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Data-driven approaches for identifying links 
between brain structure and function in health 
and disease 
Vincent Calhoun, PhD

Introduction

 M agnetic resonance imaging (MRI) data is a 
powerful tool which can provide us with detailed infor-
mation about both brain structure and brain function. 
The use of high-resolution T1-weighted scans provides 
comprehensive anatomic information about brain tis-
sue which can be used to estimate the volume of spe-
cific regions,1 cortical thickness,2 and networks of re-
gions that covary together across individuals.3 Diffusion 
MRI (dMRI) gives information about white matter 
structure, and can be used to assess structural connec-
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Brain imaging technology provides a powerful tool to visualize the living human brain, provide insights into dis-
ease mechanisms, and potentially provide a tool to assist clinical decision-making. The brain has a very specific 
structural substrate providing a foundation for functional information; however, most studies ignore the very 
interesting and complex relationships between brain structure and brain function. While a variety of approaches 
have been used to study how brain structure informs function, the study of such relationships in living humans in 
most cases is limited to noninvasive approaches at the macroscopic scale. The use of data-driven approaches to link 
structure and function provides a tool which is especially important at the macroscopic scale at which we can study 
the human brain. This paper reviews data-driven approaches, with a focus on independent component analysis 
approaches, which leverage higher order statistics to link together macroscopic structural and functional MRI data. 
Such approaches provide the benefit of allowing us to identify links which do not necessarily correspond spatially 
(eg, structural changes in one region related to functional changes in other regions). They also provide a “network 
level” perspective on the data, by enabling us to identify sets of brain regions that covary together. This also opens 
up the ability to evaluate both within and between network relationships. A variety of examples are presented, 
including several showing the potential of such approaches to inform us about mental illness, particularly about 
schizophrenia. 
© 2018, AICH – Servier Group  Dialogues Clin Neurosci. 2018;20:87-99.
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tivity by using approaches to estimate various diffusion 
parameters including anisotropy4 as well as probabi-
listic tractography using tensor-based models4, 5 and 
higher-order connectivity through multi-shell imaging 
and modeling with orientation distribution functions.6 
Finally, functional MRI (fMRI) provides information 
about brain function via blood oxygenation level-de-
pendent (BOLD) imaging over time7 and has been used 
to perform exquisite mapping of intrinsic connectivity 
networks.8 All three of these techniques compile impor-
tant information about brain function and structure and 
have been widely used in the study of mental illness.

The structure-function synergy

While the most obvious perspective is that structural 
information leads to subsequent functional changes, 
the plasticity of brain structure should also be kept in 
mind, as the functional activity may well reshape struc-
ture.9 It is also well known that structural sulcal/gyral 
boundaries definable at the macroscopic level do not 
necessarily correspond well to architectonic studies at 
the microscopic level.10 fMRI studies are improved if 
individualized functional boundaries are incorporated 
into the spatial normalization strategies.11 This complex 
synergy between structure and function increases the 
complexity of studying mental illnesses such as schizo-
phrenia which are known to impact both structure and 
function. Figure 1 provides a simple illustration of these 
relationships; structure can be (and often is) claimed to 
be a fixed substrate onto which function operates. How-
ever, the reality is more complex as we know functional 
changes can also reshape brain structure, with such 
changes visible within days even at the macro level.9 

This then highlights the complexity of studying psycho-
pathology, as illness can impact structure or function di-
rection, or the directional relationships between these 
two modalities.
 One of the challenges of complex mental illnesses 
such as schizophrenia is their highly intricate and dif-
fuse presentation. That is, schizophrenia impacts much 
of the brain, and there are numerous examples of 
structural and functional deficits associated with the 
illness.12-14 The use of data-driven methods can be par-
ticularly useful in this regard, as one can analyze the 
whole brain with an unbiased lens allowing for weak 
contributions from many different brain regions. Like-
wise, the relationship between function and structure 
can be elucidated with flexible analysis approaches such 
as independent component analysis (ICA).15 ICA is a 
type of blind source separation16 which allows for the 
estimation of signals from complex data sets with mini-
mal assumptions on their specific form. In particular, 
with ICA the goal is to extract maximally independent 
sources from the data, typically written X = AS where 
X is the data, A is an estimated mixing matrix, and S 
are the estimated maximally independent sources. In 
practice, the widely used ICA algorithms such as info-
max17 and fastICA18 often include two complementary 
constraints, independence (ie, the maps are maximally 
independent of one another) and sparsity (ie, the maps 
have a small number of region with high values), which 
when combined provide for relatively well-behaved 
and interpretable results (eg, a component can be in-
terpreted as a brain network19) as demonstrated by the 
extensive number of studies using this approach.20-25

