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A B S T R A C T

This work demonstrates the application of state-of-the-art modeling techniques in pharmaceutical manu-
facturing for fluid bed granulation at varying scales to successfully predict process conditions and ultimately
replace experiments during a technology transfer of five products. We describe a mathematical model able to
simulate the time-dependent moisture profile in a fluid bed granulation process. The applicability of this model
is then demonstrated by calibrating and validating it over a range of operating conditions, manufacturing scales,
and formulations. The inherent capability of the moisture profile to serve as a simple, scale-independent sur-
rogate is shown by the large number of successful scale-ups and transfers. A methodology to use this ‘digital
twin’ to systematically explore the effects of uncertainty inherent in the process input and model parameter
spaces and their impact on the process outputs is described. Two case studies exemplifying the utilization of the
model in industrial practice to assess process robustness are provided. Lastly, a pathway to leverage model
results to establish proven acceptable ranges for individual parameters is outlined.

1. Introduction

Fluid bed granulation (FBG) is a frequently-used formulation step
whose benefits typically include improved flowability and compressi-
bility of powders as well as reducing the risk of segregation. The process
consists of two main stages: a spraying phase, during which fluidized
particles are coated with an aqueous binder solution and agglomerate,
and a drying phase used to evaporate away the water, resulting in a dry
powder.

Numerous modeling techniques have been applied to FBG processes.
Among the most common approaches are mass-, heat-, and population
balance models (PBMs) (Heinrich et al., 2005; Chaudhury et al., 2013;
Hu et al., 2008; Muddu et al., 2018; Gupta, 2017), discrete and finite
element methods (DEM and FEM), and computational fluid dynamics
(CFD) (Sen et al., 2014; Mortier et al., 2011). Modeling studies in lit-
erature are mostly concerned with the computation of the evolution of
particle size distribution (PSD) as well as granule moisture content ty-
pically captured as ‘loss-on-drying’ (LOD), and use granulation time as a
process performance metric. PBM, CFD, DEM and FEM are well-suited

to describe the evolution of the PSD, yet it remains a formidable task,
given that the evolution of the PSD is highly complex and depends on
an interplay of effects whose detailed study requires resources in the
form of time, equipment, and material. In fact, successfully modeling
the PSD can be challenging even in the arguably simpler case of ag-
glomeration during solution crystallization (Ochsenbein, 2015). Heat-
and mass balances, on the other hand, are useful to describe the granule
moisture trajectories over time as function of process conditions, which
include fluidization air flow, inlet air temperature and humidity, binder
solution spray rate etc. (Heinrich et al., 2005; Hu et al., 2008; Muddu
et al., 2018; Djuris et al., 2017).

While FBG process modeling in academic settings is well-estab-
lished, its application in the pharmaceutical industry is not. The reasons
for this are mostly related to transferability and robustness of models, as
will be outlined later. As a consequence, publications of industrially
relevant applications of mechanistic models are typically limited in
scope (Gupta, 2017; Pauli et al., 2019; Gagnon et al., 2017) and
somewhat detailed demonstrations of large-scale successes are ex-
ceedingly rare. In the following, we have selected three representative
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examples (Heinrich e al., 2005; Chaudhury et al., 2013; Hu et al., 2008)
for FBG modeling approaches with emphasis on heat and mass balances
from literature which will be compared and discussed in detail before
introducing key aspects and goals of the alternative approach used in
this work.

The approach proposed by Heinrich et al. (2005) is a one-dimen-
sional population balance model which is coupled with the heat and
mass transfers in FBG beds to calculate the time-dependent PSD and
spatial temperature and humidity distributions. The focus of the study
lies on investigating the behavior and phenomena in terms of granule
growth, temperature and granule moisture profiles for a continuous
fluid bed granulation process. A one-to-one comparison of experimental
and calculated results, especially in view of moisture trajectories of the
particles, is not a major point of attention. Several aspects should be
highlighted with respect to the heat and mass balance modeling part:

- The granulation equipment in the study by Heinrich et al. (2005) is
stated to be insulated. Equipment walls and the environment are not
part of the heat balances. Consequently, heat loss is not considered
in the model.

- A wetting efficiency parameter is applied to describe the ratio of
wetted vs. total particle surface and a specific liquid film thickness is
assumed.

- The model involves the porosity of the fluidized bed; the authors do
not elaborate on how this property is determined.

This approach has been designed and tested for a specific, rather
unique continuous granulation set-up. Consequently, the model struc-
ture and equations require adaptation and further testing before they
can be applied to other FBG processes. For instance, determining values
for the wetting efficiency parameter, the thickness of the liquid film
around the particles, and the porosity of the fluidized bed may be
challenging if these parameters are not treated as fitting parameters.

In the study by Chaudhury et al. (2013) the authors combine a heat-
and mass balance model with a three-dimensional PBM. The 3D PBM
with a mechanistic aggregation kernel considers granule size, binder
content and porosity as process characteristics. In that work, the em-
phasis lies on gaining deeper insights into the mechanisms of granula-
tion dynamics with respect to particle diameter, moisture content and
temperature evolution at different granulation conditions. Furthermore,
the model itself is being scrutinized, delivering a proof of concept with
limited comparison between experimental and calculated results, al-
though the authors compare the general trends of their modeling ap-
proach to experimental data by Hu et al. (2008) and Rambali et al.
(2001). Simulation of granulation scenarios is only done for runs at 2 kg
scale with varying fluidization air flow, binder spray rate, inlet air
temperature and humidity conditions, without further specifying the
granulation equipment.

In relation to our work some relevant aspects of the heat- and mass
balance model by Chaudhury et al. (2013) include:

- An experimental correction factor, γ, is introduced in the equation
describing the evaporation of moisture. In the expression to calcu-
late the wet surface area as fraction of the total particle surface area,
the authors further apply a factor, η, which is not further explained.

- The heat balance is reduced to the temperature calculation of the
outlet air and the bed. The authors account for heat loss through an
empirical correction quantity.

Chaudhury et al. (2013) do not discuss how they obtained values for
factors γ and η, nor how they determined the heat loss quantity. To
further generalize the model, a workflow would need to be established
that defines how values for the empirical parameters are determined.
Furthermore, the predictive capability of the model would need to be
investigated in depth by assessing whether it is also applicable under
different granulation conditions.

