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Abstract

Acute and chronic wound infection has become a major worldwide healthcare burden leading

to significantly high morbidity and mortality. The underlying mechanism of infections has been

widely investigated by scientist, while standard wound management is routinely been used in

general practice. However, strategies for the diagnosis and treatment of wound infections remain a

great challenge due to the occurrence of biofilm colonization, delayed healing and drug resistance.

In the present review, we summarize the common microorganisms found in acute and chronic

wound infections and discuss the challenges from the aspects of clinical diagnosis, non-surgical

methods and surgical methods. Moreover, we highlight emerging innovations in the development

of antimicrobial peptides, phages, controlled drug delivery, wound dressing materials and herbal

medicine, and find that sensitive diagnostics, combined treatment and skin microbiome regulation

could be future directions in the treatment of wound infection.
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Background

Acute and chronic wounds affect >6 million people every
year in the USA States with a cost of $25 billion (USD) [1].
Uncomplicated, acute wounds can heal within a predictable
period depending on the nature of the injury, with clini-
cal signs of erythema, swelling, warmth and purulent dis-
charges for infection. Chronic wounds, for instance diabetic
ulcers, display delayed wound healing due to confounding
factors such as aging, stage of diabetic disease, medication
(or treatment) compliance, associated peripheral neuropathy,
immunocompromised status and/or arterial and venous insuf-
ficiency. Despite significant advances in wound management
over the last decades, scientists and clinicians continue to
develop novel therapeutic approaches aimed at preventing
and controlling infections for both acute and chronic wounds
[2]. Intravenous injection or oral administration of antibiotics
are widely used in general practice for acute wounds [3],
while in treating chronic wound infections, antimicrobial
creams, ointments or gels are accepted to eliminate the deep
infections caused by the migration of bacteria or fungi to
the subcutaneous tissues [4]. However, biofilm colonization,
delayed healing and drug resistance remain as challenges
in the management of wound infections. In this review, we
outline acute and chronic wound infections with associated
micro-organisms and discuss the challenges, innovations and
future directions in treating wound infections, with focuses
on diagnostics, therapeutic approaches and the regulation of
the skin microbiome.

Review

Acute wound infection

Acute wounds normally heal within 14 days, depending
on the type, severity and size of the injury as well as the
patient’s age, co-morbidities and post-injury care. Due to the
damage of the skin barrier and local microbial colonization
(moisture, temperature and nutrient conditions), infections
occur in ∼5.6–26% of wounds [5]. Burn, surgical site and
traumatic wounds are the top three wounds that are prone to
infection [6].

Burn injury caused by heat, flame, chemicals, electricity
or radiation [7] is a major public health problem with
high morbidity and mortality worldwide and ∼180,000
deaths per year [8]. Moreover, burn wound infections are
responsible for >75% of burn mortality worldwide [9,10].
Various pathogens have been identified in the acute phase
post burn injury [11], including Staphylococcus aureus (S.
aureus), Escherichia coli (E. coli), Pseudomonas aeruginosa
(P. aeruginosa), coagulase-negative Staphylococci [10] and
many other aerobic and anaerobic microorganisms (Figure 1
and Table 1). Fetal methicillin-resistant S. aureus (MRSA)
and vancomycin-resistant enterococci in burn injuries are
found to be increasing every year, particularly in patients
with full-thickness injury [11,12].

Acute surgical site wound infections (SSWIs) occur in
many surgical wounds ranging from elective to traumatic
non-elective procedures. During surgery, microorganisms
on sutures or prostheses can induce both superficial and
deep infection [13,14]. Studies have shown that acute
SSWIs increase morbidity and mortality, while patients with
acute SSWIs are 2–11 times more likely to succumb to
complications than uninfected patients [14–16]. The most
common pathogenic microorganisms for acute SSWIs are
Staphylococcus epidermidis and S. aureus. As cutaneous
commensal bacteria, Staphylococcus can form biofilms on the
epidermis, which is the main virulence factor, and S. aureus is
often found in medical device related infections [17]. Other
microorganisms have also been isolated from acute SSWIs,
including E. coli, Clostridium difficile, coagulase-negative
Staphylococci [11], Legionella pneumophila, Mycobac-
terium chelonae, Clostridium perfringens, Mycobacterium
fortuitum, P. aeruginosa and Acinetobacter baumanii
[18].

Traumatic wounds include abrasions or laceration wounds
with extensive tissue, bone and internal organ damage [19].
The common pathogens of traumatic wound infections are
Gram-positive S. aureus and Gram-negative P. aeruginosa
[20]. Infections in skin laceration wounds were noted mostly
in elderly patients with chronic use of corticosteroids [20],
while 2–10% of infections are reported to be of plantar punc-
ture wounds, mainly caused by Staphylococcus or Streptococ-
cus [21]. High mortality and septic complications, including
abdominal infections, necrotizing fasciitis and diffuse septic
peritonitis, can often be attributed to sepsis induced by wound
infection [22]. Invasive fungal infection is also known as a
serious complication for traumatic wounds, usually caused
by agricultural accidents, war bombings and natural disasters,
resulting in deep tissue wounds [23]. As fungi can survive in
both acidic and iron-rich environments, they can stimulate
severe pelvic injuries or limb amputations [24,25]. Although
fungal infections are less reported compared to bacterial
infections they lead to high amputation and mortality rates
of 31 and 38%, respectively [25].