 Data-driven approaches like ICA can be used to ex-
tract brain networks from sMRI, dMRI, and fMRI data 
and also link together brain structure and brain func-
tion.26 Approaches that can capture all of the possible 
relationships illustrated in Figure 1 are needed as this is 
where data-driven approaches provide a distinct advan-
tage. In addition, hybrid approaches that combine the 
flexibility of data-driven approaches with the ability to 
focus on specific networks and/or regions are also quite 
powerful in this context.27,28 There are a large number of 
studies to date which have used data-driven approaches 
such as ICA to study neuropsychiatric and neurological 
brain disorders.12,29,30 While the neuropsychiatry field is 
still very heterogeneous in findings, there is some evi-
dence that the data-driven approaches are producing 
replicable and canonical results which reliably show 
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differences in schizophrenia31 and show promise for the 
use of imaging to make diagnostic or treatment predic-
tions.32

 In this paper, we briefly introduce data-driven ap-
proaches to study brain structure and function with an 
emphasis on ICA-based approaches. Then we provide 
examples of several specific variations that have been 
used to analyze sMRI, dMRI, and fMRI data and also 
to link together these structural and functional modali-
ties to study the healthy and diseased brain.

 Data-driven approaches for analyzing 
brain structural and functional data

 A data-driven approach includes minimizing the 
upfront assumptions and allowing the data to be the 
primary driver of the results. This includes approach-
es such as clustering,33 principle component analysis 
(PCA),34 ICA,35 and more. In the context of brain imag-
ing data, ICA has proven to be highly versatile and is 
now a widely used approach.36 One of the likely reasons 
for this is that the resulting maps tend to be relatively 

well-behaved and interpretable due to the incorpora-
tion of both independence (which emphasizes non-sys-
tematically overlapping networks) and sparsity (which 
encourages more focal networks) in the estimation of 
the components.37

Source-based morphometry 

The use of ICA for sMRI analysis, called source-based 
morphometry (SBM),3 can be considered a multivari-
ate extension of voxel-based morphometry.38 Essentially, 
individual subject data are segmented, and gray-matter 
maps are organized into a matrix and entered into an 
ICA analysis that produces maximally spatially indepen-
dent component maps. These maps include regions that 
show similar gray matter covariation across subjects. The 
degree to which they are “expressed” in the data is cap-
tured via their loading parameters (Figure 2). SBM has 
been studied with multi-site data and a number of the 
components have been found to be canonical, some con-
sistently impacted by schizophrenia (such as the medial 
frontal/insular/temporal lobe component 1 in Figure 2).31
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Figure 2.  Source-based morphometry: input typically includes whole brain gray matter segmentation maps, output includes components 
(representing covarying gray matter regions) and their loading parameters (which can be tested for relationships with variables of 
interest such as age or group).
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 SBM can also be applied to dMRI data. For exam-
ple, SBM can be used to analyze fractional anisotropy 
(FA) maps, which are essentially providing information 
about the directionality of the diffusion within each 
voxel. Figure 3 shows results from an SBM of FA study 
of patients with schizophrenia and healthy controls. A 
number of the SBM components showed group differ-
ences, with all of these showing reduced FA in schizo-
phrenia. This included primarily frontal white matter 
(thalamic radiation, inferior fronto-occipital fasciculus, 
and the cingulum bundle) and temporal white matter 
(left inferior longitudinal fasciculus and the left inferior 
fronto-occipital fasciculus) in addition to forceps major, 
forceps minor, corticospinal tracts and the superior lon-
gitudinal fasciculus. A key advantage to this approach 

is that one does not have to make strong assumptions 
associated with the use of tract atlases. The results for 
ICA of SBM however do not inform us about the direc-
tionality of the diffusion data (an approach for this will 
be discussed later39); rather they identify regions that 
show similar between-subject covariation in FA values.