The fluid bed granulation model proposed by Hu et al. (2008) is
solely concerned with predicting and controlling the moisture content
of the particles during granulation to achieve desired granule proper-
ties. The study evaluates the effect of binder spray rate, binder solution
concentration, fluidization air flow, inlet air temperature and humidity
on the granule humidity. The model is tested against various experi-
mental datasets generated for fluid bed granulations at different scale,
i.e., different Glatt granulators (GPCG-1, GPCG-15, GPCG-60). Hu et al.
demonstrate how the proposed model can be used to determine ap-
propriate granulation conditions to achieve desired granule moisture
trajectories. Some of the specific features of the moisture balance
modeling approach suggested are:

- It is thought that two important assumptions hold, namely a) that
moisture evaporation happens only after contact of the spray dro-
plets with the powder, and b) that the moisture content of the bed is
uniform, i.e., there are no moisture gradients in the bed. Both as-
sumptions appear reasonable considering that in a well-designed
FBG process an appropriate combination of powder fluidization and
binder spray is applied. In fact, well-mixedness of the powder bed is
a prerequisite for a proper process.

- In the expression to calculate the moisture evaporation, the authors
incorporate a formulation specific correction factor α that is em-
ployed to represent – in a lumped manner – several, difficult-to-
determine parameters such as the wetting surface area of the par-
ticle bed. In the examples Hu et al. (2008) evaluate in their work, α
is determined once with granulation data generated on GPCG-1
equipment and then used for all scales, including for granulations on
GPCG-15 and GPCG-60 of the same formulation.

- Notably, the approach comprises only the granule moisture balance,
that is, a heat balance to calculate, e.g., the bed temperature is not
considered. Consequently, the model uses the inlet air temperature
to solve the equation for moisture evaporation. This underlying
assumption does not seem to agree with practical FBG experience,
where the bed temperature is commonly approaching the wet bulb
temperature during spraying and therefore considerably colder than
the inlet air.

Overall, the authors present a viable fit-for-purpose approach fo-
cusing on the practical engineering task to define appropriate FBG
conditions based on achieving a certain moisture trajectory of the
granules. In their study, the approach is tested only for one formulation.
While a closer look at the comparison between experimental and cal-
culated moisture trajectories reveals certain shortcomings, e.g., with
respect to accurately representing the effect of different spray rate
conditions and inlet air temperatures, the authors clearly demonstrate
how a comparably simple modeling approach can very well support
developing an FBG process in a more scientific and lean manner.

Bringing the three examples by Heinrich et al. (2005), Chaudhury
et al. (2013) and Hu et al. (2008) into context with our work three
major aspects should be addressed:

First, in full alignment with Hu et al. we desire a modeling approach
that is sufficiently scientifically detailed, yet as simple as possible, to
guide us in a reliable way to define appropriate FBG conditions with
minimal consumption of resources. Specific challenges we face are
mainly related to a wide range of formulations in combination with a
diverse landscape of FBG equipment and scales. In addition, we are
applying the modeling approach in an industrial environment where
time and detailed experimental data is often scarce. Data generated at
small scale should ideally enable a fully predictable process transfer to
full scale equipment. Any special requirements for data generation that
is not related to compliance directly poses a challenge.

Second, the prediction of moisture and temperature trajectories can
be sufficient to arrive at a highly practically useful modeling tool that
can guide us towards appropriate FBG conditions in a lean manner.
While PBMs such as those presented by Heinrich et al. (2005) and
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Chaudhur et al. (2013) are theoretically attractive, to our knowledge no
literature work has provided evidence that these can be trained in one
granulator and then used directly in another granulator of similar or
different size to predict product quality. We further note that mea-
surements for PSD of fluid bed granulated materials are notoriously
difficult to interpret, regardless of the method used (de Albuquerque
et al., 2016). Even after considering particle segregation and therefore
the effects of sampling location on measured PSD, or granule friability,
it has been our empirical observation that different processes can result
in powders that have a similar distribution yet behave somewhat dif-
ferently during subsequent compression steps. The inverse may also be
true: in our experience granule distributions that ostensibly are very
different can at times result in very similarly behaving compression and
final product outcomes. In addition to the potential problems that make
it difficult to obtain a representative PSD mentioned above, we attribute
these observations to the standardization effect of intermediate milling
steps, to the complex interaction of solids in systems with wide PSDs,
and generally to the large number of other factors that influence final
dissolution properties, potentially masking the effect of particle size.

Third, in contrast to other works in literature, high accuracy of the
predictions is of major importance to us. Trends alone may not be
sufficient to provide guidance towards adequate FBG conditions. In
fact, we are highly concerned about the sensitivity of our predictions to
disturbances and other uncertainties as will be shown. A simple, yet
reliable model that accurately captures a decent surrogate of process
performance and which can be analyzed thoroughly is of more value to
us than a more complicated model predicting alternative properties
with comparably low confidence.

In this paper we describe the results obtained applying a model that
had been developed earlier (Lyngberg et al., 2016) for a project that
involved a technology transfer of five legacy products from an older
model granulator with discontinuous shaking of the air filters to a state-
of-the-art granulator, while simultaneously scaling-up some of the
processes. Due to the legacy nature of the products, a modern under-
standing of the design spaces (including univariate and multivariate
knowledge about the process parameter ranges) was absent. Certain
parts of the process had been included in previous regulatory filings
such as the formulation and inlet air temperature ranges so based on
agreements with the relevant health authorities, no changes were made
to these parts of the process. The objective of the modeling part of this
project was to explore the process parameters at pilot scale and then use
that data to train the model and determine the commercial scale
parameter targets and ranges.

2. Materials and methods

2.1. Products

The compositions of the five products involved in the project varies
greatly, from drug loads as little as 0.5 wt% in the core tablet to drug
loads greater than 80 wt%. Likewise, a diverse range of excipients is
used in the formulations, including lactose, microcrystalline cellulose,
different types of starch, and so forth. In this text, we have assigned
generic labels A to E to the formulations. The spray solutions applied in
the granulations, too, are diverse, with some products being granulated
with various polyvinylpyrrolidone binders of different polymer chain
lengths and others using starch solutions of different compositions.
Even binder preparation methods, were varied, sometimes starting from
pre-gelatinized starch and other times involving a process whereby the
starch suspension was heated to form a paste-like spray. Analogously to
the product naming, generic labels are used in this text to distinguish
different processes where necessary. Maximum batch sizes of 350 kg
were planned at commercial scale whereas most pilot scale experiments
were executed at around 60 kg.

2.2. Granulators

Two models from Glatt GmbH were used in the parts of the project
described here, a GPCG 30 with a 145 L bowl at pilot scale and a WSG
Pro 200 with a 1000 L bowl at commercial scale. Spray rate was
monitored by a mass flow meter at both scales and the peristaltic pump
was operated in closed loop control with the mass flow meter at both
scales enabling the specification of a particular spray rate in the
equipment’s operating software. Inlet air flow and inlet air temperature
were similarly monitored and controlled. Exhaust air temperature and
the pressure drops across the product screen and air filters were all
monitored at both scales. Inlet air humidity could be controlled at both
pilot and commercial scale with the ability to both add and remove
moisture with steam and a cooling coil respectively.