Chronic wound infection

In contrast to acute wounds, chronic wounds are complicated
by having a delayed wound healing capacity. Chronic wounds
occur more often in elderly people, patients with diabetes, vas-
cular disease, obesity, malnutrition and chronic mechanical
stress, or a combination of these factors [26]. Most chronic
wounds are colonized by polymicrobial communities that can
form biofilms, resulting in excessive inflammation and infec-
tion susceptibility which significantly delay wound repair [27]
(Figure 1). Generally, Gram-negative bacteria are common
colonizing organisms in chronic wounds, accounting for 61%
of all microbial isolates. S. aureus is the most commonly
found pathogen in chronic infections, followed by P. aerugi-
nosa. Other pathogenic microorganisms are Proteus mirabilis,
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Figure 1. Differences between acute and chronic wound infection together with common pathogens. S. aureus Staphylococcus aureus, S. epidermidis

Staphylococcus epidermidis, E. coli Escherichia coli, P. aeruginosa Psuedomonas aeruginosa

Table 1. Common pathogens causing acute wound infection

Group Species

Gram negative Psuedomonas aeruginosa, Actinetobacter baumanni, Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, Serratia
marcescens, Enterobacter spp., Proteus spp., Bacteroides spp.

Gram positive Staphylococcus aureus, Streptococcus, Enterococcus, Micrococcus, Corynebacterium, Streptococcus pyogens,
Corynebacterium diphtheria, Coagulase-negative staphylococci

Fungi Candida spp., Non-albicans Candida, Aspergillus, Blastomycosis, Mucor circinelloides, Candida spp., Aspergillus spp.,
Fusarium spp., Alternaria spp., Rhizopus spp. Mucor spp.

Viruses Herpes simplex, Varicella-zoster
Drug-resistant strains Methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamases, MDR

Psuedomonas aeruginosa

E. coli, A. baumanni and Klebsiella pneumoniae [28]. Anaer-
obic bacteria in chronic wounds include Prevotella, Peptonip-
ihlus, Peptostreptococc, and Anaerococcus [29].

Biofilm is one of the major challenges in the treatment
of chronic wound infections. It occurs for >60% of chronic
wound infections and only 6% of acute wound infections

[30,31]. Biofilms are complex microbial communities of
bacteria and fungi that exist as unicellular, planktonic or
multicellular communities and aggregates, surrounded by
a polymeric matrix of polysaccharides, lipids, proteins and
nucleic acids. The matrix facilitates signaling among micro-
organisms by producing population-sensing molecules. This
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cross-communication can further aid microbial proliferation,
optimize nutrient uptake and regulate virulence, leading to a
persistent impairment of wound healing [29,30,32]. Bacterial
endotoxin- and exotoxin-associated wound infections are
found to induce non-specific and specific immune responses
[33], while excessive inflammation can further trigger adverse
outcomes, where inflammatory cells recruited at the wound
site produce large amounts of proteases that degrade the
extracellular matrix and delay wound healing [34].

Diabetic foot ulcer is a type of wound associated
with chronic infection, and is a complication of diabetes
mellitus, particularly in advanced disease including diabetic
neuropathy [35]. S. aureus is known to be the most common
infecting species (accounting for >50% of all wounds)
[36,37], with other causative organisms including coagulase-
negative Staphylococcus, Streptococcus streptococci spp.,
MRSA, Enterococcus spp., Corynebacterium spp., Enterobac-
teriaceae and P. aeruginosa [38]. Up to 90% of the bacteria
found in diabetic ulcer wounds are pathogenic or exclusively
anaerobic, including Gram-positive cocci, Prevotella spp.,
Poryphyromonas spp. and Bacteroids fragilis [38], whilst
>75% of diabetic foot wounds are found to be colonized
with fungi [39].

Pressure ulcers are defined as ‘a localized injury to the
skin and underlying tissue usually over a bony prominence
in combination with shear’ [40], particularly when wounds
are exposed to a fecal environment. A study by Norman
et al., showed that among 145 patients with pressure ulcers,
S. aureus and Gram-negative bacilli were detectable in 112
wounds [40]. Lower extremity venous ulcers are normally
caused by venous hypertension [41] in aging and obese people
with severe leg trauma or vascular surgery [42]. Wound
sites having high moisture are ideal for microbial growth,
therefore, all lower extremity venous ulcers are colonized
by microorganisms, resulting in serious infections. The most
common microorganisms at the ulcer site are S. aureus and P.
aeruginosa, with Streptococcus haemolyticus and MRSA also
being identified [42].

Current advances and challenges in treating wound

infections

Clinical diagnosis Clinical diagnosis is the first step to pre-
vent further complications (Figure 2). However, classification
of wound infections remains a challenge in practice. In gen-
eral, almost all wounds contain microorganisms, but not all
wounds develop infections. A clinical report by Leaper et al.
showed that ∼50% of patients who have a local wound infec-
tion do not show any sign of systemic infection [43], making
diagnosis difficult [44]. Currently, there is a lack of objective
clinical diagnostic criteria for wound infection, and clinicians
usually make subjective judgments based on experience. Diag-
nostic criteria (e.g. foul odor, friable or discolored granular
tissue) are highly subjective [44,45], resulting in high rates of
misdiagnosis or overtreatment with antibiotics. As a result,

patients can be at risk of developing multi-resistance bacterial
strains [46].