Group ICA of fMRI data 

In the era of the connectome, which is essentially a 
structural map of brain connectivity,40 resting fMRI 
has entered, and enabled us to estimate a “functional” 
connectome. Both of these, as measured by MRI, pro-
vide a “macro” view of the connectome, a domain in 
which multiple spatial and temporal domains overlap 
with one another in a complex manner, nowhere near a 
microscopic map of neuronal connectivity, and difficult 
to predict. Using group ICA, one can extract networks 
that are functionally coherent, that is, identify networks 
that are showing correlated activity. The output from 
group ICA24,41 allows one to evaluate each network 
separately, essentially to evaluate the within-network 
connectivity, as well as to study the between-network 
connectivity, also called functional network connectiv-
ity (FNC; Figure 4). Importantly, one can also leverage 
single-subject spatial maps and timecourses that are es-
timated from the group ICA through a process called 
back-reconstruction.42 Group ICA thus allows estima-
tion of changes in functional connectivity at the voxel 
level within specific networks, changes in the relation-
ship between pairs of brain networks, as well as other 
information such as spectral response, and in the case of 
a task, modulation by task stimuli. One can then evalu-
ate changes in the within and between network connec-
tivity which are related to symptoms, cognitive scores, 
individual subject prediction of diagnosis or treatment 
response.

Time-varying connectivity 

Recent years have seen a rapidly growing interest in 
the analysis of brain connectivity which can capture 
transient changes in connectivity within a given experi-
ment.44,45 Such chronnectomic information provides a 
more natural way to analyze fMRI data, especially 
resting fMRI data which is unconstrained and likely 
contains many different unmeasured “tasks.” While 
the field continues to develop,46 recent work in this 
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Figure 3.  SBM on dMRI data identifies a number of white matter 
components (highlighted in different colors) all of which 
show reduced fractional anisotropy in schizophrenia com-
pared with healthy controls. SBM, source-based mor-
phometry; dMRI, diffusion magnetic resonance imaging
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area has found high replicability,47 increased sensitiv-
ity to individual subject classification,48 and evidence of 
multiple sources of variation including sleep/arousal,49 
emotion,50 and even mind wandering.51 In one study, a 
sliding-window approach was used, followed by clus-
tering, to estimate patterns of connectivity from which 
individual subjects move into and out of over time. 
When evaluating the relationship of these “states” with 
schizophrenia, we found the patients tended to spend 
more time in the more weakly connected states and 
vice versa for the healthy controls43 (Figure 5). This 
expands our perspective on schizophrenia beyond the 
commonly observed weaker connectivity patterns. Ad-
ditional relationships between cortical and subcortical 
structures (eg, putamen, thalamus) also showed strong 
state and group dependencies.43 Other work has identi-
fied the presence of “sticky states” whose presence is 
correlated with, eg, negative symptoms in the patients.52 
Extensive ongoing work from many groups continues 
in this area and undoubtedly, such work will provide 

further insights into brain connectivity and hopefully 
schizophrenia. In a later section, we will discuss links 
between time-varying connectivity and brain structure.

Structural networks subserving functional networks 

Interestingly, if one compares the results from SBM 
of sMRI data and group ICA of fMRI data, it is clear 
that some of the SBM components are quite similar to 
the resting fMRI networks that are widely studied. The 
sMRI maps resemble the fMRI maps, but with less spec-
ificity (that is typically multiple fMRI networks com-
prise a single sMRI network), as one might expect. Fig-
ure 6 shows an example of results from approximately 
600 individuals comparing sMRI and fMRI networks.53