2.3. Loss-on-drying (LOD) testers

At pilot scale, the loss-on-drying tests were performed using a he-
ated balance from Mettler Toledo, model HE73. At commercial scale,
the equivalent tests were performed with a different model of the same
vendor, namely model HB-43-S. At both scales, a sample was pulled to
fill a container which was then tightly sealed. At both scales, the test
was then performed as soon as possible using a method involving
heating a 10 g portion of the sample to 105 °C for 15min and de-
termination of the moisture based on the difference between the initial
and final weight.

3. Theory

3.1. Basic model

As stated earlier, fluid bed granulation is a complex process with a
large number of mechanisms and factors that make this process difficult
to model in its entirety. According to the general concept that 80% of
the outcome can be achieved by 20% of the work (cf. “Pareto prin-
ciple“), it should be favorable to apply a model that aims to describe a
simplified set of surrogate variables, such as the LOD profile, if it can be
shown to be a useful and scale-independent measure of the process
performance within a sizeable region of the parameter space.

Still, it is clear that other factors, such as the droplet dispersion or
the fluidization behavior and therefore equipment geometry, batch size,
etc. are critical for a robust process. We believe that reconciling these
contradictory facts can be achieved by bringing these other factors
‘under control’ to the extent that the main factor that remains is the
LOD. This can be accomplished by using process expert know-how and
statistical analysis of historical data and is facilitated by the fact that
comparably few process parameters have a dominant effect. For ex-
ample, in a given equipment fluidization is mainly controlled by the
airflow rate, while spray cone width and droplet size are governed by
the combination of spray rate and atomization pressure. The resulting
considerations provide a set of constraints within which our simple
model can operate.

3.1.1. Main set of ordinary differential equations
In the following, we briefly revisit the main principles and equations

of the model, previously reported elsewhere (Lyngberg et al., 2016).
The fluid bed system is described as a mass- and energy balance over
two perfectly mixed compartments, as visualized in Fig. 1. The first
compartment represents the ‘bed’ and contains all solids (incl. all API,
excipients, binder, etc.) and the liquid water, while the second re-
presents the humid air. Specifically, the ordinary differential equations
(ODEs) governing the mass flow in and out these compartments are
given by

= − −w F m(1 ) ̇m
t

d
d s spray evap
bed,w

(1)
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= w Fm
t

d
d s spray
bed,b

(2)

= − +F x x m m( ( )) ̇m
t

d
d air in air,w evap
air,w

(3)

where mbed,w and mair,w in Eqs. (1) and (3) represent the mass of water
in the bed (in liquid phase) and in the air (gaseous) respectively; mbed,b
refers to the mass of solid binder, the only solid changing in mass over
time. Furthermore, F denotes flowrates of air and spray, whereas ws, x in
and x are the solid weight fraction in the binder, the inlet- and the
outlet air humidity, respectively. Finally, ṁevap is the rate of evapor-
ating water (see Section 3.1.2 for details).

Similarly, the equations describing the change in temperature for
the bed, Tbed, is

+ + = − −

−

− − +

m c m c m c H H Q

Q

T T m c m c

( ) ̇ ̇ ̇

̇

( )( ̇ ̇ )

T
tbed,s p,s bed,w p,w bed,b p,b

d
d spray evap bed,wall

bed,air

bed 0 bed,w p,w bed,b p,b

bedl

l

(4)

Here, terms using Ḣ relate to changes in energy due to enthalpies of
mass streams, while the Q ̇ terms represent heat transfer through con-
duction, convection, and radiation (see appendix for their definitions).
The heat capacities cp are used in conjunction with the reference tem-
perature T0 in order to calculate the relevant enthalpies.

+ = − + + −

− −

m c m c H H H Q Q

T T m c

( ) ̇ ̇ ̇ ̇ ̇

( ) ̇

T
tair p,a air,w p,w

g d
d air

in
air
out

evap bed,air air,wall

air 0 air,w p,w

air

(5)

= + −m c Q Q Q̇ ̇ ̇T
twall p,steel

d
d bed,wall air,wall wall,env
wall

(6)

Lastly, we wish to highlight the fact that in practice, the inputs to
the system from the perspective of the model, particularly, Fspray and
Fair, can deviate from their respective set points in the equipment.
Reasons for this can be manifold and include, e.g., differences between
the fluid properties during calibration and operation of mass flow me-
ters (non-Newtonian vs. Newtonian), or the exact positioning of the
sensor in the piping. This can lead to slight discrepancies between
equipment trains and products that should otherwise behave identical.
Our approach has been to introduce linear correction factors, α, such
that:

=F α Fi i i
set (7)

for ∈i {spray, air}. Note that, for the purpose of determining these
factors, they can be treated as additional model parameters and
therefore can be estimated via standard parameter estimation

techniques. However, their interpretation is different. Empirically, we
expect these correction factors to require updating infrequently, e.g.,
when moving from one site to another, and we expect those mod-
ifications to be small. To give an example, for the dozens of runs that
have been modeled in this project, the correction factors are fixed for
each product and never had to be modified.

3.1.2. Equations for evaporation rate calculation
In order to solve Eqs. (1)–(6), a number of heat- and mass transfer

correlations, as well as state equations are required. In the following,
we provide a brief overview of the most important equations related to
the evaporation rate, ṁevap, the very core of our model and the location
where the model parameters that need to be estimated from experi-
ments have the greatest impact. Interested readers are referred to
(Lyngberg et al., 2016) and the appendix for additional information.

For the water evaporation rate, it is found that the empirical cor-
relation,

= −m k θ θ A θ c ċ ( , ) ( )( )evap e p p p w,sat w (8)

yields excellent results in practice. In Eq. (8), cw,sat and cw are the
concentration of water at the particle surface – assumed to be at
equilibrium – and that in the chamber, respectively. The difference
between the two constitutes the driving force behind the evaporation of
water. Meanwhile, k and Ap are the mass transfer coefficient and par-
ticle surface area, both functions of the two constant, non-negative
parameters, θi, in this model. Specifically, the area is given by

=A N θ πθ( )p p p p
2

(9)

where Np is the number of particles in the system. Three important
observations can be made about Eq. (9). First, parameter θp has a
physical interpretation, namely that of ‘particle size’. Second, this size is
assumed to be the same for all particles, i.e., the system is treated as
monodisperse. Third, this size is treated as time-invariant. Clearly,
neither the second nor the third assumption can actually be true in a
granulation process and this work certainly does not claim otherwise.
Rather, we point out that the resulting estimate of the available surface
area is typically sufficient for the purpose at hand, as demonstrated in
more detail in Section 4.1.2. It is a ‘wrong, but useful’ assumption.