In vitro culture has been used as the golden standard
for clinical identification of microorganisms since the 19th
century [26]. However, it is only applicable for 1% of known
microorganisms that can be cultured in vitro under laboratory
conditions [47]. In contrast, most microorganisms, such as
fungi and anaerobes, are yet to be identified using in vitro
culture [26]. It takes ∼24–48 h to obtain results by this
method. Alternatively, 16S rRNA gene sequencing is a state-
of-the art technology that is widely used in basic science
for identifying bacteria in various types of wounds. The
limitations of this technique are that it cannot distinguish
alive or dead microorganism, it can only be used for the
identification of bacteria but not fungi or viruses, while the
cost is high and it is time-consuming [48,49].

Clinical wound dressing materials Wound dressings are used
to temporarily cover wounds and to prevent or manage
wound infections. However, wound dressing may become
a favorable place for microorganisms and biofilm formation,
resulting in increased microbial load and delayed wound
healing [18]. The ideal wound dressing should be flexible
and immune-compatible, forming a physical defensive barrier
but allowing oxygen exchange [50]. Many novel clinical
wound dressings have been developed and are utilized,
including sponges, hydrofibers, hydrocolloids, fucoidan,
collagen, hydrogels and films. Antimicrobial wound dressings
can be categorized as antiseptic, ionic/nanocrystalline silver
and antibiotic. An antiseptic wound dressing is a treatment
that releases antiseptics to eliminate microorganisms within
the tolerance limits of living tissue [51]. Products can
contain either silver (e.g. Aquacel AG), nano-crystalline silver
(e.g. ACTICOAT) or cadexomer iodine (e.g. Iodosorb™)
as antimicrobials. Applications of silver compounds on
acute wounds was a major milestone in topical therapy,
which remarkably reduced the incidence of acute wound-
induced sepsis and death. Bactigras™ are cotton roving
fabrics containing 0.5% w/w chlorhexidine acetate for
preventing wound infection by Gram-positive and Gram-
negative bacteria, but not by spores, fungi and viruses [52].
Iandine is a low-adhesive knitted viscose fabric impregnated
with a polyethylene glycol matrix containing 10% povidone
iodine, which is the broadest spectrum antiseptic in human
use, while Iodosorb™ is a unique antiseptic dressing
composite of cadexomer microbeads with 0.9% elemental
iodine. Iodosorb™ is effective against biofilm formation
due to its high release rate of antimicrobials [53]. Ionic or
nanocrystalline silver-containing dressings are also widely
accepted in the control and treatment of wound infections
because of their broad-spectrum antimicrobial activity [33].

Antibiotics The first antibiotics were discovered in the late
19th century, and over the past hundred years, various antibi-
otics such as sulfonamides, penicillin, streptomycin, tetracy-
cline and vancomycin have been clinically used for infection
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Figure 2. Therapeutical approaches and innovations in managing acute and chronic wound infection

control. At present, the extensive use and overuse (long-
term or for uninfected wounds) of topical or systemic antibi-
otics has led to a global antibiotic resistance crisis [48]. It
is estimated that ∼70% of bacteria causing wound infec-
tions are now resistant to one antibiotic [33]. The spread
of resistant strains has become a pandemic threat to human
health with >700,000 deaths per year, and the number of
deaths is expected to rise to 10 million annually by 2050
[54]. The International Committee of the Red Cross recom-
mends that the best type of ‘antibiotic’ is the appropriate
surgical treatment [55], and the Infectious Diseases Society
of America recommends that antibiotics should be avoided
for diabetic foot ulcers if there are no signs of infection
[56]. Antiseptics with antimicrobial effects are being utilized
more frequently to overcome drug resistance of antibiotics.
Octenidine hydrochloride , polyhexamethylene biguanide,
povidone-iodine and sodium hypochlorite are currently uti-
lized in clinics as topical treatments for wound infections
because of their high bactericidal and anti-biofilm forming
activity [30].

Surgical methods The standard surgical approach to treating
wound infection is debridement, and if the infection is deep
into muscle or the adipose layer, amputation is required to
prevent systemic infection or sepsis. Debridement is a com-
mon surgical approach for the treatment of acute wounds,
such as burn injury. It can help to reduce bacterial diver-
sity and promote wound epithelialization, while it can also
reduce the blood load on the wound via removing necrotic
infected tissue, apoptotic cells and biofilms from the wound
[30,57,58]. High microbial loads can lead to wound deterio-
ration, osteomyelitis and ultimately amputation [35]. Patients
with severe limb ischemia usually require below-knee ampu-
tation, and postoperative wound closure is effective in reduc-
ing reinfection [59]. First pioneered in 1920, radiographic
amputation was utilized in salvage surgery for proximal
phalangeal dysfunction. It can also control wound infection,
vascular insufficiency and congenital anomalies of the hand
[60]. However, reinfection after amputation remains a risk as
patients with diabetic foot ulcers have a fairly high risk (40%)
of mortality after amputation [61].
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Table 2. Representative animal models of acute wound infection

Infection model Animal species Modeling methods Microorganisms

Burn infections Rodents and pig Heat source used: boiling water, burning
ethanol bath, gas flame, pre-heated double
brass blocks, pre-heated single metal
plate/bar, etc.

Psuedomonas aeruginosa, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter
baumannii and Candida albicans.

Surgical site
infections

Mouse, rat and pig Incisional wounds with foreign bodies,
subcutaneous injection of foreign bodies and
microorganisms into pocket wounds with or
without foreign bodies.

Staphylococcus aureus, Psuedomonas
aeruginosa and methicillin-resistant
Staphylococcus aureus.