 The group ICA model can also be used to analyze 
probabilistic dMRI data in a data-driven manner39 
which, in contrast to SBM of FA, preserves the direc-
tional information contained in the dMRI data. In that 
case, one computes a region-by-region (or voxel-by-
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Figure 4.  Examples of within and among network connectivity information. The left panel shows brain regions parcellated from resting fMRI 
data using group ICA and the right panel shows the functional network connectivity (FNC) matrix among these regions (cross-
correlation).43 fMRI, functional magnetic resonance imaging; ICA, independent component analysis
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voxel) matrix for each individual which contains the dif-
fusion probabilities for traversing the space and enters 
these matrices into group ICA. This is called connec-
tivity matrix ICA (cmICA). The results from a subset 
of corpus callosum components output from a cmICA 
analysis of almost 600 individuals are shown in Figure 7. 
This model provides a powerful way to decompose such 
data which is not restricted to specific regions of interest 
or specific atlases of tracts, allowing the data to speak 
for itself. Importantly, it also enables us to directly re-
late seed-based connectivity to group ICA results, and 
provides a computationally much faster way to com-
pute these measures.39 Using the single-subject output 
from the back-reconstruction step allows calculation of 
group differences in the identified components.39 One 
can also combine both functional and structural infor-
mation within a single analysis using such a model.

Deep learning 

More recent models include the development of deep 
learning approaches which can be applied to neuro-
science data.54 Deep learning refers to an approach in 
which multiple models are essentially combined to-

gether to create a more complex (deeper) model. Deep 
learning is typically implemented as a stacked neural 
network, and as such is closely related to ICA (ICA can 
be modeled as a single-layer neural network). This al-
lows for the capture of more complex and nonlinear re-
lationships within the data. Interestingly, the restricted 
Boltzmann machine (RBM), a building block of deep 
learning models, provides results that are highly similar 
to those of ICA.55 Figure 8 shows an example of the ap-
plication of a deep belief network (essentially stacks of 
RBMs) to sMRI data from a range of patients includ-
ing schizophrenia, schizoaffective disorder, and bipolar 
disorder, as well as healthy controls. Interestingly, as the 
depth of the model goes from one to two to three, the 
separation between the two groups increases. In addi-
tion, despite the more complex model, there continues 
to be overlap between some subjects, highlighting the 
complexity of categorizing these individuals who have 
disorders which share overlapping symptoms and for 
which we do not yet have an underlying cause. Such 
approaches can help us with potentially refining diag-
nostic criteria by characterizing the degree to which in-
dividuals are well separated using the biological data.56

Data fusion

Importantly, one can also study the relationship be-
tween brain function and brain structure more directly, 
allowing the data from multiple modalities to interact 
with one another, called data fusion.15 An approach 
called joint ICA provides a way to do this, by jointly 
extracting from multiple modalities maximally inde-
pendent components that share a common covariation 
among subjects. The joint components share a common 
loading parameter which quantifies the degree to which 
each subject expresses the joint component (Figure 9; 
top). An example of joint ICA analysis of brain con-
nectivity during an auditory oddball task and gray mat-
ter concentration is shown in Figure 9 (bottom). In this 
case, the analysis included patients with schizophrenia 
and healthy controls and the loading parameter associ-
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Figure 5.  Dynamic connectivity differences in schizophrenia can 
be studied by performing a time-varying analysis of the 
data. For the same data summarized in Figure 4, we show 
evidence of multiple transient connectivity patterns (left), 
which are differentially occupied by schizophrenia patients 
and controls as measured by the dwell-time, the average 
time spent in a given state until moving to a different state 
(right).43

Figure 6.  (Opposite) Comparison of resting fMRI brain networks 
(from group ICA, blue outline) and structural MRI brain 
networks (from SBM, pink outline) show striking similari-
ties with the resting fMRI networks being subdivided more 
than the sMRI networks53 (ie, multiple resting networks of-
ten correspond to a single sMRI network). fMRI, functional 
magnetic resonance imaging; ICA, independent compo-
nent analysis; SBM, source-based morphometry
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Figure 7.  cmICA components from an analysis of probabilistic diffusion captures regions that are showing similar orientation in their diffusion 
profiles. Both individual components (top) as well as a rendering for components that were traversing the corpus callosum (bottom) 
are shown. cmICA, connectivity matrix ICA