The mass transfer coefficient is

=k θ θ k θ η θ( , ) ( ) ( )e p 0 p e (10)

where k0 corresponds to the part of the transfer coefficient that depends
solely on the Reynolds number (and therefore the particle size, θp), and
other terms not directly related to the moisture of the bed. The second
factor in Eq. (10) defines an evaporation efficiency, given by

Fig. 1. Schematic of the considered compartments and the mass and energy flows.
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= ⎧
⎨⎩

⩽− −
η x θ if x θ

otherwise
exp( ) exp( ) 1
1

bed,w e
1

bed,w e
1

(11)

with = + +x m m m m( )bed,w bed,w bed,w bed,s bed,b as the loss on drying (in
percent), implying that the mass transfer can be described as becoming
effectively less efficient at lower moisture contents, a relationship
which can be modified by adjusting the parameter θe.

3.2. Output uncertainty analysis

In practice, the uncertainty in the measurable output of any physical
system stems from a variety of sources, including measurement error,
human error during execution of the process or the analysis, unforeseen
changes or disturbances in the raw materials, the environment, or the
equipment, and so forth (Vetter et al., 2015; Korakianiti et al., 2011). In
the absence of these factors, which can be managed by proper definition
of in- and output specifications, employee training, and (change) con-
trol procedures, the variability of operating conditions themselves is
probably the dominant source of uncertainty. In fact, in the multi-
purpose equipment commonly found in today’s pharmaceutical plants,
low-level temperature, pressure, moisture, etc. controllers are rarely if
ever tuned to any specific formulation in particular. Rather, the
equipment is required to accommodate as large a range of process
conditions as possible, which, together with the generally larger in-
ertias due to the scale effects, can lead to a type of imperfect controller
behavior that is rarely seen at lab-scale.

Similarly, the output of models of physical systems is affected by
many of the same factors, including the input uncertainty outlined
above. However, while the human element plays a smaller role, the
precision with which the mathematical description and its parameters
are actually determined becomes crucial. If model parameters cannot be
estimated with sufficient precision, the resulting uncertainty in the
prediction of the output can render the model useless in practice. This is
true regardless of whether or not the model structure is intrinsically
correct and unbiased.

In this work, our intent was to find a comparably simple, modular,
and scalable approach to determine a worst-case overall output un-
certainty for all products due to the two sources of error just described,
input variability and parameter uncertainty. While there might be
other, more involved ways to find maybe more exact measures of this
overall uncertainty, we deem the trade-off between value and com-
plexity of our approach as highly favorable.

3.2.1. Input variability
In pharmaceutical industry a sound understanding of the sensitivity

of the process output to changes in the process parameters is of utmost
importance. In fact, all existing insight is typically recorded in a pro-
duct-specific criticality report. The objective here is to obtain a deeper
process understanding by complementing the know-how transcribed
there with a large number of additional simulations, representing a
variety of disturbance scenarios, specified as input profiles, that would
be difficult to test experimentally (Korakianiti et al., 2011;
International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use, 2009). In order to
generalize the applicability of our fluid bed granulation model as much
as possible, all four inputs are considered to be of interest, that is, we
investigate the effects of the inlet air temperature, the inlet air flow
rate, the spray rate of liquid binder, and the inlet air humidity, resulting
in a type of “risk fingerprint” for a given system that is indicative of its
inherent robustness.

Of the four parameters mentioned, we deem the inlet air humidity
to require special consideration. While it is typically measurable in the
granulator, depending on the equipment setup for the entire plant,
there may be limitations regarding its controllability. It is possible to
have varying capabilities, ranging from no air humidity control at all, to
condensers which can achieve a known minimum or maximum

humidity, to full humidification and dehumidification where almost
any physically feasible air humidity setpoint can be reached. As a
consequence, the inlet air humidity may be a function of seasonal
variation. To address this issue, the input variability was studied at
three different inlet air humidity levels. The values were chosen based
on climate data at the location of the receiving manufacturing plant, as
well as the expected dehumidification performance by the installed
condensers. On the driest days of the year, the absolute inlet air hu-
midity, expressed as mixing ratio, was estimated to be as low as 1 g/kg.
An upper limit of 10 g/kg was chosen based on the assumed capabilities
of the condensers, while 5 g/kg was selected as ‘target’ humidity. The
strategy for testing process robustness consisted of setting up simula-
tions at each of the air humidity values, then performing various worst-
case scenarios and assessing the impact on LOD maximum, that is the
highest LOD value that is reached during the process – typically
achieved at the end of the spray phase.

Note that our analysis, in which disturbed input profiles are fed into
an existing model, is similar to others that have been performed in
literature (Garcia Munoz et al., 2018), but it is not the only possible
pathway. Alternatively, a study could be conducted via another mod-
eling strategy, e.g., by accounting for the stochastic nature of inputs
explicitly. While this would allow the variability of each process
parameter to be described more realistically, it would require recasting
of existing equations and a much more extensive analysis of historical
data. It would inevitably depend on many external factors such as
product formulation, FBG geometry, other operating conditions, etc.
and ultimately render this analysis much less modular and increase
complexity significantly. For all these reasons, it was chosen to rely on
the simpler approximation outlined here instead, as it still constitutes a
major improvement over the model-free approach, which is to not study
these effects at all.

3.2.2. Parameter uncertainty
In the following, it will be shown how the parameters have been

estimated from experiments in a model calibration exercise. We then
treat parameter uncertainty as has been done elsewhere, namely by
using a Quasi-Monte Carlo technique to sample from the parameter
space, followed by forward simulation and subsequent reconstruction of
the uncertainty intervals (Vetter et al., 2015; Van Bockstal et al., 2017).
Specifically, we use Sobol sets to perform sampling from multivariate
Normal distributions characterized by the parameter estimate and
covariance matrix, and test convergence by comparing changes in the
resulting intervals over multiple iterations. Unphysical samples (nega-
tive parameters) are removed prior to running the simulations, and the
minimum number of runs is 500. We further have used parallelization
to speed up this process.

3.2.3. Overall output uncertainty
To obtain the overall uncertainty of the predictions, the two steps

outlined in the previous sections are performed in sequence. First, the
input variability assessment is performed and the set of inputs resulting
in the most extreme profiles (judged by the maximum LOD) is selected.
In the second step, the parameter uncertainty is computed for the two
extreme runs as well as the nominal case and the overall confidence
bound is estimated; a schematic overview of the procedure is provided
in Fig. 2.