Skin abrasion
wound infections

Mouse, rat and
rabbit

Needle scratch model, blade scrape model,
tap striping model, sand paper model and
dermatome model.

Staphylococcus aureus, Psuedomonas
aeruginosa and Candida albicans.

Excisional wound
infections

Mouse, rat, rabbit
and pig

Removing the full-thickness skin. Staphylococcus aureus, Psuedomonas
aeruginosa, Escherichia coli and
methicillin-resistant Staphylococcus aureus.

Lacerated wound
infections

Guinea pig and rat Non-crushed lacerated wounds and crushed
lacerated wounds.

Staphylococcus aureus, Streptococcus pyogenes,
Psuedomonas aeruginosa, Klebsiella
pneumoniae and Proteus mirabilis.

Animal models Animal models aimed at studying the com-
plex biochemical processes in the treatment of wound infec-
tions and evaluating the biosafety and efficacy of medical
treatments have been well developed. Currently, animal mod-
els of wound infection vary between animal species, different
modeling drugs and equipment, microbial species and inoc-
ulation amount, size and depth of the wound. For studying
acute wound infection, large or small animals with burn
infection, surgical site infection, skin abrasion infection or
laceration wound infection are commonly utilized (Table 2)
[20], while animal models of chronic wound infection are
described for diabetic wound infection only (Table 3) [62,63].
Additionally, the model pathogenic microorganisms are S.
aureus and P. aeruginosa [20]. Rodents such as mice have
been found to be the most popular model due to the similarity
of their immune systems to that of humans and the ability
to create gene knockout varieties. However, FDA guidance
recommends that all new drugs need to be assessed on two
animal models involving a non-rodent large animal [62]. In
such case, porcine models are commonly used to investigate
new approaches for the treatment of wound infection. The
skin structure of the pig is similar to human skin, and both
pig and human wounds heal via re-epithelialization not by
contractile healing [64]. However, limitations in using dif-
ferent animal models still exist as none of the models can
completely mimic wound infection in humans [65]. More-
over, current animal studies mainly focus on local wounds,
but the systemic conditions, including systemic inflamma-
tory response and changes in metabolism, should also be
considered [63].

Innovations in wound infection control

Antimicrobial peptides (AMPS) AMPs are an emerging class
of drugs for the treatment of traumatic infections [57,66]
and have tremendous research value in the treatment of

severe chronic infections (Figure 2). To date, >2000 natural
or synthetic AMPs have been developed with broad-spectrum
antimicrobial properties that are less likely to develop drug
resistance. AMPs that can be extracted from insects, animals
or plants, including tylotoin, plant defensins and LL-37, have
been investigated for their novel antimicrobial properties
[67]. Peptides induce cell death by interacting electrostatically
with microbial cell membranes, inducing porous membrane
formation and inhibiting cell wall formation and protein
synthesis, resulting in an inhibition of micro-organism
proliferation [68]. Current investigations of AMPs are
focussed on increasing their activity. Based on studying
human thrombocidin-1-derived peptide L3 (a protein isolated
from human blood platelets that has the ability to destroy
microorganism) [69], a new AMPs named TC-19 was
synthesized, with promising results against S. aureus and A.
baumannii. Compared to rifampicin and ciprofloxacin, TC-
19 exhibited minimal drug resistance [70]. In a full-thickness
wound model, TC-19-containing hypromellose ointment was
capable of suppressing S. aureus infection significantly [69].
In a study of a novel synthetic cationic peptide, AMC-19,
effective antimicrobial results were reported in a MRSA-
induced wound infection [71]. Results also showed high
stability of AMC-19 with a 7-fold reduced bacterial load in
3 days, demonstrating its potential against MRSA via topical
administration [72]. Because of their low activity, nonspecific
cytotoxicity and susceptibility to proteolysis, ongoing studies
aim to further develop a second generation of AMPs.
In the second generation, a modified peptide, DGL13K,
proved to have enhanced antimicrobial activity [73]. Topical
administration of DGL13K ointment on a burn infection
model showed a significantly decreased bacterial load post
treatment [73]. Unfortunately, no topical AMP drugs are
commercially available [57] and the clinical effects, long-term
safety and side effects in patients are yet to be studied.



Burns & Trauma, 2022, Vol. 10, tkac014 7

Table 3. Representative animal model of diabetic wound infection

Animal species Induction of diabetes mellitus in animals Induction of wound in diabetic
animals

Microorganism

Mouse, rat, rabbit,
dog, guinea pig, pig

1. Chemically-induced diabetes mellitus:
streptozotocin, alloxan, dithizone, gold thioglucose,
monosodium glutamate.
2. Genetic manipulation:
db/db mouse, KK-Ay mouse, ob/ob mice, Goto–Kakizaki
rat, Otsuka Long Evans Tokushima fatty rat,
Spontaneous diabetic Torii rat, Zucker diabetic fatty rat,
Watanabe heritable hyperlipidemic rabbit and
Postprandial hyper- triglyceridemia rabbit.
3. Virus-induced diabetes mellitus:
D-variant encephalomyocarditis, coxsackie B4 virus.
4. Hormone-induced diabetes mellitus:
growth hormone, corticosteroid.

Excision wound model, incision
wound model, burn wound model,
ear wound model, dead space
wound model, tape stripping wound
model, pressure ulcer model,
parabiosis wound model, denervated
wound model, skinfold chamber
model, xenograft wound model.

Psuedomonas aeruginosa
and Staphylococcus aureus.