Figure 8.  Deep learning results from sMRI data from schizophre-
nia, schizoaffective, and bipolar patients as well as healthy 
controls. Each dot represents an individual subject. As the 
depth of the model increases, the separation between the 
groups increases, although there are still boundary cases, 
which may be useful to help refine the diagnostic catego-
ries.
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ated with one of the components showed a significant 
group difference. Interestingly, parietal regions showing 
reduced gray matter in controls were implicated as as-
sociated with increases in task activation. Importantly, 
the (apparent) gray matter reductions were due to de-
creases in the white matter,57 further emphasizing the 
importance of incorporating sMRI, dMRI, and fMRI 
together.
 There are a few approaches capable of combining 
more than two modalities including linked ICA,58 in-
dependent vector analysis,59 PCA,30 parallel ICA, and 
an extension of joint ICA, called multiset canonical 
correlation analysis/joint ICA (mCCA+jICA).60, 61 The 
mCCA+jICA model approach leverages the strength 
of mCCA, which identifies maximally correlated mul-
timodal latent variables from the data, with joint ICA, 
which enables leveraging of the higher order statisti-
cal information in the data. These approaches provide 

a fully data-driven way to identify linked multimodal 
variables. An extension of this approach allows for 
the incorporation of prior knowledge to constrain the 
problem further by adding a reference function to the 
mCCA approach. This approach was used to identify 
multimodal patterns which are linked to a composite 
cognition score based on cognitive scores assessed 
with the MATRICS Consensus Cognitive Battery 
(MCCB).62 An extensive network of gray matter, white 
matter, and functional regions were identified and 
showed significant differences in schizophrenia pa-
tients versus healthy controls (Figure 10). The analysis 
and results replicated in a second cohort, underscoring 
the robustness of the resulting patterns. Interestingly, 
in addition to implicating specific structural and func-
tional regions in the brain, one can also observe more 
similarity between individuals in the structural fea-
tures and more variability in the functional features, 
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reflective of the more state-like aspect of the fMRI 
measurement.

Structural substrates for time-varying connectivity 

Another question of interest is to what degree, and in 
what ways, is the highly dynamic connectivity which has 
been observed in the past few years44,63 dependent on a 
structural substrate. This is especially important in the 
context of psychopathology, as there are known structur-
al differences that have been observed.64-66 Further ana-
lyzing the same data set as summarized in Figure 5, we 
implemented a deep-learning model designed to capture 
nonlinear links between brain structure and dynamic 
state. For example, one can use a model that estimates 
both alignment between different sources of information 
(eg, the caption and figure in an image) and the sequen-
tial relationship between dynamic data (eg, translation 
of two text phrases).67 Using this model, we identified 
two covarying structural networks in temporal lobe, both 

showing significant differences in alignment between pa-
tients with schizophrenia and healthy controls. Interest-
ing, the structural links parallel the amount of time each 
group spent in a given state. That is, state 3 was occupied 
more often by the healthy controls and also showed a 
stronger structure/function alignment with insula/tem-
poral lobe, whereas state 2 was occupied more of the 
time by schizophrenia patients and showed a stronger 
structure/function alignment with medial temporal lobe. 
Such results highlight the highly synergistic relationship 
between brain structure and brain function and the need 
for more work in this area.

Conclusion

In conclusion, this paper discussed the synergistic rela-
tionship between brain structure and function, provided 
a selective review of data-driven approaches for captur-
ing multivariate relationship both within and between 
brain structural and functional measure, and presented 
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Figure 11.  Nonlinear alignment of brain structure regions to dynamic connectivity patterns (left) reveal significant changes in the alignment 
of structure in the temporal lobe region in schizophrenia versus controls.67

Figure 10.  (Opposite) Advanced fusion approach (mCCAR+jICA) which allows one to identify multimodal features that are linked to an ex-
ternal variable (top). Example showing multimodal features (for both original analysis and replication) linked to cognition and also 
showing group differences in schizophrenia versus healthy controls.; mCCAR, multiset canonical correlation analysis; jICA, joint 
independent component analysis
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multiple analytic examples from prior studies. There are 
still only a small number of studies that directly evalu-
ate the relationship between brain structure and brain 
function; without this information we will undoubtedly 
be ignoring important information that can inform us 
about the healthy brain and the ways in which it is im-
pacted by psychopathology. o
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Propuestas en base a datos para identificar las 
relaciones entre la estructura y la función del 
cerebro en la salud y en la enfermedad