Note that this stepwise approach is not theoretically guaranteed to
yield the most conservative band since no explicit proof is provided to
demonstrate that there is no intermediate input set that yields a more
extreme outcome. However, heuristically speaking the system is well-
behaved and no instance of this occurring was ever observed. For this
reason, and in order to save computational time, there is therefore no
specific test against this, such as brute-force analysis of the parameter
uncertainty for all input sets investigated.
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3.3. Implementation

The model is implemented as a class in Matlab and the main
equations are solved using the stiff ordinary differential equation solver
ode15s. The numerical solution of most problems requires at most a few
hundred milliseconds on a standard-issue laptop, e.g, a quad-core i5-
8350U running at 1.70 GHz and 16 GB of local memory (1
SODIMM×16GB @2400MHz). Process parameters can be read out
from tables, sets of simulations can be stored and exchanged via .mat
files, and results can be exported and shared in the form of figures and
tables. To facilitate interaction with the tool and allow for wider de-
ployment also to non-modelers, a graphical user interface was devel-
oped, that allows to visualize, compare, and modify simulations on the
fly (see Fig. 3).

4. Results

4.1. Model building

While the LOD model enables users to predict granule wetness
quantitatively, in practice, not the entire moisture space leads to ac-
ceptable downstream in-process control properties and critical quality
attributes. Simple binary correlation analyses correlating, e.g. max-
imum LOD and these in-process control properties or quality attributes
suggest a significant correlation of the LOD profile with tablet hardness
and time-dependent release data of dissolution.

This LOD design space may be inferred from historic data, e.g., from
process characterization or validation reports. However, the covered
ranges may be limited. Fortunately, since the model enables pilot-scale
results to be scaled up to full scale, the effects of the moisture profile
can be studied at pilot scale by taking the granules obtained from these
batches into the down-stream operations and subjecting the final pro-
duct to the standard quality testing. Note that two goals can be realized
at once in pilot scale: exploring the LOD design space while

simultaneously calibrating and validating the model.

4.1.1. LOD design space
A higher maximum LOD (or a wetter batch) may result in softer or

harder core tablets after compression (see Fig. 4), depending on the
product of interest. The trends were summarized over multiple sites and
from different batch sizes and equipment. Wetter conditions may favor
the formation of a tighter and firmer binding of particles into granules
for Product E, as a negative correlation between maximum LOD and
tablet hardness is found for the same product in Fig. 4. In contrast,
Product B exhibits opposite hardness-granule wetness dependence, in
which the starch binding solution, which gels easily, plays a consider-
able role. The effect of LOD history on API release data for the final
tablet products is more complicated – both clear trends and large error-
to-signal cases have been observed. These analyses suggest that in the
general case the maximum LOD or the wetness of a batch must be
controlled within a range to ensure that properties such as hardness and
dissolution pass the quality specifications.

4.1.2. Model calibration and validation
Model training and testing follows the general guidelines and per-

spectives outlined by regulatory bodies (FDA, 2012; Chaterjee et al.,
2017) as well as internal procedures. Specifically, for this project, a
minimum of three pilot-scale batches were carried out for each product
to cover wet, target and dry granulation conditions. If all final tablet
products pass the quality criteria, the boundaries of the design space
were then defined by the largest and the smallest maximum LOD’s of
these batches. To determine the parameters three pilot-scale batches
were arbitrarily split into training set, consisting of two batches A and
B, and a prediction set, consisting of batch C. In a first step, the LOD
model is calibrated on batch A and the resulting parameters are used to
predict the LOD trajectory of batch B. Second, the process is reversed,
training the model on batch B and predicting batch A. These pre-
liminary steps serve to gauge the overall consistency of the two sets of
data. Finally, a third exercise is conducted in which the model is cali-
brated on the entire training set, that is, batches A and B, and this model
is then used to predict the independent batch C, completing the vali-
dation. Throughout, all the training and prediction errors are computed
in the form of the root mean square of the error (RMSE), e, a function of
the difference between each measured sample i of the loss on drying,
xbed,w,i, and its corresponding model prediction (here indicated by a hat
symbol).

̂= ∑ −=e x
n

( x )i
n

i1 bed,w, bed,w,i 2

(12)

In order for a calibration/validation procedure to be considered
successful, i.e., for the model to be labeled an acceptable virtual re-
presentation of the physical system, these errors are compared to pre-
viously defined acceptance criteria. The exact values for these thresh-
olds are different for training and prediction sets and stem from an
analysis performed during the original development of the tool. There,
the LOD model had been used to train and predict more than twenty-
five batches of various products, ranging from 5 to 250 kg to test ro-
bustness. The acceptance criterion for the calibration was established as
the average calibration RMSE plus twice the standard deviation of all
the calibration exercises over the historic batches; similarly, the ac-
ceptance criterion for validation was defined as the average prediction
RMSE plus twice the standard deviation of the historic testing exercises
(final threshold for calibration: 0.279; for validation and verification:
0.664).

Plots illustrating the agreement between model calculations and the
sample measurements are given for one case, product E, in Fig. 5. The
initial flat, rising and declining parts of the curve represent premixing,
spraying and drying phases, respectively. Spraying and drying phases
can be further divided into sub-phases to allow more gradual changes in
the process conditions. For the batches in Fig. 5, the larger

Fig. 2. Schematic of total uncertainty determination workflow.
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Fig. 3. The graphical user interface.

Fig. 4. Influences of maximum LOD and batch size per bottom plate (BP) area on hardness (in N) for Products B (a) and E (b). Blue circles: batches manufactured
using binder preparation method L; red circles: batches manufactured using binder preparation method X: grey squares: batches with hardness beyond specifications.
The area of a circle or square is proportional to the batch size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. (a) Overall calibration over two pilot-scale batches (58 kg each, RMSE=23.5%). (b) Validation on one pilot-scale batch (58 kg, RMSE=53.9%). (c)
Validation of one commercial-scale batch (216 kg, RMSE=29.0%). Product E is used from Panel (a)–(c). Inlets represent the parity plots for each case.
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contributions to the RMSEs come from the errors of the points with
higher LODs. Observed in several other batches (not shown here),
RMSEs can also be accumulated significantly from the drying phase, in
which the dynamics become faster and consequently are harder to
capture both because a higher sampling frequency might be needed and
because small errors in the recorded sampling time can have a sig-
nificant impact on the overall error.

Upon successful calibration and validation of pilot-scale batches, the
model was used to design the process parameters, namely, inlet air
temperature, inlet air humidity, airflow rate and spray rate at com-
mercial scale. To verify the model’s ability to predict LOD over gran-
ulators and scales, the resulting prediction was compared with experi-
mental data of a fourth batch D, ensuring that also in this case the RMSE
is below the validation threshold. The RMSE’s of all the calibration and
validation exercises for all products in our technical-transfer project are
presented in Fig. 6 together with the associated acceptance criteria.
Given that all errors lie well below their acceptance limits, it suggests a
good quantitative predictability of the moisture by the model in the
granulation design and execution, with a prediction error significantly
smaller than 1 LOD% on average.