In order to avoid inactivation of AMPs caused by
their degradation by various proteases secreted by human
pathogens, such as P. aeruginosa elastase, P. mirabilis pro-
teinase, Enterococcus faecalis gelatinase and Streptococcus
pyogenes cysteine proteinase, researchers improved their
antibacterial activity by enhancing their stability to proteases
and their stability under high salt conditions. Methods
include using terminal modifications such as N-terminal
acetylation and/or C-terminal amidation, replacing amino
acids in AMPs with non-encoded α-amino acid derivatives
which can reduce the susceptibility of AMPs to microbial
proteases, particularly the complete substitution of D-amino
acids, and AMP multimerization. Moreover, the antibacterial
ability can be improved by varying the hydrophobicity and
amphiphilic affinity of AMPs or via stabilizing the structure
through dimerization or cyclization of disulfide bonds. At
present, novel therapeutics also include utilizing carriers
and scaffolds such as liposomes and polymers to achieve
controlled delivery of AMPS that can further increase the
antimicrobial activity and stability and reduce toxicity and
protease degradation [74–76].

Controlled drug delivery systems Drug delivery systems are
widely used to deliver antibiotics, growth factors, genes and
cells for preventing or curing wound infections. Microcarriers
are designed and developed to incorporate unstable antibi-
otics for controlled drug release with significantly reduced
risk of bacterial infection. However, due to the size of micro-
carriers, in the range of 10–50 μm, they are not suitable
for intracellular delivery. Nanoparticles, such as polymer
nanocarriers, lipid nanoparticles, and metal and metal oxide
nanoparticles, can be precisely tailored to have specific drug
properties or to target specific cell types. For instance, cationic
polymers are reported as carriers for releasing anionic drugs
[77]. Lipid-based nanoparticles normally exhibit sustained
drug release based on smaller particle size and lipid compo-
sition, ensuring better interaction on the wound site with a

prolonged release time [78]. Metal and metal oxide nanopar-
ticles, such as silver, copper oxide, zinc oxide and titanium
dioxide nanoparticles, have also been used as alternatives
for the treatment of drug-resistant bacterial infections due to
their high antibacterial activity. Because of the high surface
area of metal nanoparticles, after binding with antibacte-
rial agent, the area of the antimicrobial agent contact with
bacteria is increased resulting in the destruction of bacterial
membrane permeability and respiratory function [79]. The
minimum inhibitory concentration value of gold nanoparti-
cles immobilized with antimicrobial peptide surfactin is 80
times lower compared to that of free surfactin [80], and
these nanoparticles were found to promote wound healing
in a rat model of MRSA-infected wounds. Additionally, metal
oxides (vanadium pentoxide, iron oxide and graphene) can be
utilized as artificial enzyme catalysts to enhance the efficiency
of H2O2 conversion to hydroxyl radicals (•OH), improving
the antibacterial activity against E. coli and Vitis vinifera [81].
Innovative approaches such as ex vivo loading of neutrophils
with antibacterial agents and use of cells as delivery vehicles
have been reported previously [82].

Other advances and innovations in treating wound infec-
tion Phages are natural antibacterial agents that are highly
abundant in the environment. Phages are capable of regu-
lating bacterial populations via inducing bacterial lysis and
disrupting bacterial metabolism, leading to self-destruction
(Figure 2) [83]. Lytic tailed phages are increasingly subject
to investigation for use in a clinical setting [84]. Lytic tailed
phages consist of an icosahedral capsid head that contains
double-stranded DNA (15–500 Kbp) and a tail covered by
surface receptor proteins that interact with surface features of
the host bacterium. Phages can adsorb to the host bacterium
and inject phage DNA, delivering multiple phage virions
which aim to kill the bacteria [85]. They are known to be
highly specific to their bacterial host, targeting only one or
a couple of different bacterial strains [86]. Cocktail therapy
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Figure 3. Smart hydrogel wound dressings in the treatment of wound infection. AMP antimicrobial peptide

using various phages in a single treatment has been stud-
ied in a clinical setting [87]. A phase I clinical trial using
phage therapy showed that injection with P. aeruginosa, S.
aureus and E. coli phages is safe and has high efficacy in
treating chronic venous leg ulcers [88]. Topical administra-
tion of Staphylococcal phage S applied once a week was
also found to heal small ulcers in 7 weeks and large ulcers
in 18 weeks [89,90]. Despite advances in phage therapy
research, there is no commercial phage product available
yet [91].

Innovations in wound dressing materials

Advances have been made in the structure and properties
of wound dressing materials, developing the ability for
controlled release of antimicrobial drugs. Advanced wound
dressings normally have the dual function of treating
infections as well as promoting wound healing [68]. Recent
advances in wound dressing materials can be sub-categorized
into thermos-sensitive, pH-sensitive and light-responsive
(Figure 3). These hydrogels have shifted the focus from
traditional wound dressings to smart hydrogel wound
dressings [92].