La tecnología de las imágenes cerebrales provee una he-
rramienta poderosa para visualizar el cerebro humano 
en vivo, aporta información sobre los mecanismos de la 
enfermedad y potencialmente entrega una herramienta 
para apoyar la toma de decisiones clínicas. El cerebro 
tiene un sustrato estructural muy específico que sirve 
de base para la información funcional; sin embargo, la 
mayoría de los estudios ignora las relaciones muy com-
plejas e interesantes entre la estructura y la función 
del cerebro. Si bien se ha empleado una variedad de 
enfoques para estudiar cómo la estructura cerebral da 
cuenta de su función, el estudio de estas relaciones en 
humanos vivos en la mayoría de los casos se limita a en-
foques no invasivos a escala macroscópica. El empleo de 
propuestas en base a datos para relacionar estructura y 
función entrega una herramienta que es especialmente 
importante a escala macroscópica, con la cual podemos 
estudiar el cerebro humano. Este artículo revisa las pro-
puestas en base a datos, focalizándose en las propuestas 
de análisis de componente independiente, que aprove-
chan las estadísticas de orden superior para relacionar 
los datos macroscópicos estructurales y la información 
de la RNM funcional. Dichas propuestas nos permiten 
identificar vinculaciones que no necesariamente tienen 
una correspondencia espacial (por ej. cambios estructu-
rales en una región relacionados con cambios funciona-
les en otras regiones). Además aportan una perspectiva 
de “nivel de red” de los datos, lo que permite identifi-
car grupos de regiones cerebrales correlacionados entre 
ellos. Esto también abre la capacidad de evaluar tanto 
dentro como entre las relaciones de la red. Se presen-
ta una variedad de ejemplos, incluyendo algunos que 
muestran el potencial de tales propuestas para conocer 
acerca de la enfermedad mental, especialmente sobre 
la esquizofrenia.          

  
Approches guidées par les données pour 
identifier les liens entre structure et fonction 
cérébrales saines et pathologiques

L’imagerie cérébrale est un outil puissant de visualisa-
tion du cerveau humain vivant, elle offre un aperçu des 
mécanismes pathologiques et apporte potentiellement 
un moyen d’assistance à la prise de décision clinique. Le 
cerveau présente un substrat structurel très spécifique 
permettant de fonder les informations fonctionnelles ; 
cependant, la plupart des études ignorent les relations 
très intéressantes et complexes existant entre la struc-
ture et la fonction cérébrales. Bien qu’une multitude 
d’approches ont été utilisées pour étudier comment la 
structure cérébrale informe la fonction, l’étude de ces 
relations chez les humains vivants est dans la plupart 
des cas limitée aux approches non invasives à l’échelle 
macroscopique. L’approche guidée par les données pour 
lier la structure et la fonction fournit un outil particu-
lièrement important à l’échelle macroscopique, qui per-
met d’étudier le cerveau humain. Cet article présente les 
approches guidées par les données, et insiste sur l’ana-
lyse en composantes indépendantes, qui exploite des 
statistiques d’ordre plus élevé pour lier entre elles des 
données d’IRM structurelles et fonctionnelles macros-
copiques. Ces approches ont l’avantage de permettre 
d’identifier des liens qui ne correspondent pas nécessai-
rement spatialement (par ex. des changements structu-
raux d’une région liés à des changements fonctionnels 
d’autres régions). Elles apportent aussi une perspective 
de « niveau de réseau » sur les données, et permettent 
d’identifier des groupes de régions cérébrales corrélés 
entre eux. Ceci ouvre aussi la possibilité d’évaluer les re-
lations à la fois intra- et inter-réseau. Plusieurs exemples 
sont présentés, dont certains montrent le potentiel d’in-
formation de telles approches sur les maladies mentales, 
en particulier sur la schizophrénie. 