While the model enabled a controllable granulation, the granules of
the pilot- and commercial scale batches still need to go through all
downstream unit operations, with each operation parameters designed
by relevant models or tools. The final products all passed the quality
specifications, suggesting the granulation moisture range covered in the
calibration and validation exercise should be used as a confirmed de-
sign space in future design or improvement.

4.2. Input variability study

Once the model for a particular product has been calibrated and
validated, it can be used to explore various process scenarios in silico.
In the following, an overview of the scenarios that have been tested
during the input design space analysis will be provided. Subsequently,
the added value shall be demonstrated by providing results for two
representative products. The first represents a robust process that can
tolerate comparably large disturbances. The second process is more
sensitive, with a maximum LOD that is strongly impacted by changes in
the granulation operating conditions.

4.2.1. Scenarios considered
In general, this study aims at exploring four dimensions which de-

termine the type of input deviation: the magnitude, the timing, the
(total) duration of the disturbance, and the number of process para-
meters simultaneously affected during a disturbance. More specifically,
scenario set I explores the effects of small magnitude deviations for a

large range of deviation durations and parameter combinations. It is a
reasonable proxy for a large variety of minor issues that may plague a
set of equipment and a good first indicator for potential issues. Scenario
set II aims to isolate the time of deviation phase and the parameter
deviating associated with maximum LOD excursions. This is a useful
scenario to determine the time-sensitivity of the maximum LOD on
disturbances. Scenario set III explores the effect of very short, but po-
tentially large magnitude disturbances, e.g., caused by a badly tuned
low-level controller. Lastly, scenario set IV was meant to simulate a
calibration error. The air temperature probe, air flow meter, or the mass
flow meter at the liquid binder pump are all sensors that must be ca-
librated to a certain accuracy and frequency. This scenario set explores
how sensitive the process is to certain parameters and gives an in-
dication concerning how accurately the sensors must be calibrated.
Table 1 contains an overview of all scenarios studied during the input
design space analysis, carefully selected to represent a variety of si-
tuations, while Fig. 7 provides example visualizations of the dis-
turbance profiles for each scenario set

As stated earlier, all simulations are performed at three different
humidity levels. If out of the remaining three process parameters more
than one is varied (see second to last column in Table 1), all k-combi-
nations are analyzed separately. Disturbances are always distributed
uniformly over the entire spray phase and their magnitudes measured
in terms of typical standard deviations (a unique value for each process
parameter). To reduce the number of simulations somewhat and be-
cause this is a worst-case assessment, it is assumed that all deviations in
a given run have the same qualitative impact, either purely acting to
increase or decrease the maximum LOD. In the following, we refer to
these disturbances as “wet deviations” and “dry deviations”, respec-
tively. Clearly, random disturbances are more likely to cancel each
other out. By ensuring that the final processes are robust even to these
highly biased, improbable deviations, our confidence that the final
process is capable of maintaining the LOD within the design space
under real disturbances is high.

Lastly, we further rank scenarios based on their perceived likelihood
by giving each executed scenario a deviation score, which will be re-
levant for scenario sets I and III in particular. Here, this number is
defined as the product of the number of parameters varying and the
number of granulation phases that are affected by the deviation. The
resulting number is related to the overall estimated frequency of oc-
currence, useful, e.g., during failure mode effects analysis (FMEA)
(Chaterjee et al., 2017). Here, higher scores reflect lower expected fre-
quency, but also higher probability that the process might move outside
the LOD design space. Points where simulations start to go outside LOD
design space are of particular interest: if this occurs already at low
scores, it indicates a lack of process robustness with regards to input

Fig. 6. Errors for the three calibration and validation exercises at pilot scale, and one prediction at commercial scale, as well as the acceptance criteria for calibration
and validation. (a) exercise in which the model is trained on data of batch A and cross-validated with data of batch B; (b) exercise in which the model is trained on
data of batch B and cross-validated with data of batch A; (c) exercise in which the model is trained on data of batches A and B and validated and verified with
independent batches C and D. Note that all quantities are given in percent of LOD%, i.e., all encountered errors average well below 1 LOD%. The acceptance criteria
are 0.279 for calibration and 0.664 for validation and verification.

D.R. Ochsenbein, et al. International Journal of Pharmaceutics: X 1 (2019) 100028

8



variability.

4.2.2. Performance metrics
In order to assess the robustness of a given process or product, two

types of metrics are being used in the following. First, for scenario set I
in which the disturbance magnitude is not varied, the fraction of si-
mulations that resulted in out-of-LOD-range moisture profiles is com-
puted and analyzed as a function of the deviation score. Low fractions
reached at high scores are indicative of a robust process, as this implies
that only a small number of unlikely, exceptional events – that can be
investigated further – might realistically lead to LOD deviations in ei-
ther direction, provided the magnitude of the disturbance itself is
bounded.

The second metric is used for scenario sets II to IV, for which the
disturbance magnitude is varied. In these cases, the maximum tolerable
input deviation expressed in process parameter standard deviations, σ , is
searched for in a given range. A robust process should be able to tol-
erate significant deviations before leaving the LOD design space. In the
case of univariate disturbances, i.e., scenario sets II and IV, we further
break these results down to the level of the individual process para-
meter. In scenario set III, where disturbances are multivariate in the
input space, we group simulations based on their deviation score and
provide error bars instead.

4.2.3. Case study I: robust process (product E)
Process analysis for product E began by tracking maximum LOD

over the course of the simulated process for the initially proposed target
operating conditions. It became immediately clear that the maximum
LOD is not well-centered within the range, reducing overall capability
of the process. Therefore, the spray rate was modified, while keeping
total binder sprayed constant, to adjust the maximum LOD of the
midrange humidity level in the center of the maximum LOD range was
the first adjustment. The LOD profiles before and after this change for
the nominal and the two extreme humidity levels are presented in
Fig. 8.

To see the impact of this slight shift, the results obtained during
testing of scenario set I can be analyzed, as is done in Fig. 9. Shifting the
midrange humidity LOD profile to the center of the LOD range has the
benefit that, even the worst-case scenario with a score of 15, in which
air flow rate, inlet air temperature, and spray rate deviated by two
standard deviations from the target for the entire length of the spray
phase, did not cause the maximum LOD to depart from the acceptable
range.

