only less than 3% of encounters had 
predicted risk greater than 9% (Supplemental Fig. 2A, 
http://links.lww.com/CCX/A850). For the 24-hour 
model risk score, observed and predicted probabilities 
were fairly well-calibrated for predicted risk values less 
than or equal to 10%, and a small percentage (< 2%)  
of encounters had predicted risk greater than 10% 
(Fig. 2). For the 72- and 168-hour model risk scores, 
observed and predicted probability were fairly well-
calibrated overall (Supplemental Fig. 2, B and C, http://
links.lww.com/CCX/A850).

DISCUSSION

In this large, single-institution retrospective cohort 
study, we developed and validated a dynamic risk pre-
diction model based on detailed and chronologically 
updated clinical information available in the EMR for 
21,220 encounters to predict the risk of developing 

a HAPI greater than 24 hours postadmission among 
adult ICU patients. Our model could make accept-
able predictions up to 7 days postadmission, further 
out from time of admission than a model using Braden 
Scale score categories alone.

Our finding of older age predicting HAPI devel-
opment is consistent with previous literature (32). 
Multiple chronic diseases, such as cardiovascular dis-
eases, diabetes, chronic pulmonary disease, renal dis-
eases, and neurodegenerative disorders, are found in 
the older adult population and contribute to the de-
velopment of HAPI (33). However, we found that 
increased risk in the elderly population persists despite 
adjustment for common comorbid conditions, dem-
onstrating that older age is an independent risk factor 
for HAPI development.

BMI was previously found to be predictive of HAPI 
development in a U-shaped relationship. Two studies 
found that underweight and extremely obese patients 
were at higher risk for developing HAPI (34, 35). Our 

TABLE 3. 
Concordance Indices for Models in Internal Validation Set

Day

Concordance Indices

Baseline  
Risk 

Score

24-hr Risk Scores 72-hr Risk Scores 168-hr Risk Scores

Dynamic Modela Static Model Dynamic Modelb Static Model Dynamic Model Static Model

  1 0.92 NA NA NA NA NA NA

  2 0.92 0.74 0.60 NA NA NA NA

  3 0.66 0.78 0.62 NA NA NA NA

  4 0.59 0.72 0.57 0.69 0.38 NA NA

  5 0.59 0.75 0.64 0.65 0.50 NA NA

  6 0.66 0.72 0.62 0.67 0.51 NA NA

  7 0.64 0.73 0.60 0.69 0.47 NA NA

  8 0.64 0.66 0.59 0.66 0.44 0.62 0.23

  9 0.59 0.63 0.57 0.64 0.50 0.54 0.34

10 0.60 0.64 0.58 0.62 0.51 0.59 0.42

20 0.56 0.59 0.58 0.59 0.56 0.56 0.57

30 0.57 0.59 0.59 0.62 0.58 0.53 0.54

NA = not applicable.
aThe c-indices for the 24-hr dynamic model predicting hospital-acquired pressure injury (HAPI) events over the entire prediction 
interval (> 24 hr) vs only within the 24- to 72-hr interval were 0.61 and 0.74, respectively.
bThe c-indices for the 72-hr dynamic model predicting HAPI events over the entire prediction interval (> 72 hr) vs only within  
the 72- to 168-hour interval were 0.58 and 0.67, respectively.
Bolded values are ≥ 0.7.

http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
http://links.lww.com/CCX/A850
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study also confirmed class 3 obesity to be predictive of 
HAPI development. Obesity is thought to affect PI for-
mation in several ways, including making visualization 
and hygiene of vulnerable areas more difficult, directly 
increasing pressure on vulnerable areas, and as a risk 
factor for metabolic disease.

Our finding that a maximum of lactate serum values 
of greater than 3 mg/dL predicts HAPI development is 
expected, as a higher lactate serum value often indi-
cates tissue hypoperfusion and shock (36). The lack 
of lactate serum measurement being negatively as-
sociated with HAPI development is not surprising, 
as it likely reflects the scenario that the provider was 
less concerned about shock and organ perfusion in a 
patient.

Consistent with our study’s finding that vasopressor 
medication use is predictive of HAPI development, a 
previous study found that the addition of vasopressin 
administered alongside a first-line agent may represent 
the point at which the risk for HAPI escalates and may 
be an early warning to take preventative measures (37). 
In a literature review of HAPI development and vaso-
pressor agents in adult critical care patients, Cox (38) 
found that seven of 10 studies identified reported sta-
tistically significant associations.