Thermo-sensitive hydrogels Thermo-sensitive hydrogels can
change their characteristics in the context of temperature.
With gelation time and temperature regulation being
adjustable, thermo-responsive hydrogels can transform from

the liquid state into a hydrogel, aiming for controlled delivery
of active molecules or drugs [93,94]. Thermo-sensitive
hydrogels have great clinical potential, particularly in the
treatment of deep tissue damage or in the context of irregular
wounds [95], allowing drugs to be precisely delivered to
a target area. Natural and synthetic polysaccharides and
proteins, such as chitosan and collagen [96], have been
used in the production of thermos-sensitive hydrogels due
to their biocompatibility with the wound environment. A
thermo-sensitive hydrogel using chitosan cross-linked with
β-glycerol phosphate was investigated in the treatment of a
full-thickness surgical wound infected with A. baumanni and
the results showed that the number of bacteria significantly
decreased over 28 days [97].

pH-sensitive hydrogels The pH of wounds is different com-
pared to healthy skin. Normally, the pH of healthy skin is
4.5–6.5, while the pH of a wound alkalizes to a value of
7.4. Due to alkaline byproducts of proliferating bacterial
colonies, the pH of the wound can reach up to 9 [98–
100]. Relying on pH variations between healthy and dam-
aged tissue, a novel pH-sensitive hydrogel composed of red
cabbage extract and methacrylate chitosan was successfully
fabricated [101]. Results showed that red cabbage extract
can be used to indicate the pH of the wound bed as well as
accelerate wound healing [101]. This study indicates a new
research avenue involving the synthesis of smart materials
with ‘diagnosis and curing’ effects. pH-sensitive hydrogels can
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control the delivery of drugs in treating wound infections.
A recent study showed that a nano-chitosan-enriched poly
(ε-caprolactone) pH-sensitive nanofibrous membrane was
used to release curcumin at a controlled rate according to
changes in pH [102]. Under both acidic conditions of pH 1.2
and alkaline conditions of pH 7.4, ∼48% of curcumin was
released on day 15, but under neutral conditions, release of
curcumin reached 71% on day 15 [102]. Similarly, a study
by Ren et al. investigated a multi-functional hydrogel with
a combination of tannic acid and keratin cross-linked with
graphene oxide quantum dots. It could swell by >80% in
alkaline conditions, which is better for wound healing. The
high swelling rate, which allows the drug to be dispersed
evenly, thus achieving a sustained-release, long term treat-
ment of wound infection [103]. This multifunctional hydrogel
promotes wound healing and is effective against E. coli and
S. aureus. These findings suggest that pH-sensitive hydrogel
should be further investigated as a new anti-infection wound
dressing.

Near-infrared light-responsive hydrogels Light-responsive
hydrogel is a smart hydrogel proportionally responsive to
light wavelengths, allowing for controlled drug release.
Among light-responsive hydrogels, near-infrared (NIR)
light-responsive hydrogels have promising advantages in
converting light into heat, utilized to destroy bacteria with no
risk of drug resistance. Polydopamine nanoparticles (PDA-
NPs) have also been used for their photothermal effects
in biomedical applications due to their biocompatibility
and biodegradability [68,104,105]. A study by Gao et al.
investigated the photothermal effect of a PDA NIR-responsive
hydrogel on wound infections in a S. aureus infected mouse
wound model, showing encouraging anti-bacterial activity.
An enhanced release of ciprofloxacin, a potent antibiotic that
has the capability to destroy bacteria, was also instigated via
local hyperthermia [106]. However, the uncertain biosafety
of light-responsive hydrogel limits its translational research
in clinical practice.

Other innovative hydrogels Self-healing injectable hydrogels
are receiving more attention from researchers due to their
multifunctionality. Self-healing injectable hydrogels can be
prepared by two principles: dynamic covalent chemistry or
weak interactions of supramolecular chemistry. Hydrogels
prepared based on dynamic covalent chemistry are capable
of achieving self-healing after the covalent bond is bro-
ken via introducing special covalent bonds, such as hydra-
zone bonds, imine bonds, disulfide bonds and Diels–Alder
reversible covalent bonds. In contrast, hydrogels prepared
based on supramolecular chemistry can fuse molecules or
molecular chains through weak and reversible intermolecular
forces to form cross-linked networks, such as hydrogen bond
interactions, metal coordination bonds, ionic interactions and
π–π interactions [107]. Self-healing injectable hydrogels with
antibacterial activity, antioxidant, responsive, biocompati-
bility and electrical conductivity are all beneficial for the

treatment of wound infection. A report showed that injectable
self-healing carbon dot hydrogels with strong antibacterial
activity using ε-poly(L-lysine) carbon dots and oxidized dex-
tran can completely kill 107 CFU ml−1 S. aureus in 10 min
[108].

Polypeptide hydrogels have optimized mechanical strength
and can resist shear stress to the wound and selectively inhibit
specific bacteria when incorporated with antibacterials to
reduce drug resistance. In the past decade, peptide hydrogels
with antibacterial effects have been effective in the treatment
of all stages of infection, mainly for the treatment of S.
aureus, MRSA, S. epidermidis, E. coli, P. aeruginosa and K.
pneumoniae, and future research will be focused on designing
species-specific hydrogels [109]. Scientists found that when
multi-domain peptide hydrogels have different charges, they
can produce various regulatory effects on the host immune
response. For instance, the multi-domain peptide hydrogels
containing deprotonated carboxylic acids can trigger mild
inflammation with minimal macrophage infiltration into the
wound area and less secretion of inflammatory cytokines.
However, multi-domain peptide hydrogels containing proto-
nated amines normally induce severe inflammation, which
diminishes over time, increase acute immune cells and pro-
mote host vascularization and tissue remodeling. Addition-
ally, multi-domain peptide hydrogels containing guanidine
ions trigger a long-term, highly pro-inflammatory response
that is difficult to resolve [110]. These data showed that spe-
cific peptide hydrogels can be designed for different purposes
in the treatment of wound infection [111].