Exploration of the impact of which parameter, when, and how large
the deviation was which would cause the maximum LOD to go beyond
the desired bounds is also of interest and is analyzed in scenario set II;
the results are shown in Fig. 10.

It is evident that wet deviations during the middle phases of the
process required a smaller magnitude of deviation to push granulated
product out of the maximum LOD design space. In addition, this pro-
duct appears more robust to dry deviations than wet deviations, al-
though the required deviations to push the process out are very large in
either case.

The next analysis, scenario set III, investigates the effect of six de-
viations during the spray phase, assuming the duration of each is five
minutes; results are shown in Fig. 11. With only one parameter being
deviated (score 1), the process requires significant deviations (greater
than15 standard deviations) to be pushed outside the design space. And
even when three parameters deviate simultaneously (score 3), there is
around eight standard deviations of buffer from the target setpoints
before the maximum LOD departs from the acceptable range.

The final scenario set IV was performed to see how large a deviation
could be for the entire length of the spray phase. As seen in Fig. 12, the
process is reasonably robust towards both wet and dry deviations for all
the adjusted parameters. Whereas the process is most vulnerable in the
case of a spray rate off-set during the dry season (third red column fromTa
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the left in Fig. 12.a)), even then the necessary deviation is a highly
noticeable four standard deviations.

In summary, this process exhibits significant robustness towards all
disturbances that were investigated, regardless of environmental con-
ditions. This implies a low risk of encountering issues with the process
itself both during the transfer of the process as well as during com-
mercial production.

4.2.4. Case study II: sensitive process (product B)
A similar analysis strategy to the above was used for product B. In a

first step, the target process had to be centered in the maximum LOD
range, the width of which is comparable to that of product E. The re-
sults of the initially proposed and the centered process are presented in
Fig. 13. As can be seen, in contrast to the previous case, the varying air

humidity has a significant impact on the maximum LOD. In fact, by
centering the maximum LOD of the midrange humidity level, the
maximum LOD at the high and low bounds of air humidity are outside
of the acceptable range. This implies a risk for the manufacturing of this
product under extreme weather conditions even without any dis-
turbances.

Still, the harmful consequences of any additional process deviations
are investigated first through scenario set I. As shown in Fig. 14, the
process is not robust to changes in air humidity and the other deviated
operating parameters. As is to be expected, all simulations at the upper
and lower bounds of the air humidity range do not meet maximum LOD
requirements, even the ones in which no parameters are deviated (score
equal zero). Under mid-range air humidity conditions, the process
shows to be capable of handling deviations up to score 5, which

Fig. 7. Input parameter deviations for
the scenario sets. Vertical axis re-
presents size of deviation in units of
standard deviations for that input
parameter. Scenario sets I and III vary
the number of parameters deviating
in one simulation, whereas scenario
sets II and IV vary one parameter per
simulation. Scenario set I has a fixed
deviation size (2 sigma) whereas the
other scenarios search for the max-
imum allowable deviation size for
each simulation. Scenario sets III and
IV have fixed deviation patterns,
whereas sets I and II go through all k-
combinations of parameter and
number of phases deviated. AT: inlet
air temperature; AFR: inlet air flow
rate; SR: spray rate.

Fig. 8. (a) Maximum LOD profiles for three air humidity levels for original operating parameter setpoints. (b) Maximum LOD profiles after midrange air humidity is
centered in maximum LOD range. The green area represents the maximum LOD design space.
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represents one parameter deviated by two standard deviations for the
entire spray phase. We can also observe in Fig. 14.a) how the initially
too dry process taking place at dry inlet air humidities is initially pu-
shed into the LOD acceptable range by wet deviations before it is finally
leaving it again at the extreme conditions represented by score 15.
Clearly, the resulting robustness is vastly inferior to that of product E.

The strong sensitivity of this product to fluctuations in the incoming
air humidity constitutes a major challenge as it implies high risk of
maximum LOD excursions either during transfer or commercial pro-
duction. Options for change control procedures were constrained due to
specifications in the original filing of the process and the legacy nature

of the product. However, one proposed solution satisfying the existing
constraints is to implement feed-forward control of the process based on
the environmental conditions (Garcia Munoz et al., 2010). To this end,
the air humidity range was split into three separate groups: (1–3 g/kg),
(4–6 g/kg), and (7–10 g/kg). By creating humidity-dependent recipes,
we were able to adjust the spray rate and center the maximum LOD in
the design space for each of the three groups. For the sake of brevity,
only the results accounting for air humidity levels between 7 and 10 g/
kg are presented. The LOD profile and the result of the small magnitude
and long duration deviations, as prescribed by scenario set I, are pre-
sented in Fig. 15. The ability to handle small magnitude deviations up
to a deviation score of three is recovered, although the process appears
prone to maximum LOD excursions due to wet deviations. While this is
not as robust as the previous example, it is a significant improvement
over the original process. By study of Fig. 15.c), we can further notice
that the behavior of the robustness metric is not necessarily monotonic
with the increase in the score value. This turns out to be an early
warning sign that the timing of the disturbance may matter more
strongly than for the more robust product (cf. scenario set II).

Analysis of the results for scenario set II for this adapted process,
provided in Fig. 16, are in agreement with previous results in that they
indicate that wet deviations are more likely to push granulated product
out of the LOD design space on average. Interestingly, for dry deviations
of any parameter, phase 2 appears to be a critical time. This is due to
the process reaching its maximum LOD in that phase in the case of a dry
deviation, a consequence of the specific recipe used. Deviations in the
previous phase allow enough time for the process to recover, while
deviations in subsequent three phases cannot affect the maximum LOD
any longer. Scenario set II has thus alerted us to the fact that wet de-
viations pose a greater risk overall, but that the effect dry deviations is
not time-invariant. Ideally, this ought to be addressed by modifying the
process parameter setpoints.

The next analysis was to see how large the deviation from target
could be for six occurrences, lasting five minutes each (scenario set III).
As can be seen in Fig. 17, simulations with only one parameter de-
viating are quite robust to changes from target. However, as the number
of parameters increases, there is less room for deviation. At the worst
case, where three parameters are deviating, the largest magnitude of
deviation is three standard deviations from target, again considerably
worse than in the case of the robust process.

The results of the final analysis, scenario set IV, are presented in
Fig. 18. There is very little room for deviations with this type of worst-

Fig. 9. Results for scenario set I for product E. (a) Results for wet deviations on
initially proposed target. No simulations of any score were outside the LOD
range, therefore all bars have value 0 and are not visible. (b) Results for dry
deviations on the initially proposed target. Performing the same deviations for
the centered process resulted in no simulations being outside the LOD range.
For each score, the percentage outside LOD range was 0%, therefore those re-
sults are not shown, but look like (a).