Longstanding HAPIs are fre-
quently colonized by microor-
ganisms in a biofilm, which may 
be composed of bacteria, fungi, 
or other organisms embedded 
in the underlying wound, pre-
venting the wound from heal-
ing (39). Antimicrobial agents, 
such as antibacterial and anti-
fungal medications, are often 
used to treat infected HAPIs 
(40). Furthermore, fungal infec-
tions in the critical care setting 
are often associated with signif-
icant morbidity and mortality; 
Aspergillus pneumonia is re-
ported to have a mortality rate 
of 25%, with up to 90% in liver 
transplant recipients (41). Our 
finding that antifungal medica-
tion ordered prior to HAPI de-
velopment is predictive of HAPI 
is likely reflected in patients 

being treated for systemic fungal infections.
Although the Braden Scale score has several limita-

tions related to low specificity (42), in our study, only 
a minimum score less than or equal to 12 during the 
ICU encounter proved to be a significant risk factor. 
Although ostensibly an objective scale, the Braden 
Scale still represents a clinical judgment by a provider. 
Providers who feel that patients are at high risk for 
the HAPI may choose lower scores on the scale, and 
capturing that clinical judgment may be the primary 
benefit of the Braden Scale. Another benefit is that 
subscales of the Braden Scale aim to capture poor nu-
tritional status. Serum albumin was missing for greater 
than 50% of patient encounters, so we could not 
assess albumin level as a marker of nutritional status. 
Moisture of a wound is another variable that is difficult 
to capture via EMR data, where the Braden Scale may 
provide value.

Overall, our model demonstrates that clinical pre-
dictors from the first 24 hours of ICU admission can 
predict development of HAPI up to 7 days after admis-
sion. Our dynamic prediction model allows the clini-
cian to use the patient’s characteristics and EMR data 
from the first 24 hours in the ICU to easily hand calcu-
late the risk score and stratify patients based on risk of 

Figure 2. Calibration plots for 24-hr cohort prediction model risk scores.
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HAPI. It must be emphasized that this model does not 
suggest causality. It is possible that some factors in the 
risk score can be directly modified, such as the nutri-
tion subscore of the Braden Scale. However, the main 
function of the score is anticipated to be identifying 
high-risk patients that could benefit from increased 
monitoring and available preventative interventions 
(more frequent turning, padding, pressure reallocating 
beds, etc.) to improve outcomes. Last, our model can 
also be integrated into the EMR to automatically calcu-
late dynamic HAPI risk scores for all the ICU patients, 
including those missing data for certain components 
of the model.

This study has several limitations. First, although 
our dynamic model predicting HAPI greater than 
24 hours postadmission had adequate discrimina-
tion ability at 1 week, it became poor past 7 days 
postadmission. This suggests the need of real-time 
dynamic modeling updated per every hospital stay 
day elapsed. Second, although we developed a scor-
ing system for clinical use, missing lactate serum was 
predictive of lower risk of HAPI greater than 24 hours 
postadmission. Only cases with complete data on all 
score components can be hand-calculated. Although 
the decision by a clinician not to order a lactate can-
not be part of a risk score used directly by humans, 
the risk score that includes this missing category can 
be used by computers, that is, pulled directly from 
EMR data and calculated. Third, the retrospective na-
ture of our study carries the risk of confounding. For 
example, the association of vasopressor medication 
use with HAPI may be a true effect from vasocon-
striction and hypoxia of vulnerable tissue but may 
also result from concomitant sedation or mechanical 
ventilation. Finally, although our dataset was large, 
spanning 4 years of ICU patient encounters, our ret-
rospective review is from a single institution; valida-
tion of the risk model with the EMR data from other 
institutions would allow confidence in expanding its 
use beyond our study population.

CONCLUSIONS

A dynamic risk prediction model predicting HAPI 
development greater than 24 hours postadmission in 
ICU patients for up to 7 days postadmission was de-
veloped and validated using a large dataset of clinical 
variables readily available in the EMR. This model can 

aid clinicians in selecting high-risk patients early in 
their ICU admission for increasing monitoring and 
focused interventions to prevent HAPI formation. 
Our risk score can also be implemented automatically 
in the EMR as a measure for clinicians to be aware of 
high-risk patients when considering interventions to 
reduce PI formation.
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