Innovative herbal medicine

Herbal medicine has been used clinically since 5000 BC.
Herbal medicine has minimal side effects and a low risk
of drug resistance in treating wound infections (Figure 2).
Natural products derived from insects such as periplaneta
Americana extract [112], manuka honey [113] and the nat-
ural product chitin [114] have been clinically used in the
treatment of various types of wound infection. A list of
herbal medicines with antibacterial effects including herbal
monomer and herbal compound is given in Table 4.

The therapeutic effect of herbal medicine is attributed to
certain chemical components. Among them, natural tannins
have shown remarkable antibacterial and antioxidant activ-
ities [115]. Tannins are polyphenolic compounds that are
widely distributed in plants. A study showed that the total
tannin content in phaseoloides (L.) Merr extract was found to
be ∼76.18% [116]. Transmission electron microscopy obser-
vations demonstrated that tannins could interfere with S.
aureus and destroy the cell membranes, releasing their intra-
cellular cytoplasm. This study showed that tannin promoted
wound healing in rats infected with S. aureus. Subsequent
to these investigations, tannic acid has been approved by
the US FDA and clinically used for skin ulcers and burns
due to its favorable antioxidant, hemostatic and antibacterial
properties [117].
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Table 4. Some herbal medicines for infection wound healing

Herb Sources of materials Agent Target microbes Reference

Tannins Extract of Entada
phaseoloides (L.) Merr

Ointment Staphylococcus aureus (S. aureus) [116]

Tannic acid Chemical reagent Hydrogels Escherichia coli (E. coli), S. aureus [124]
Epigallocatechin gallate Green tea Cationic nanoliposomes E. coli, methicillin-resistant S. aureus [125]
Aloe vera Extract of Aloe vera leaf Nanofibers E. coli [126]
Aloe vera Chemical reagent Dressing E. coli, S. aureus [127]
Curcumin and Aloe vera Chemical reagent Dressing E. coli, S. aureus [128]
Trans-cinnamaldehyde and
eugenol

Chemical reagent Solution Acinetobacter baumannii [129]

Gentiana macrophylla Extract of Gentiana
macrophylla Roots

Solution E. coli, S. aureus, Staphylococcus epidermidis,
Psuedomonas aeruginosa (P. aeruginosa) ,
Klebsiella pneumoniae, Micrococcus luteus,
Enterococcus faecalis, Streptococcus uberis

[130]

Allium sativum and Cleome
droserifolia

Extracts of bulbs of fresh A.
sativum and dried leaves of
Cleome droserifolia

Nanofibers E. coli, S. aureus, methicillin-resistant S.
aureus

[131]

Rutin and quercetin Chemical reagent Nanofibers E. coli, S. aureus [132]
Extract of Chamaecyparis
obtusa plant

Chamaecyparis obtusa Solution S. aureus, Streptococcus pyogenes [133]

Salvia officinalis essential
oil

The dried leaves of Salvia
officinalis

Ointment S. aureus, P. aeruginosa [134]

Zataria multiflora essential
oil

Chemical reagent Ointment S. aureus, P. aeruginosa [135]

Rosemary essential oil Rosmarinus officinalis L Oil nanostructured lipid
carriers (NLCs) in gel

E. coli, S. aureus, S. epidermidis, Listeria
monocytogenes, P. aeruginosa

[136]

Olive oil and eucalyptus oil Chemical reagent NLCs S. aureus, Staphylococcus pyogenes [137]
Clove oil and sandalwood
oil

Chemical reagent Dressing E. coli, S. aureus [120]

Moringa oleifera seed
polysaccharide

Extract of Moringa oleifera
seed

Nanocomposite with silver E. coli, S. aureus, P. aeruginosa [122]

Essential oils extracted from herbals are also known to
have antibacterial effects. Phenolic components are capable
of fighting drug-resistant strains through their anti-biofilm
activity [118,119]. The antibacterial clove oil contains
eugenol, β-caryophyllene, oleic acid, lipids and small amounts
of other ingredients [120]. According to Singh et al., eugenol,
together with other phenolic compounds, denatures proteins
and reacts with bacterial cell membrane phospholipids,
affecting permeability, and subsequently causes cell lysis.
The antibacterial activity of sandalwood oil is due to
the destruction of cell wall and cell plasma membrane,
leading to lysis and leakage of intracellular compounds.
The combination of clove oil and sandalwood oil enhances
antibacterial activity against S. aureus and E. coli by 98%
[120]. In addition to its direct bactericidal effect, it can also
mediate the secretion of antimicrobial peptides from HBD-
3 and LL-37 through the olfactory receptor OR2AT4 to
methicillin-sensitive S. aureus, MRSA and purulent [120]. In
summary, it is expected that herbal derivatives are a group
from which strong candidates for future treatment of chronic
wound infections and biofilms will be selected.