Fig. 10. Results for scenario set II for product E. (a) Results for simulations with 1 g/kg air humidity pushed drier. (b) Results for simulations with 10 g/kg air
humidity pushed wetter. Wet deviations in spray rate in the middle of the process have largest impact on maximum LOD. P1, P2, P3, P4, and P5 are the 1st, 2nd, …
5th subphase of spray, respectively.
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case scenario, which implies accurate calibration of process monitoring
sensors is a prerequisite for this product.

This case study has highlighted how a sensitive process may differ
significantly from a robust one in terms of its “risk fingerprint”, gen-
erated by exploration of the various scenario sets. For this specific
product, the presented findings prompted additional efforts to reduce
the risk of maximum LOD excursions. Given that the overall robustness
of the process is mediocre even in the case of humidity-dependent re-
cipes, additional control approaches have been explored, including
restriction of manufacturing of this product to mild periods, and feed-
back control using process analytical technology. The corresponding
considerations involve aspects related to finance, planning, regulatory
impact, etc. and are outside of the scope of this work.

4.3. Proven acceptable ranges (PARs)

As all four granulation process parameters are typically considered
key and/or critical because of their impacts on tablet hardness and
dissolution, their proven acceptable ranges (PAR) must be determined

prior to process validation. The PAR is defined as “a characterised [sic]
range of a process parameter for which operation within this range,
while keeping other parameters constant, will result in producing a
material meeting relevant quality criteria.” (International Conference
on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use, 2009). Clearly, the types of simula-
tions described in Section 3.2.1 can be used to help construct the PAR
for fluid bed granulation processes as they allow identifying conditions
under which the process will deviate dramatically from the target.

However, as discussed earlier, when defining explicit ranges, the
effects of both the input process parameter variability and the model
adjustable parameter uncertainty on the granulation are important. In
order to ensure maximum robustness, it is crucial to not only have an
understanding of the expected outcome of a process as predicted by
some digital twin, but also its variability. For this reason, we have
performed analyses of the total output uncertainty as outlined in
Section 3.2.3 for selected products; an example result is given in Fig. 19.

While these assessments are of great value, note that for the de-
termination of the PARs a holistic view and thus application of the

Fig. 11. Results for scenario set III for product E. In these scenarios, score indicates how many parameters were deviated. (a) Results for simulations with dry
deviations. (b) Results for simulations with wet deviations. In the case where all simulations reached 30 standard deviations without being outside the maximum LOD
range, the standard deviation is zero and the associated error bar is missing. Bars associated with score 3 do not have error bars as they contain only one simulation
each.

Fig. 12. Results for scenario set IV for product E. (a) Results for simulations with dry deviations. (b) Results for simulations wet deviations. AT: inlet air temperature;
AFR: inlet air flow rate; SR: spray rate.

D.R. Ochsenbein, et al. International Journal of Pharmaceutics: X 1 (2019) 100028

12



entire process understanding is required. This includes factors outside
of the scope of the model and which we have explicitly stated to be
thought of as ‘under control’. For example, the PAR for the airflow
additionally involves considerations with regards to the fluidization of
the bed, while the PAR of the spray rate must take into account ato-
mization pressure (ranges) and nozzle configurations. In our case, PARs
were typically defined by the intersection of all found ranges in order to
obtain the maximally robust process. The resulting ranges are of similar
widths as those encountered in processes that were established using
traditional, model-free approaches, yet are based on a much deeper
physical understanding of the process.

5. Conclusion

In this work, we have provided insight into the application of a

moisture model for fluid bed granulation during an industrial tech-
nology transfer in the pharmaceutical industry. To our knowledge, this
is the first peer-reviewed publication that showcases the successful use
of a predictive, mechanistic fluid bed granulation model for multiple
pharmaceutical products across different pieces of equipment, and one
of only a handful to tackle output uncertainty in this context. While
only an excerpt of the results is shown, we believe the value added by
using this tool to be plainly visible. First and foremost, the overall
understanding of the process is dramatically increased. The LOD profile
is used as the scale-independent parameter that links processes across
scales, and ultimately this link is leveraged to draw conclusions for
large scale from design space experiments at the small scale – at much
reduced cost. Specifically, for this project, a conservative estimate
would be that two commercial-scale batches did not have to be run for
each of the five products, as all stakeholders were satisfied by the

Fig. 13. (a) Maximum LOD profiles for three air humidity levels. (b) Maximum LOD profiles after mid-range air humidity is centered in maximum LOD range.
Adjustment made by increasing spray rate slightly for the entire spray phase. The green area represents the maximum LOD design space.

Fig. 14. Results for scenario set I for product B. (a) Results for wet deviations on initially proposed target. (b) Results for dry deviations on initially proposed target.
(c) Results for wet deviations on centered process. (d) Results for dry deviations on centered process.
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demonstrated understanding and control of the processes. In that re-
gard, the importance of the pre-aligned and clearly defined acceptance
criteria is to be emphasized. We leave it to the reader to ponder the
associated savings in terms of material, energy, but also time resulting
from reducing the number of large-scale batches.

Beyond this very tangible achievement, the uncertainty analyses
outlined in this work demonstrate another advantage of using models:
the ability to test myriads of scenarios quickly and at virtually no cost,
allowing to identify potential problems much earlier and hence greatly
increasing the overall robustness of each process. In the case at hand,
these findings have directly led to assessments on how to avoid design
space excursions for some products months before any equipment in the
new plant was installed and qualified. This proactive approach is fully
aligned with the quality-by-design framework and we believe it to be
instrumental to guarantee the highest quality in our products.

Lastly, we hope this work demonstrates an important aspect en-
countered in pharmaceutical manufacturing of commercial products:

pragmatism is key. Simplicity, verifiability, and transferability of a
model trump completeness of the description almost every time. This
holds not only for fluid bed granulation, but in fact for all mathematical
process models. In other words, the business case for a complex model
requiring substantial experimental effort to validate for any given
product and/or operating range is only rarely positive, especially when
that output is not directly and quantifiably linked to a critical quality
attribute.
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Fig. 15. Results for scenario set I for product B using a humidity-dependent recipe. This analysis is done over the range of 7 g/kg to 10 g/kg. In this case, score
represents the number of parameters impacted and the number of phases which are deviating. (a) Maximum LOD profiles for air humidity levels. (b) Results for wet
deviations. (c) Results for dry deviations.

Fig. 16. Results of scenario set II for product B using a humidity-dependent recipe. (a) Dry deviations for air humidity (AH) of 7 g/kg. Phase 2 deviations have
greatest effect on max LOD because deviations in this phase prevent LOD of product from reaching max LOD. (b) Wet deviations for AH 10 g/kg.
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