One limitation of herbal medicine is its low activity
compared to metals or synthetic drugs. At present, research

has shifted to combining biomaterials or natural products,
including silver (Ag+), gold (Au) and other known antibacte-
rial agents. A study has shown that 87.1% of δ-trienol and
12.9% of γ -trienol extracts obtained from Bixa Orellana
L. (Bixaceae) seeds are isomers of vitamin E, which can be
used as an immune adjuvant to increase the effectiveness
of the antibiotic daptomycin in treating MRSA-infected
wounds. This study suggests that the activity of antibiotics
can be increased by boosting systemic immune responses
against drug-resistant pathogens [121]. Another study
demonstrated that polysaccharides isolated from Moringa
oleifera seeds can be used to stabilize silver nanoparticles
(AgNPs) [122]. Moringa oleifera seed polysaccharides have
strong antimicrobial activity against pathogens collected
from wounds, with minimal cytotoxicity toward mouse
fibroblasts cells, and promote the migration of cells. In
recent years, the multi-functionality and plasticity of herbal
medicine and their derivatives are being investigated for
their use as novel antimicrobial biomaterials. Cellulose
microfibers (CM) extracted from Gleditsia triacanthos have
been developed into a wound dressing via freeze-drying CM
[123]. Controlled release of phenolic compounds from CM
was found to be effective against Gram-negative and Gram-



Burns & Trauma, 2022, Vol. 10, tkac014 11

positive bacteria. A study showed pro-anthocyanidins and
carrageenan conducting chemical reactions under various
pH conditions and can be used as a visual system to monitor
skin wound infections [100]. This finding also suggests that
herbal medicines and their derivatives can serve not only in
the treatment of infected wounds but can also have a role in
the design of methods of detection and diagnosis.

Future directions

Early diagnosis An accurate diagnosis of wound infections is
crucial to prescribe appropriate wound treatment. However,
current approaches are speculative and time-consuming, with
varying specificity and sensitivity. Novel diagnostic meth-
ods have been developed using the methods of PCR and
auto-fluorescent imaging. A PCR kit, DxWound, has been
developed to detect anaerobic bacteria, aerobic bacteria and
fungi, allowing on-time monitoring for wound infections
[138], while a portable autofluorescence imaging devices
(e.g. MolecuLight™) has been utilized clinically for diagnos-
ing wound infections [139]. Future directions may involve
denaturing gradient-gel electrophoresis, fluorescence in situ
hybridization, metabolomics and genomics, techniques cur-
rently demonstrating great potential for the development of
accurate, rapid, simple, noninvasive, inexpensive and specific
diagnosis in wound infections [140,141].

Combined therapies for wound infection For the treatment
of acute or chronic wound infection, monotherapies,
such as using antimicrobials, still have a high risk of
antimicrobial resistance. Moreover, the spatial distributions
of the microorganisms in the wound are complicated, the
community behaviours of the bacteria are dynamic and the
interactions between the polymicrobial and human immunity
are undefined [142]. In response to these, dual therapies are
expected to potentiate development of effective therapies
for wound infections. For instance, silver-impregnated foam
and topical negative pressure have been shown to have
a synergistic effect in destroying bacterial biofilms in the
wound [143]. Moreover, silver nanoparticles and neomycin
have shown strong synergistic efficacy against MDR P.
aeruginosa with faster wound contraction in a mouse model
[144]. Some combination therapies like ultrasound-assisted
debridement and vacuum pump therapy have also been
studied to treat deep sternal wound infections in clinical
trials [145]. All these pioneering studies demonstrated
significant potential in wound treatment and prevention of
infections. Other combinations include antimicrobial agents
(antibiotics, herbal medicines and synthetics), immune-based
antimicrobial molecules (antimicrobial peptides), therapeutic
microorganisms (probiotics and bacteriophages) and cell
therapy. These combinations are expected to lead to future
developments in the treatment of wound infection, while
external stimuli such as antimicrobial phototherapy (NIR
based therapies), laser therapy, light-emitting diode, high-
frequency ultrasound and microcurrent electrical stimulation
may also be utilized in wound infection therapy.

Targeting skin microbiome as a new direction Skin micro-
biome is vital in maintaining the epithelial barrier func-
tion of skin and preventing the invasion of pathogenic
microorganisms. Loss of microbial diversity in wound sites
is known to stimulate prolonged inflammation. Clinical
applications have demonstrated the efficacy of targeting
the skin microbiome in the healing of atopic dermatitis
by reintroduction of antimicrobial Lactobacillus johnsonii
or Vitreoscilla filiformis [29]. Interestingly, Lactobacillus
plantarum can inhibit Pseudomonas colonization, reduce
collagen accumulation and accelerate wound repair with
minimal scarring post burn injury [146,147]. Probiotics have
also been observed to significantly reduce the length and
depth of chronic wounds, suggesting their great potential
in conjugating with antibiotics to treat wound infections.
Ongoing studies of the skin microbiome are focusing on iso-
lation and engineering of functional probiotics or microbiota,
and studying the interactions between wound microbiome
and regulation of host skin microbiome [148]. However,
pioneering research findings suggest that pathogenic bacteria
could play a beneficial role in wound healing by mediating
the inflammatory response and tissue regeneration [149,150].
Therefore, future research may shift from killing or prevent-
ing the wound microbiome to controlling skin microbiome-
mediated inflammatory responses.

Conclusions

Infection remains a challenge in both acute and chronic
wounds, leading to increased morbidity, mortality and
healthcare-associated costs. Gram-positive bacteria, such as
E. coli and P. aeruginosa, and Gram-negative bacteria, like S,
aureus, are found to be the most predominant pathogens, with
multi-resistant strains continuing to increase in incidence.
Promising findings in novel antimicrobial peptides, phages,
cell therapy, development of pH- or NIR-responsive hydrogels
together with herbal medicine will address current issues in
wound infection and translate to general practice eventually.
Early detection of wound infections, combination therapies
and understanding the skin microbiome can also aid in the
treatment and prevention of wound infections.
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